Programma del corso di Analisi Funzionale

Seconda parte - a.a. 2010-11

G. Orlandi

Lezione del 2/12/10 (2 ore). Presentazione degli obiettivi del corso. Lo spazio di Banach degli operatori lineari e limitati $\mathcal{L}(E,F)$ tra due spazi di Banach E,F. Norma di un operatore: per $T \in \mathcal{L}(E,F)$, si ha $||T||_{\mathcal{L}} = \sup\{||Tv||_F, ||v||_E \le 1\} =$ $\sup\{||Tv||_F/||v||_E,\ 0\neq v\in E\}$. Operatori invertibili: formano un sottoinsieme aperto di $\mathcal{L}(E) \equiv \mathcal{L}(E, E)$. Serie di Neumann: per $T \in \mathcal{L}(E)$, e ||T|| < 1, si ha che (I - T) è invertibile e vale $(I - T)^{-1} = \sum_{n=0}^{+\infty} T^n$. Operatore risolvente $R_{\lambda} \equiv R_{\lambda}(T) \equiv (\lambda I - T)^{-1}$ di un operatore $T \in \mathcal{L}(E)$, $\lambda \in \mathbb{C}$. Insieme risolvente $\rho(T)$: è formato dai $\lambda \in \mathbb{C}$ tali che $R_{\lambda}(T) \in \mathcal{L}(E)$, ed è un insieme aperto di \mathbb{C} . Dalla serie di Neumann si ricava che $\{\lambda \in \mathbb{C}, |\lambda| > ||T||\} \subset \rho(T)$. Detto $r = \limsup_n (||T^n||)^{1/n} \leq ||T||$ il raggio spettrale di T, si può dimostrare che $\{\lambda \in \mathbb{C}, |\lambda| > r\} \subset \rho(T)$. Spettro $\sigma(T) = \mathbb{C} \setminus \rho(T)$ di un operatore $T \in \mathcal{L}(E)$: è un insieme chiuso contenuto in $B(0,||T||) \subset \mathbb{C}$ formato dagli autovalori di T (spettro puntuale o discreto), ossia i $\lambda \in \mathbb{C}$ tali che $\ker(\lambda I - T) \neq 0$, e dallo spettro continuo $(ker(\lambda I - T) = 0 \text{ ma Im } (\lambda I - T) \neq E)$. Esempi: lo spettro continuo dell'operatore di traslazione (shift) a destra su ℓ^1 (o c_0) contiene (solo) lo 0, e non vi è spettro discreto. L'operatore di moltiplicazione $Tx(t) = t \cdot x(t)$ su $C^0([a,b])$ ha spettro (solamente continuo) $\sigma(T) = [a, b]$. Dalla relazione $R_{\lambda} - R_{\mu} = (\mu - \lambda)R_{\lambda}R_{\mu}$ per $\lambda, \mu \in \mathbb{C}$, si ricava che esiste $\frac{dR_{\lambda}}{d\lambda} = -R_{\lambda}^2$, ovvero R_{λ} è una funzione olomorfa di λ , le cui singolarità sono costituite dallo spettro $\sigma(T)$. In particolare lo spettro discreto sarà costituito da singolarità isolate, ed il calcolo dei residui applicato ad R_{λ} dà informazioni sugli autospazi di T.

Lezione del 6/12/10 (2 ore). Lo spazio degli operatori compatti $\mathcal{K}(E,F) \subset \mathcal{L}(E,F)$. Chiusura di $\mathcal{K}(E,F)$ in $\mathcal{L}(E,F)$. $\mathcal{K}(E) \equiv \mathcal{K}(E,E)$ è un ideale bilatero di $\mathcal{L}(E)$. Approssimazione di rango finito per operatori compatti in spazi di Hilbert. Esempi di operatori compatti: operatori integrali di Fredholm; immersioni compatte. Operatore aggiunto, proprietà. Decomposizione spettrale per operatori compatti autoaggiunti in spazi di Hilbert.

