
Chapter 3

State Machines

Systems are functions that transform signals. The domain and the range of these functions are
both signal spaces, which significantly complicates specification of the functions. A broad class of
systems can be characterized using the concept of state and the idea that a system evolves through
a sequence of changes in state, or state transitions. Such characterizations are called state-space
models.

A state-space model describes a system procedurally, giving a sequence of step-by-step operations
for the evolution of a system. It shows how the input signal drives changes in state, and how the
output signal is produced. It is thus an imperative description. Implementing a system described by
a state-space model in software or hardware is straightforward. The hardware or software simply
needs to sequentially carry out the steps given by the model. Conversely, given a piece of software
or hardware, it is often useful to describe it using a state-space model, which yields better to analysis
than more informal descriptions.

In this chapter, we introduce state-space models by discussing systems with a finite (and relatively
small) number of states. Such systems typically operate on event streams, often implementing
control logic. For example, the decision logic of modem negotiation described in chapter 1 can be
modeled using a finite state model. Such a model is much more precise than the English-language
descriptions that are commonly used for such systems.

3.1 Structure of state machines

A description of a system as a function involves three entities: the set of input signals, the set of
output signals, and the function itself, F : InputSignals → OutputSignals. For a state machine, the
input and output signals have the form

EventStream:Naturals0 → Symbols,

where Naturals0 = {0,1,2, · · ·}, and Symbols is an arbitrary set. The domain of these signals rep-
resents ordering but not necessarily time (neither discrete nor continuous time). The ordering of

75

eal
Text Box
Structure and Interpretation of Signals and Systems
Edward Lee and Pravin Varaiya
ISBN: 0-201-74551-8
©2003 Pearson Education

76 CHAPTER 3. STATE MACHINES

the domain means that we can say that one event occurs before or after another event. But we can-
not say how much time elapsed between these events. In chapter 5 we will study how state-space
models can be used with functions of time.

A state machine constructs the output signal one symbol at a time by observing the input signal one
symbol at a time. Specifically, a state machine StateMachine is a 5-tuple,

StateMachine = (States, Inputs,Outputs,update, initialState) (3.1)

where States, Inputs,Outputs are sets, update is a function, and initialState ∈ States. The meaning
of these names is:

States is the state space,
Inputs is the input alphabet,
Outputs is the output alphabet,
initialState ∈ States is the initial state, and
update:States× Inputs→ States×Outputs is the update function.

This five-tuple is called the sets and functions model of a state machine.

Inputs and Outputs are the sets of possible input and output symbols. The set of input signals
consists of all infinite sequences of input symbols,

InputSignals = [Naturals0 → Inputs].

The set of output signals consists of all infinite sequences of output symbols,

OutputSignals = [Naturals0 → Outputs].

Let x ∈ InputSignals be an input signal. A particular symbol in the signal can be written x(n) for
any n ∈ Naturals0. We write the entire input signal as a sequence

(x(0),x(1), · · · ,x(n), · · ·).

This sequence defines the function x in terms of symbols x(n) ∈ Inputs, which represent particular
input symbols.

We reiterate that the index n in x(n) does not refer to time, but rather to the step number. This is an
ordering constraint only: step n occurs after step n− 1 and before step n + 1. The state machine
evolves (i.e. moves from one state to the next) in steps.1

1Of course the steps could last a fixed duration of time, in which case there would be a simple relationship between
step number and time. The relationship may be a mixed one, where some input symbols are separated by a fixed amount
of time and some are not.

3.1. STRUCTURE OF STATE MACHINES 77

3.1.1 Updates

The interpretation of update is this. If s(n) ∈ States is the current state at step n, and x(n) ∈ Inputs
is the current input symbol, then the current output symbol and the next state are given by

(s(n+1),y(n)) = update(s(n),x(n)).

Thus the update function makes it possible for the state machine to construct the output signal step
by step by observing the input signal step by step.

The state machine StateMachine of (3.1) defines a function

F : InputSignals→ OutputSignals (3.2)

such that for any input signal x∈ InputSignals the corresponding output signal is y = F(x). However,
it does much more than just define this function. It also gives us a procedure for evaluating this
function on a particular input signal. The state response (s(0),s(1), · · ·) and output signal y are
constructed as follows:

s(0) = initialState, (3.3)

∀n≥ 0, (s(n+1),y(n)) = update(s(n),x(n)), (3.4)

Observe that if the initial state is changed, the function F will change, so the initial state is an
essential part of the definition of a state machine.

Each evaluation of (3.4) is called a reaction because it defines how the state machine reacts to a par-
ticular input symbol. Note that exactly one output symbol is produced for each input symbol. Thus,
it is not necessary to have access to the entire input sequence to start producing output symbols.
This feature proves extremely useful in practice, since it is usually impractical to have access to the
entire input sequence (it is infinite in size!). The procedure summarized by (3.3)–(3.4) is causal, in
that the next state s(n+1) and current output symbol y(n) depend only on the initial state s(0) and
current and past input symbols x(0),x(1), · · · ,x(n).

It is sometimes convenient to decompose update into two functions:

nextState:States× Inputs→ States is the next state function,
output:States× Inputs→ Outputs is the output function.

The interpretation is this. If s(n) is the current state, and x(n) is the current input symbol at step n,
the next state is

s(n+1) = nextState(s(n),x(n)),

and the current output symbol is

y(n) = output(s(n),x(n)).

Evidently, for all s(n) ∈ States and x(n) ∈ Inputs,

(s(n+1),y(n)) = update(s(n),x(n)) = (nextState(s(n),x(n)),output(s(n),x(n)).

78 CHAPTER 3. STATE MACHINES

3.1.2 Stuttering

A state machine produces exactly one output symbol for each input symbol. For each input symbol,
it may also change state (of course, it could also remain in the same state by changing back to the
same state). This means that with no input symbol, there is neither an output symbol nor a change
of state.

Later, when we compose simpler state machines to construct more complicated ones, it will prove
convenient to be explicit in the model about the fact that no input triggers no output and no state
change. We do that by insisting that the input and output symbol sets include a stuttering symbol,
typically denoted absent. That is,

absent ∈ Inputs, and absent ∈ Outputs.

Moreover, we require that for any s ∈ States,

update(s,absent) = (s,absent). (3.5)

This is called a stuttering reaction because no progress is made. An absent input symbol triggers
an absent output symbol and no state change. Now any number of absent symbols may be inserted
into the input sequence, anywhere, without changing the non-absent output symbols. Stuttering
reactions will prove essential for hybrid systems models, considered in chapter 6.

Example 3.1: Consider a 60-minute parking meter. There are three (non-stuttering)
input symbols: in5 and in25 which represent feeding the meter 5 and 25 cents respec-
tively, and tick which represents the passage of one minute. The meter displays the
time in minutes remaining before the meter expires. When in5 occurs, this time is in-
cremented by 5, and when in25 occurs it is incremented by 25, up to a maximum of
60 minutes. When tick occurs, the time is decremented by 1, down to a minimum of 0.
When the remaining time is 0, the display reads expired.

We can construct a finite state machine model for this parking meter. The set of states
is

States = {0,1,2, ...,60}.
The input and output alphabets are

Inputs = {in5, in25, tick,absent},

Outputs = {expired,1,2, ...,60,absent}.
The initial state is

initialState = 0.

The update function

update:States× Inputs→ States×Outputs

3.2. FINITE STATE MACHINES 79

is given by, ∀ s(n) ∈ States, x(n) ∈ Inputs,

update(s(n),x(n))=





(0,expired) if x(n) = tick∧ (s(n) = 0∨ s(n) = 1)
(s(n)−1,s(n)−1) if x(n) = tick∧ s(n) > 1
(min(s(n)+5,60),min(s(n)+5,60)) if x(n) = in5
(min(s(n)+25,60),min(s(n)+25,60)) if x(n) = in25
(s(n),absent) if x(n) = absent

where min is a function that returns the minimum of its arguments.

If the input sequence is (in25, tick20, in5, tick10, · · ·), for example, then the output se-
quence is2

(expired,25,24, ...,6,5,10,9,8, · · · ,2,1,expired, · · ·).

3.2 Finite state machines

Often, States is a finite set. In this case, the state machine is called a finite state machine, abbre-
viated FSM. FSMs yield to powerful analytical techniques because, in principle, it is possible to
explore all possible sequences of states. The parking meter above is a finite state machine. The
remainder of this chapter and the next chapter will focus on finite state machines. We will return
to infinite state systems in chapter 5. Lab C.3 considers software implementation of finite state
machines.

When the number of states is small, and the input and output alphabets are finite (and small), we
can describe the state machine using a very readable and intuitive diagram called a state transition
diagram.

Example 3.2: A verbal description of an automatic telephone answering machine
might go like this.

When a call arrives, the phone rings. If the phone is not picked up, then
on the third ring, the machine answers. It plays a pre-recorded greeting
requesting that the caller leave a message (“Hello, sorry I can’t answer your
call right now ... Please leave a message after the beep”), then records the
caller’s message, and then automatically hangs up. If the phone is answered
before the third ring, the machine does nothing.

Figure 3.1 shows a state transition diagram for the state machine model of this answer-
ing machine.

You can probably read the diagram in figure 3.1 without any further explanation. It is sufficiently
intuitive. Nonetheless, we will explain it precisely.

2We are using the common notation tick10 to mean a sequence of 10 consecutive ticks.

80 CHAPTER 3. STATE MACHINES

inputs

ring - incoming ringing signal
offhook - a telephone extension is picked up
end greeting - greeting message is finished playing
end message - end of message detected (e.g. dialtone)
absent - no input of interest.

outputs

answer - answer the phone and start the greeting message
record - start recording the incoming message
recorded- recorded an incoming message
absent - default output when there is nothing interesting to say

idle

count1 count2{ ring }

{ ring }

{ ring } /answer

else

else

play
greeting

{ end greeting } /recordrecord
ing

{ end message, offhook } /recorded

else

else

else

states

idle: nothing is happening
count1: one ring has arrived
count2: two rings have arrived
play greeting: playing the greeting message
recording : recording the message

{ absent}

{ absent}

{ absent}

{ absent}

Figure 3.1: State transition diagram for the telephone answering machine.