Lezione del 14/12/10 (2 ore). Dimostrazione del teorema spettrale: la forma quadratica $Q(x) = \langle Tx, x \rangle$ associata all'operatore compatto T è debolmente continua, dato che $x_n \rightharpoonup x_0 \Rightarrow Tx_n \rightarrow Tx_0$ e inoltre $|x_n| \leq M$, dunque

$$|\langle Tx_n, x_n \rangle - \langle Tx_0, x_0 \rangle| \le |Tx_n - Tx_0| \cdot |x_n| + |\langle Tx_0, x_n - x_0 \rangle| \to 0.$$

Per il Teorema di Weierstrass, |Q(x)| ammette massimo e minimo sulla palla unitaria B_1 (debolmente compatta). Sia e_1 un punto di massimo: si ha $|e_1| = 1$, ed inoltre, per ogni $|v| \le 1$ tale che $\langle v, e_1 \rangle = 0$, si ha $\langle v, Te_1 \rangle = 0$, come si verifica osservando che, in virtù del Teorema dei moltiplicatori di Lagrange, e_1 è punto critico della funzione $Q(x) + \lambda |x|^2$ sul piano generato da e_1 e da v. In particolare, $Te_1 = \langle Te_1, e_1 \rangle \cdot e_1$, ovvero e_1 è autovettore di T e $Q(e_1) = \langle Te_1, e_1 \rangle$ è, in modulo, il massimo autovalore di T.

Iteriamo il procedimento, determinando e_n autovettore di T, con $|e_n|=1$, punto di massimo di |Q(x)| su $(\operatorname{span}\{e_1,...,e_{n-1}\})^{\perp}\cap B_1$, e chiamiamo $\lambda_n=Q(e_n)$ l'autovalore corrispondente. Si ha $|\lambda_{n-1}|\geq |\lambda_n|$. Se per un certo n_0 si ha $Q(e_{n_0})=0$, allora si ha $(\operatorname{span}\{e_1,...,e_{n_0-1}\})^{\perp}=\ker T$. Infatti, se $\langle v,e_i\rangle=0$ $\forall\,i< n_0$, allora $\langle Tv,e_i\rangle=\langle v,Te_i\rangle=0$. Dall'identità (di polarizzazione) $4\langle Tv,u\rangle=Q(u+v)-Q(u-v)=0$ $\forall\,u$ tale che $\langle u,e_i\rangle=0$ $\forall\,i< n_0$, ponendo u=Tv si deduce $|Tv|^2=0$, ossia $v\in\ker T$.

Alternativamente, rimane definita una successione di autovettori ortonormali e_n , da cui $e_n \to 0$ per la diseguaglianza di Bessel, e dunque $Te_n = \lambda_n e_n \to 0$, da cui $|\lambda_n| = |\langle Te_n, e_n \rangle| \setminus 0$. Sia $N = \overline{\operatorname{span}\{e_1, ..., e_n, ...\}}^{\perp}$. Per $v \in N$ si ha necessariamente Q(v) = 0 e quindi, per quanto visto sopra, $N = \ker T$.

L'insieme $\{e_1, ..., e_n, ...\}$, completato con un sistema ortonormale completo di ker T, costituisce una base Hilbertiana di autovettori di T.

Lezione del 15/12/10 (2 ore). Teoria di Riesz-Fredholm: il teorema dell'alternativa di Fredholm per operatori del tipo A = I - T con T operatore compatto in uno spazio di Hilbert: l'immagine im Aè chiusa, e si ha la decomposizione in somma diretta ortogonale $H = \operatorname{im} A \oplus \ker A^* = \operatorname{im} A^* \oplus \ker A$, con $A^* = I - T^*$, $\ker A = 0 \Leftrightarrow \operatorname{im} A = H$, ed infine dim $\ker A = \dim \ker A^*$. Per l'alternativa di Fredholm, l'equazione Au = u - Tu = f o ammette un'unica soluzione per ogni dato $f \in H$ (nel caso $\ker A = \ker A^* = 0$), oppure (nel caso $\ker A^* \neq 0$) ammette soluzioni a patto che il dato f verifichi la condizione di ortogonalità $f \perp \ker A^*$.