3.2. FINITE STATE MACHINES 81

state

guard1/output1

guard2/output2

else

initial state indicator

state machine:
(States, Inputs,Outputs,update, initialState)
update:States× Inputs→ States×Outputs
initialState ∈ States

elements:
state ∈ States
output1,output2 ∈ Outputs
guard1,guard2⊂ Inputs
else = {i ∈ Inputs | i /∈ (guard1∪guard2)}
determinacy: (There is at most one possible reaction to an input symbol)
guard1∩guard2 = /0

Figure 3.2: Summary of notation in state transition diagrams, shown for a
single state with two outgoing arcs and one self loop.

3.2.1 State transition diagrams

Figure 3.1 consists of bubbles linked by arcs. (The arcs are also called arrows.) In this bubbles-and-
arcs syntax each bubble represents one state of the answering machine, and each arc represents a
transition from one state to another. The bubbles and arcs are annotated, i.e. they are labeled with
some text. The execution of the state machine consists of a sequence reactions, where each reaction
involves a transition from one state to another (or back to the same state) along one of the arcs. The
tables at the bottom of the figure are not part of the state transition diagram, but they improve our
understanding of the diagram by giving the meanings of the names of the states, input symbols, and
output symbols.

The notation for state transition diagrams is summarized in figure 3.2. Each bubble is labeled with
the name of the state it represents. The state names can be anything, but they must be distinct. The

82 CHAPTER 3. STATE MACHINES

state machine of figure 3.1 has five states. The state names define the state space,

States = {idle,count1,count2,play greeting,recording}.
Each arc is labeled by a guard and (optionally) an output. If an output symbol is given, it is sepa-
rated from the guard by a forward slash, as in the example {ring}/answer going from state count2
to play greeting. A guard specifies which input symbols might trigger the associated transition. It
is a subset of the Inputs, the input alphabet, which for the answering machine is

Inputs = {ring,offhook,end greeting,end message,absent}.

In figure 3.1, some guards are labeled “else.” This special notation designates an arc that is taken
when there is no match on any other guard emerging from a given state. The arc with the guard
else is called the else arc. Thus, else is the set of all input symbols not included in any other guard
emerging from the state. More precisely, for a given state, else is the complement with respect to
Inputs of the union of the guards on emerging arcs. For example in figure 3.1, for state recording,

else = {ring,offhook,end greeting}.
For the example in figure 3.2, else is defined by

else = {i ∈ Inputs | i /∈ (guard1∪guard2)}.

If no else arc is specified, and the set else is not empty, then the else arc is implicitly a self loop, as
shown by the dashed arc in figure 3.2. A self loop is an arc that transitions back to the same state.
When the else arc is a self loop, then the stuttering symbol may be a member of the set else.

Initially, the system of figure 3.1 is in the idle state. The initial state is indicated by the bold arc on
the left that leads into the state idle. Each time an input symbol arrives, the state machine reacts. It
checks the guards on arcs going out of the current state and determines which of them contains the
input symbol. It then takes that transition.

Two problems might occur.

• The input symbol may not be contained in the guard of any outgoing arc. In our state machine
models, for every state, there is at least one outgoing transition that matches the input symbol
(because of the else arc). This property is called receptiveness; it means that the machine can
always react to an input symbol. That is, there is always a transition out of the current state
that is enabled by the current input symbol. (The transition may lead back to current state if
it is a self loop.) Our state machines are said to be receptive.

• More than one guard going out from the current state may contain the input symbol. A state
machine that has such a structure is said to be nondeterministic. The machine is free to
choose any arc whose guard contains the input symbol, so more than one behavior is possible
for the machine. Nondeterministic state machines will be discussed further below. Until
then, we assume that the guards are always defined to give deterministic state machines.
Specifically, the guards on outgoing arcs from any state are mutually exclusive. In other
words, the intersection of any two guards on outgoing arcs of a state is empty, as indicated in
figure 3.2. Of course, by the definition of the else set, for any guard that is not else, it is true
that guard∩ else = /0.

3.2. FINITE STATE MACHINES 83

A sequence of input symbols thus triggers a sequence of state transitions. The resulting sequence of
states is called the state response.

Example 3.3: In figure 3.1, if the input sequence is

(ring,ring,offhook, · · ·)
then the state response is

(idle,count1,count2, idle, · · ·).
The ellipsis (“· · ·”) are there because the answering machine generally responds to an
infinite input sequence, and we are showing only the beginning of that response. This
behavior can be compactly represented by a trace,

idle
ring−→ count1

ring−→ count2
offhook−→ idle · · ·

A trace represents the state response together with the input sequence that triggers it.
This trace describes the behavior of the answering machine when someone picks up a
telephone extension after two rings.3

A more elaborate trace illustrates the behavior of the answering machine when it takes
a message:

idle
ring−→ count1

ring−→ count2
ring−→ play greeting (3.6)

end greeting−→ recording
end message−→ idle · · ·

A state machine also produces outputs. In figure 3.1, the output alphabet is

Outputs = {answer,record,recorded,absent}.
An output symbol is produced as part of a reaction. The output symbol that is produced is indicated
after a slash on an arc. If the arc annotation shows no output symbol, then the output symbol is
absent.