Il teorema dell'alternativa vale più in generale per operatori del tipo A = I - T con $T \in \mathcal{K}(E), E$ di Banach.

Spettro di un operatore compatto: contiene lo zero, gli eventuali elementi diversi da zero appartengono necessariamente allo spettro discreto (per l'alternativa di Fredholm), i relativi autospazi hanno dimensione finita, ed infine hanno lo zero quale unico eventuale punto di accumulazione.

Teorema di Lax-Milgram: data una forma bilineare a(u,v) continua $(a(u,v) \le M|u||v|)$ e coerciva $(0 < \alpha |u|^2 \le a(u,u) \ \forall \ u \ne 0)$ su uno spazio di Hilbert H, per ogni forma lineare e comntinua $\phi \in H^*$ esiste un unico elemento $u \in H$ tale che $a(u,v) = \phi(v)$ per ogni $v \in H$. Se inoltre a è simmetrica (a(u,v) = a(v,u)), nel qual caso a definisce un prodotto scalare su H equivalente a quello dato, essendo $\alpha |u|^2 \le a(u,u) \le M|u|^2$, si ha la caratterizzazione $u = \arg\min\{\frac{1}{2}a(v,v) - \phi(v), v \in H\}$.

Si osservi che per il teorema di rappresentazione di Riesz, l'equazione in questione si può riscrivere $\langle Au, v \rangle = \langle f, v \rangle$ per ogni $v \in H$, ovvero Au = f, dove $A \in \mathcal{L}(\mathcal{H})$ verifica le condizioni $0 < \alpha |u| \le |Au| \le M|u| \ \forall \ u \ne 0$.

Lezione del 16/12/10 (2 ore). Dimostrazione del Teorema di Lax-Milgram: per la

coercività, da $\alpha |u| \leq |Au|$ segue che ker A = 0. Inoltre, $\alpha |u_n - u_m| \leq |Au_n - Au_m|$ implica che se $Au_n \to y$, ossia Au_n è di Cauchy in H, anche u_n è di Cauchy, e quindi $u_n \to u$, da cui y = Au e dunque im A è un sottospazio chiuso. Se poi $v \perp$ im A, si ha $\langle v, Au \rangle = 0 \ \forall \ u \in H$. In particolare, $0 = \langle v, Av \rangle \geq \alpha |v|^2$, da cui v = 0 e dunque im A = H. Pertanto, A è iniettiva e suriettiva, ovvero la tesi del teorema.

Nel caso a sia inoltre simmetrica, per il teorema di rappresentazione di Riesz si ha $\phi(v)=a(g,v)$ per un certo $g\in H$, da cui u verifica $a(u-g,v)=0\ \forall\ v\in H$, ovvero u è la proiezione ortogonale (secondo il prodotto scalare indotto da a) di g su H, ovvero u rende minima la distanza (indotta da a) al quadrato a(v-g,v-g), o, equivalentemente, il funzionale $F(v)=\frac{1}{2}a(v,v)-\phi(v)$ per $v\in H$, di cui l'equazione $a(u,v)=\phi(v)$ è l'equazione di Eulero-Lagrange $\partial_v F(u)\equiv F'(u)\cdot v=0\ \forall\ v\in H$.

Teorema di Stampacchia (si applica alle disequazioni variazionali). Dato $K \subset H$ convesso chiuso, e $\phi \in H^*$, esiste un'unica $u \in K$ tale che $a(u,v-u) \geq \phi(v-u)$ $\forall v \in K$. Il problema è equivalente a trovare $u \in K$ tale che $\langle g-u,v-u\rangle \leq 0$ $\forall v \in K$, con $g = \rho(f-Au) + u$, ossia $u = P_K g = P_K (\rho(f-Au) + u)$, con $\rho > 0$. Per ρ sufficientemente piccolo, la trasformazione $Sv = P_K (v + \rho(f-Av))$ è una contrazione, per cui ammette un unico punto fisso. Se a è simmetrica, si ha $\phi(w) = a(g,w)$ e l'equazione si riscrive $a(g-u,v-u) \leq 0$, ovvero u è il punto di K a distanza (indotta da a) minima da g, ovvero u minimizza F(v) $\forall v \in K$.