Example 3.4: The output sequence for the trace (3.6) is

(absent,absent,answer,record,recorded, · · ·).
There is an output symbol for every input symbol, and some of the output symbols are
absent.

It should be clear how to obtain the state response and output sequence for any input sequence. We
begin in the initial state and then follow the state transition diagram to determine the successive
state transitions for successive input symbols. Knowing the sequence of transitions, we also know
the sequence of output symbols.

3When you lift the handset of a telephone to answer, your phone sends a signal called ‘offhook’ to the telephone
switch. The reason for the name ‘offhook’ is that in the earliest telephone designs, the handset hung from a hook on the
side of the phone. In order to answer, you had to pick the handset off the hook. When you finished your conversation
you replaced the handset on the hook, generating an ‘onhook’ signal. The onhook signal is irrelevant to the answering
machine, so it is not included in the model.

84 CHAPTER 3. STATE MACHINES

Shorthand

State transition diagrams can get very verbose, with many arcs with complicated labels. A number
of shorthand options can make a diagram clearer by reducing the clutter.

• If no guard is specified on an arc, then that transition is always taken when the state machine
reacts and is in the state from which arc emerges, as long as the input is not the stuttering
symbol. That is, giving no guard is equivalent to giving the entire set Inputs as a guard, minus
the stuttering symbol. The stuttering symbol, recall, always triggers a transition back to the
same state, and always produces a stuttering symbol on the output.

• Any clear notation for specifying subsets can be used to specify guards. For example, if
Inputs = {a,b,c}, then the guard {b,c} can be given by ¬a (read “not a”).

• An else transition for a state need not be given explicitly. It is an implied self-loop if it is not
given. This is why it is shown with a dashed line in figure 3.2.

• The output symbol is the stuttering symbol of Outputs if it is not given.

These shorthand notations are not always a good idea. For example, the else transitions often
correspond to exceptional (unexpected) input sequences, and staying in the same state might not
be the right behavior. For instance, in figure 3.1, all else transitions are shown explicitly, and
all exceptional input sequences result in the machine ending up in state idle. This is probably
reasonable behavior, allowing the machine to recover. Had we left the else transitions implicit, we
would likely have ended up with less reasonable behavior. Use your judgment in deciding whether
or not to explicitly include else transitions.

3.2.2 Update table

An alternative way to describe a finite state machine is by an update table. This is simply a tabular
representation of the state transition diagram.

For the diagram of figure 3.1, the table is shown in figure 3.3. The first column lists the current
state. The remaining columns list the next state and the output symbol for each of the possible input
symbols.

The first row, for example, corresponds to the current state idle. If the input symbol is ring, the next
state is count1 and the output symbol is absent. Under any of the other input symbols, the state
remains idle and the output symbol remains absent.

Types of State Machines

The type of state machines introduced in this section are known as Mealy machines, after G. H.
Mealy, who studied them in 1955. Their distinguishing feature is that output symbols are associated

3.2. FINITE STATE MACHINES 85

current (next state, output symbol) under specified input symbol
state ring offhook end greeting end message absent
idle (count1, (idle, (idle, (idle, (idle,

absent) absent) absent) absent) absent)
count1 (count2, (idle, (idle, (idle, (count1,

absent) absent) absent) absent) absent)
count2 (play greeting, (idle, (idle, (idle, (count2,

answer) absent) absent) absent) absent)
play greeting (idle, (idle, (recording, (idle, (play greeting,

absent) absent) record) absent) absent)
recording (idle, (idle, (idle, (idle, (recording,

absent) recorded) absent) recorded) absent)

Figure 3.3: Update table for the telephone answering machine specifies
next state and current output symbol as a function of current state and cur-
rent input symbol.

with state transitions. That is, when a transition is taken, an output symbol is produced. Alterna-
tively, we could have associated output symbols with states, resulting in a model known as Moore
machines, after F. Moore, who studied them in 1956. In a Moore machine, an output symbol is
produced while the machine is in a particular state. Mealy machines turn out to be more useful
when they are composed synchronously, as we will do in the next chapter. This is the reason that
we choose this variant of the model.

It is important to realize that state machine models, like most models, are not unique. A great deal
of engineering judgment goes into a picture like figure 3.1, and two engineers might come up with
very different pictures for what they believe to be the same system. Often, the differences are in
the amount of detail shown. One picture may show the operation of a system in more detail than
another. The less detailed picture is called an abstraction of the more detailed picture. Also likely
are differences in the names chosen for states, input symbols and output symbols, and even in the
meaning of the input and output symbols. There may be differences in how the machine responds
to exceptional circumstances (input sequences that are not expected). For example, what should the
answering machine do if it gets the input sequence (ring,end greeting,end message)? This probably
reflects a malfunction in the system. In figure 3.1, the reaction to this sequence is easy to see: the
machine ends up in the idle state.

Given these likely differences, it becomes important to be able to talk about abstraction relations
and equivalence relations between state machine models. This turns out to be a fairly sophisticated
topic, one that we touch upon below in section 3.3.

86 CHAPTER 3. STATE MACHINES

The meaning of state

We have three equivalent ways of describing a state machine: sets and functions, the state transition
diagram, and the update table. These descriptions have complementary uses. The table makes obvi-
ous the sparsity of output symbols in the answering machine example. The table and the diagrams
are both useful for a human studying the system to follow its behavior in different circumstances.
The sets and functions and the table are useful for building the state machine in hardware or soft-
ware. The sets and functions description is also useful for mathematical analysis.

Of course, the tables and the transition diagram can be used only if there are finitely many states
and finitely many input and output symbols, i.e. if the sets States, Inputs,andOutputs are finite. The
sets and functions description is often equally comfortable with finite and infinite state spaces. We
will discuss infinite-state systems in chapter 5.

Like any state machine, the telephone answering machine is a state-determined system. Once we
know its current state, we can tell what its future behavior is for any future input symbols. We do
not need to know what input symbols in the past led to the current state in order to predict how the
system will behave in the future. In this sense we can say the current state of the system summarizes
the past history of the system. This is, in fact, the key intuitive notion of state.

The number of states equals the number of patterns we need to summarize the past history. If this is
intrinsically finite, then a finite-state model exists for the system. If it is intrinsically infinite, then
no finite-state model exists. We can often determine which of these two situations applies using
simple intuition. We can also show that a system has a finite-state model by finding one. Showing
that a system does not have a finite-state model is a bit more challenging.

Example 3.5: Consider the example of a system called CodeRecognizer whose input
and output signals are sequences of 0 and 1 (with arbitrarily inserted stuttering symbols,
which have no effect). The system outputs recognize at the end of every subsequence
1100 in the input, and otherwise it outputs absent. If the input x is given by a sequence

(x(0),x(1), · · ·),

and the output y is given by the sequence

(y(0),y(1), · · ·),

then, if none of the input symbols is absent,

y(n) =
{

recognize if (x(n−3),x(n−2),x(n−1),x(n)) = (1,1,0,0)
absent otherwise

(3.7)

Intuitively, in order to determine y(n), it is enough to know whether the previous pattern
of (non-absent) inputs is 0, 1, 11, or 110. If this intuition is correct, we can implement
CodeRecognizer by a state machine with four states that remember the patterns 0, 1,
11, 110. The machine of figure 3.4 does the job. The fact that we have a finite-state
machine model of this system shows that this is a finite-state system.

3.2. FINITE STATE MACHINES 87

start 1 11

{1} {1}

{0}
{0}

110
{0}/recognize

{1}

{0}

{1}

Figure 3.4: A machine that implements CodeRecognizer . It outputs
recognize at the end of every input subsequence 1100, otherwise it out-
puts absent .

The relationship in this example between the number of states and the number of input patterns that
need to be stored suggests how to construct functions mapping input sequences to output sequences
that cannot be realized by finite state machines. Here is a particularly simple example of such a
function called Equal.

Example 3.6: An input signal of Equal is a sequence of 0 and 1 (again with stut-
tering symbols arbitrarily inserted). At each step, Equal outputs equal if the previous
inputs contain an equal number of 0’s and 1’s; otherwise Equal outputs notEqual. In
other words, if the input sequence x is the sequence (x(0),x(1), · · ·), with no stuttering
symbols, then the output sequence y = F(x) is given by

∀ n∈Naturals0, y(n)=
{

equal if number of 1’s same as 0’s in x(0), · · · ,x(n)
notEqual otherwise

(3.8)

Intuitively, in order to realize Equal, the machine must remember the difference be-
tween the number of 1’s and 0’s that have occurred in the past. Since these numbers
can be arbitrarily large, the machine must have infinite memory, and so Equal cannot
be realized by a finite-state machine.

We give a mathematical argument to show that Equal cannot be realized by any finite-
state machine. The argument uses contradiction.

Suppose that a machine with N states realizes Equal. Consider an input sequence that
begins with N 1’s, (1, · · · ,1,x(N), · · ·). Let the state response be

(s(0),s(1), · · · ,s(N), · · ·).
Since there are only N distinct states, and the state response is of length at least N +1,
the state response must visit at least one state twice. Call that state α. Suppose s(m) =

88 CHAPTER 3. STATE MACHINES

a
 b

{1}/1

{0}/0

{0,1}/1

{0}/0

Figure 3.5: A simple nondeterministic state machine.

s(n) = α, with m < n ≤ N. Then the two sequences 1m0m and 1n0m must lead to the
same state, hence yield the same last output symbol on entering state α.4 But the last
output symbol for 1m0m should be equal, and the last output symbol for 1n0m should
be notEqual, which is a contradiction. So our hypothesis that a finite-state machine
realizes Equal must be wrong! Exercise 6 asks you to construct an infinite state machine
that realizes Equal.

3.3 Nondeterministic state machines

There are situations in which it is sufficient to give an incomplete model of a system. Such models
are more compact than complete models because they hide inessential details. This compactness
will often make them easier to understand.