Metodo di Galerkin (o di approssimazione interna): per $V_h \subset H$, dim $V_h < +\infty$, si considera la soluzione u_h del sistema $a(u,v) = \phi(v) \ \forall \ v \in V_h$. Il lemma di Céa garantisce che $|u-u_h| \leq \frac{M}{\alpha} \mathrm{dist} \ (u,V_h)$ (in altre parole, u_h assomiglia ala proiezione ortogonale di u su V_h). Considerando una successione di spazi finito-dimensionali $V_h \subset V_{h+1}$ tali che $H = \bigcup_h V_h$, si ha $u_h \to u$.

La scelta della successione di spazi V_h (ovvero di un sistema di loro generatori) è fatta in modo da semplificare il più possibile il sistema lineare approssimante. Alcuni esempi: elementi finiti, base di Haar, wavelets...

Lezione del 10/1/11 (2 ore). Spazi di Sobolev $W^{1,p}(I)$, $I \subset \mathbb{R}$ intervallo. Definizione, proprietà. Completezza, densità delle funzioni liscie. Operatore di prolungamento $W^{1,p}(I) \to W^{1,p}(\mathbb{R})$. Lo spazio $W^{1,p}_0(I)$ e sue caratterizzazioni. Diseguaglianza di Poincaré. Spazi $W^{k,p}$. Gli spazi di Hilbert $H^k = W^{k,2}$ e $H^1_0 = W^{1,2}_0$.

Lezione del 11/1/11 (2 ore). Formulazione variazionale di problemi al contorno in dimensione 1. Formulazione debole, esistenza (e unicità) della soluzione debole (approccio variazionale alla Lax-Milgram, Stampacchia), regolarità (hilbertiana) della soluzione debole, maggiore regolarità e ritorno alla formulazione classica. Problema di Dirichlet omogeneo e non omogeneo. Problema di Neumann omogeneo.

Lezione del 12/1/11 (2 ore). Problema di Sturm-Liouville, problemi con condizioni al contorno miste. Principio del massimo. Decomposizione spettrale di L^2 mediante autovettori dell'operatore associato al problema di Sturm-Liouville.

Lezione del 17/1/11 (2 ore).