A useful form of incomplete model is a nondeterministic state machine. A nondeterministic state
machine often has fewer states and transitions than would be required by a complete model. The
state machines we have studied so far are deterministic.

3.3.1 State transition diagram

The state transition diagram for a state machine has one bubble for each state and one arc for
each state transition. Nondeterministic machines are no different. Each arc is labeled with by
“guard/output,” where

guard ⊂ Inputs and output ∈ Outputs.

In a deterministic machine, the guards on arcs emerging from any given state are mutually exclusive.
That is, they have no common symbols. This is precisely what makes the machine deterministic.
For nondeterministic machines, we relax this constraint. Guards can overlap. Thus, a given input
symbol may appear in the guard of more than one transition, which means that more than one
transition can be taken when that input symbol arrives. This is precisely what makes the machine
nondeterministic.

Example 3.7: Consider the state machine shown in figure 3.5. It begins in state a and
transitions to state b the first time it encounters a 1 on the input. It then stays in state b

4Recall that 1m means a sequence of m consecutive 1’s, similarly for 0m.

3.3. NONDETERMINISTIC STATE MACHINES 89

arbitrarily long. If it receives a 1 at the input, it must stay in state b. If it receives a 0,
then it can either stay in b or transition to a. Given the input sequence

(0,1,0,1,0,1, · · ·)

then the following are all possible state responses and output sequences:

(a,a,b,a,b,a,b, · · ·)
(0,1,0,1,0,1, · · ·)

(a,a,b,b,b,a,b, · · ·)
(0,1,1,1,0,1, · · ·)

(a,a,b,b,b,b,b, · · ·)
(0,1,1,1,1,1, · · ·)

(a,a,b,a,b,b,b, · · ·)
(0,1,0,1,1,1, · · ·)

Nondeterminism can be used to construct an abstraction of a complicated machine, which is a
simpler machine that has all the behaviors of the more complicated machine.

Example 3.8: Consider again the 60-minute parking meter. Its input alphabet is

Inputs = {coin5,coin25, tick,absent}.

Upon arrival of coin5, the parking meter increments its count by five, up to a maximum
of 60 minutes. Upon arrival of coin25, it increments its count by 25, again up to a max-
imum of 60. Upon arrival of tick, it decrements its count by one, down to a minimum
of zero.

A deterministic state machine model is illustrated schematically in figure 3.6(a). The
state space is

States = {0,1, · · · ,60},
which is too many states to draw conveniently. Thus, patterns in the state space are
suggested with ellipsis “· · ·”.

Suppose that we are interested in modeling the interaction between this parking meter
and a police officer. The police officer does not care what state the parking meter is
in, except to determine whether the meter has expired or not. Thus, we need only two
nonstuttering output symbols, so

Outputs = {safe,expired,absent}.

90 CHAPTER 3. STATE MACHINES

0 1

{coin5}/safe

{tick}/expired

5

{tick}/
expired

{tick}/safe

...

{coin5}/safe

... 25

{tick}/safe

{coin25}/safe {coin25}/safe

60

{tick}/safe

...

{coin5,
coin25}/

safe
{coin5}/

safe

{coin25}
/safe

{coin5}
/safe

0

{tick}/
expired

1

{tick}/expired

more

{tick}/safe

{coin5, coin25} / safe

{coin5, coin25} /
safe

{coin5, coin25, tick} /
safe

(a)

(b)

Figure 3.6: Deterministic and nondeterministic models for a 60 minute park-
ing meter.

3.3. NONDETERMINISTIC STATE MACHINES 91

The symbol expired is produced whenever the machine enters state 0.

The model has enough states that a full state transition diagram is tedious and complex
enough that it might not be useful for generating insight about the design. Moreover,
the detail that is modeled may not add insight about the interaction with a police officer.

Figure 3.6(b) is a nondeterministic model of the same parking meter. It has three states,

States = {0,1,more}.

The input symbols coin5 and coin25 in state 0 or 1 cause a transition to state more. The
input symbol tick in state more nondeterministically moves the state to 1 or leaves it in
more.

The top state machine has more detail than the bottom machine. Shortly, we will give
a precise meaning to the phrase ‘has more detail’ using the concept of simulation. For
the moment, note that the bottom machine can generate any output sequence that the
top machine generates, for the same input sequence. But the bottom machine can also
generate output sequences that the top machine cannot. For example, the sequence

(expired,safe,safe,expired, · · ·),

in which there are two safe output symbols between two expired output symbols is not
a possible output sequence of the top machine, but it is a possible output sequence of
the bottom machine. In the top machine, successive expired output symbols must be
separated by 0 or at least five safe output symbols. This detail is not captured by the
bottom machine. But in modeling the interaction with a police officer, this detail may
not be important, so omitting it may be entirely appropriate.

The machines that we design and build, including parking meters, are usually deterministic. How-
ever, the state space of these machines is often very large, much larger than in this example, and
it can be difficult to understand their behavior. We use simpler nondeterministic machine models
that hide inessential details of the deterministic machine. The analysis of the simpler model reveals
some properties, but not all properties, of the more complex machine. The art, of course, is in
choosing the model that reveals the properties of interest.

3.3.2 Sets and functions model

The state machines we have been studying, with definitions of the form (3.1), are deterministic. If
we know the initial state and the input sequence, then the entire state trajectory and output sequence
can be determined. This is because any current state s(n) and current input symbol x(n) uniquely
determine the next state and output symbol (s(n+1),y(n)) = update(s(n),x(n)).

In a nondeterministic state machine, the next state is not completely determined by the current state
and input symbol. For a given current state s(n) and input symbol x(n), there may be more than one
next state. So we cannot characterize the machine by the function update(s(n),x(n)) because there is
no single next state. Instead, we define a function possibleUpdates so that possibleUpdates(s(n),x(n))

92 CHAPTER 3. STATE MACHINES

is the set of possible next states and output symbols. Whereas a deterministic machine has update
function

update:States× Inputs→ States×Outputs,

a nondeterministic machine has a (nondeterministic) state transition function

possibleUpdates:States× Inputs→ P(States×Outputs), (3.9)

where P(State×Outputs) is the power set of States×Outputs. Recall that the power set is the set
of all subsets. That is, any subset of States×Outputs is an element of P(States×Outputs).

In order for a nondeterministic machine to be receptive, it is necessary that

∀ s(n) ∈ States,x(n) ∈ Inputs possibleUpdates(s(n),x(n)) 6= /0.

Recall that a receptive machine accepts any input symbol in any state, makes a state transition
(possibly back to the same state), and produces an output symbol. That is, there is no situation
where the reaction to an input symbol is not defined.

Operationally, a nondeterministic machine arbitrarily selects the next state and current output sym-
bol from possibleUpdates given the current state and current input symbol. The model says nothing
about how the selection is made.

Similar to deterministic machines, we can collect the specification of a nondeterministic state ma-
chine into a 5-tuple

StateMachine = (States, Inputs,Outputs,possibleUpdates, initialState). (3.10)

The possibleUpdates function is different from the update function of a deterministic machine.

Deterministic state machines of the form (3.1) are a special case of nondeterministic machines in
which possibleUpdates(s(n),x(n)) consists of a single element, namely update(s(n),x(n)). In other
words,

possibleUpdates(s(n),x(n)) = {update(s(n),x(n))}.
Thus, any deterministic machine, as well as any nondeterministic machine, can be given by (3.10).

In the nondeterministic machine of (3.10), a single input sequence may give rise to many state re-
sponses and output sequences. If (x(0),x(1),x(2), · · ·) is an input sequence, then (s(0),s(1),s(2), · · ·)
is a (possible) state trajectory and (y(0),y(1),y(2), · · ·) is a (possible) output sequence provided that

s(0) = initialState

∀n≥ 0, (s(n+1),y(n)) ∈ possibleUpdates(s(n),x(n)).

A deterministic machine defines a function from an input sequence to an output sequence,

F : InputSignals→ OutputSignals,

where
InputSignals = [Naturals0 → Inputs],

3.4. SIMULATION AND BISIMULATION 93

and
OutputSignals = [Naturals0 → Outputs].

We define a behavior of the machine to be a pair (x,y) such that y = F(x), i.e., a behavior is a
possible input, output pair. A deterministic machine is such that for each x ∈ InputSignals, there is
exactly one y ∈ OutputSignals such that (x,y) is a behavior.

We define the set
Behaviors⊂ InputSignals×OutputSignals, (3.11)

where

Behaviors =
{(x,y) ∈ InputSignals×OutputSignals | y is a possible output sequence for input sequence x}.

For a deterministic state machine, the set Behaviors is the graph of the function F .

For a nondeterministic machine, for a given x ∈ InputSignals, there may be more than one y ∈
OutputSignals such that (x,y) is a behavior. The set Behaviors, therefore, is no longer the graph
of a function. Instead, it defines a relation—a generalization of a function where there can be
two or more distinct elements in the range corresponding to the same element in the domain. The
interpretation is still straightforward, however: if (x,y) ∈ Behaviors, then input sequence x may
produce output sequence y.

3.4 Simulation and bisimulation

Two different state machines with the same input and output alphabets may be equivalent in the
sense that for the same input sequence, they produce the same output sequence. We explore this
concept of equivalence in this section.

Example 3.9: The three state machines in figure 3.7, have the same input and output
alphabets:

Inputs = {1,absent} and Outputs = {0,1,absent}.
Machine (a) has the most states. However, its behavior is identical to that of (b). Both
machines produce an alternating sequence of two 1’s and one 0 as they receive a se-
quence of 1’s at the input. The machine in (c) is non-deterministic. It has more behav-
iors than (a) or (b): it can produce any alternating sequence of at least two 1’s and one
zero. Thus (c) is more general, or more abstract than the machines (a) or (b).

To study the relationships between the machines in figure 3.7 we introduce the concepts of simula-
tion and bisimulation. The machine in (c) is said to simulate (b) and (a). The machine in (b) is said
to bisimulate (a), or to be bisimilar to (a). Bisimulation can be viewed as a form of equivalence
between state machines. Simulation can be viewed as a form of abstraction of state machines.