Cenni sulla teoria delle distribuzioni. Gli spazi $\mathcal{D}(\Omega)$ e $\mathcal{D}'(\Omega)$, per $\Omega \subset \mathbb{R}^n$. Si ha $\varphi_j \to \varphi$ in $\mathcal{D}(\Omega)$ se $\operatorname{spt}(\varphi_j) \subset K \ \forall j$ per un certo compatto $K \in ||D^{\alpha}\varphi_j - D^{\alpha}\varphi||_{L^{\infty}(K)} \to \mathbb{C}$ $0 \ \forall \alpha$ multiindice. Vale $T \in \mathcal{D}'(\Omega)$ se e solo se $\forall K \subset \Omega$ compatto, esiste $N \in \mathbb{N}$ e C = C(K) > 0 tale che $|T(\varphi)| \leq C \sup_{|\alpha| \leq N} ||D^{\alpha}\varphi||_{L^{\infty}(K)}$ per ogni $\varphi \in \mathcal{D}(\Omega)$, $\operatorname{spt}(\varphi) \subset K$. Ordine di una distribuzione. Distribuzione T_u associata ad una funzione u localmente sommabile in Ω : $\langle T_u, \varphi \rangle = \int_{\Omega} u(x) \varphi(x) dx$. Distribuzione T_{μ} associata ad una misura di Radon μ in Ω : $\langle T_{\mu}, \varphi \rangle = \int_{\Omega} \varphi(x) d\mu(x)$. Distribuzione di Dirac $\langle \delta_0, \varphi \rangle = \varphi(0)$. Prodotto $\psi \cdot T$ di una distribuzione per una funzione $\psi \in C^{\infty}(\Omega)$: $\langle \psi \cdot T, \varphi \rangle = \langle T, \psi \cdot \varphi \rangle$. Derivate distribuzionali: $\langle D^{\alpha}T, \varphi \rangle = (-1)^{|\alpha|} \langle T, D^{\alpha}\varphi \rangle$, per $\varphi \in \mathcal{D}(\Omega)$. Esempi: derivata della funzione di Heaviside, derivata della delta di Dirac. Convoluzione di distribuzioni: per $T \in \mathcal{D}'(\mathbb{R}^n)$, $\varphi \in \mathcal{D}(\mathbb{R}^n)$, si pone $T * \varphi(x) = \langle T, \tau_x \check{\varphi} \rangle$. Proprietà: $D^{\alpha}(T*\varphi) = D^{\alpha}T*\varphi = T*D^{\alpha}\varphi$. Per $S, T \in \mathcal{D}'(\mathbb{R}^n)$ (almeno una delle quali a supporto compatto) si definisce $S*T \in \mathcal{D}'(\mathbb{R}^n)$ in modo che valga $(S*T)*\varphi = S*(T*\varphi)$ per ogni $\varphi \in \mathcal{D}'(\mathbb{R}^n)$. La delta di Dirac δ_0 è l'elemento neutro rispetto al prodotto di convoluzione. Problemi differenziali formulati nel senso delle distribuzioni. Soluzione fondamentale per un operatore lineare e continuo L su $\mathcal{D}'(\mathbb{R}^n)$: è una distribuzione G tale che $L(G) = \delta_0$. Per $T \in \mathcal{D}'(\mathbb{R}^n)$, la distribuzione U = G * T è soluzione dell'equazione L(U) = T in $\mathcal{D}'(\mathbb{R}^n)$.

Lezione del 18/1/11 (2 ore). Spazi $W^{1,p}$ in dimensione n. Definizione, risultati di densità, operatore di prolungamento. Lo spazio $W_0^{1,p}$. Teorema di immersione di Sobolev-Morrey. Teorema di immersione compatta di Rellich-Kondrachov.

Lezione del 20/1/11 (2 ore). Caratterizazione degli spazi di Sobolev $W^{1,p}$ (quozienti differenziali limitati, derivata distribuzionale continua su $L^{p'}$: nel caso p=1 queste condizioni caratterizzano lo spazio BV delle funzioni il cui gradiente distribuzionale è una misura (vettoriale) di Radon). Formulazione variazionale di problemi in dimensione n: formulazione in H^1_0 del problema di Dirichlet omogeneo con dato $f \in L^2$, esistenza e unicità della soluzione debole. Regolarità H^2 della soluzione debole.

Lezione del 24/1/11 (2 ore). Dimostrazione della regolarità H^2 della soluzione debole del problema di Dirichlet nel caso $\Omega = \mathbb{R}^n$ (metodo dei quozienti differenziali di Nirenberg). Interpretazione variazionale della soluzione, come minimo del funzionale $E(v) = \frac{1}{2}||\nabla v||_2^2 + ||v - f||_2^2$. Esempi di regolarizzazione di Tychonoff, modello BV di Osher-Rudin-Fatemi. Problema di Neumann. Principio del massimo per il problema di Dirichlet. Decomposizione spettrale di $L^2(\Omega)$ in autofunzioni del laplaciano in $H_0^1(\Omega)$. Risolubilità di un problema generale del secondo ordine via alternativa di Fredholm.

Bibliografia.

Brézis; Analyse fonctionnelle, théorie et applications, Masson - Dunod (1994).

Brézis; Functional Analysis, Sobolev spaces and Partial Differential Equations, Springer (2010).

Kolmogorov, Fomin; Elementi di Teoria delle Funzioni e di Analisi Funzionale, Edizioni Mir (1980).