94 CHAPTER 3. STATE MACHINES

{1}/1

{1}/1

{1}/0

{1}/1

{1}/1

{1}/0

0

1

2

3

45

0and3

1and4

2and5

{1}/0

{1}/1

{1}/1

{1}/1

{1}/0

{1}/10 1to5

(a)

(b)
(c)

Figure 3.7: Three state machines where (a) and (b) simulate one another
and (c) simulates (a) and (b).

3.4. SIMULATION AND BISIMULATION 95

Example 3.10: In figure 3.6, the bottom machine can generate any output sequence
that the top machine generates, for the same input sequence. The reverse is not true;
there are output sequences that the bottom machine can generate that the top machine
cannot. The bottom machine is an abstraction of the top one.

We will see that the bottom machine simulates the top machine (but not vice versa).

To understand simulation, it is easiest to consider a matching game between one machine and
the other, more abstract machine that simulates the first. The game starts with both machines in
their initial states. The first machine is allowed to react to an input symbol. If this machine is
nondeterministic, it may have more than one possible reaction; it is permitted to choose any one
of these reactions. The second, more abstract machine must react to the same input symbol such
that it produces the same output symbol. If it is non-deterministic, it is free to pick from among the
possible reactions any one that matches the output symbol of the first machine and that will permit
it to continue to match the output symbols of the first machine in future reactions. The second
machine “wins” this matching game if it can always match the output symbol of the first machine.
We then say that the second machine simulates the first one. If the first machine can produce an
output symbol that the second one cannot match, then the second machine does not simulate the
first machine.

Example 3.11: We wish to determine whether (c) simulates (b) in figure 3.7. The
game starts with the two machines in their initial states, which we jointly denote by the
pair

s0 = (0and3,0) ∈ Statesb×Statesc.

Machine (b) (the one being simulated) moves first. Given an input symbol, it reacts. If
it is nondeterministic, then it is free to react in any way possible, although in this case,
(b) is deterministic, so it will have only one possible reaction. Machine (c) then has to
match the move taken by (b); given the same input symbol, it must react such that it
produces the same output symbol.

There are two possible input symbols to machine (b), 1 and absent. If the input symbol
is absent, the machine reacts by stuttering. Machine (c) can match this by stuttering
as well. For this example, it will always do to match stuttering moves, so we will not
consider them further.

Excluding the stuttering input symbol, there is only one possible input symbol to ma-
chine (b), 1. The machine reacts by producing the output symbol 1 and changing to
state 1and4. Machine (c) can match this by taking the only possible transition out of
its current state, and also produce output symbol 1. The resulting states of the two
machines are denoted

s1 = (1and4,1to5) ∈ Statesb×Statesc.

From here, again there is only one non-stuttering input symbol possible, so (b) reacts
by moving to 2and5 and producing the output symbol 1. Now (c) has two choices,
but in order to match (b), it chooses the (self-loop) transition which produces 1. The
resulting states are

s2 = (2and5,1to5) ∈ Statesb×Statesc.

96 CHAPTER 3. STATE MACHINES

From here, (b) reacts to the non-stuttering input symbol by moving to 0and3 and pro-
ducing output symbol 0. To match this move, (c) selects the transition that moves the
state to 0, producing 0. The resulting states are s0, back to where we started. So we
know that (c) can always match (b).

The “winning” strategy of the second machine can be summarized by the set

Sb,c = {s0,s1,s2} ⊂ Statesb×Statesc.

The set Sb,c in this example is called a simulation relation; it shows how (c) simulates (b). A
simulation relation associates states of the two machines. Suppose we have two state machines, X
and Y , which may be deterministic or nondeterministic. Let

X = (StatesX , Inputs,Outputs,possibleUpdatesX , initialStateX),

and
Y = (StatesY , Inputs,Outputs,possibleUpdatesY , initialStateY).

The two machines have the same input and output alphabets. If either machine is deterministic, then
its possibleUpdates function always returns a set with only one element in it.

If Y simulates X , the simulation relation is given as a subset of StatesX ×StatesY . Note the ordering
here; the machine that moves first in the game, X , the one being simulated, is first in StatesX ×
StatesY .

To consider the reverse scenario, if X simulates Y , then the relation is given as a subset of StatesY ×
StatesX . In this version of the game Y must move first.

If we can find simulation relations in both directions, then the machines are bisimilar.

We can state the “winning” strategy mathematically. We say that Y simulates X if there is a subset
S⊂ StatesX ×StatesY such that

1. (initialStateX , initialStateY) ∈ S, and

2. If (sX(n),sY (n))∈ S, then ∀ x(n)∈ Inputs, and ∀ (sX(n+1),yX(n))∈ possibleUpdatesX(sX(n),x(n)),
there is a (sY (n+1),yY (n)) ∈ possibleUpdatesY (sY (n),x(n)) such that:

(a) (sX(n+1),sY (n+1)) ∈ S, and

(b) yX(n) = yY (n).

This set S, if it exists, is called the simulation relation. It establishes a correspondence between
states in the two machines.

Example 3.12: Consider again the state machines in figure 3.7. The machine in (b)
simulates the one in (a). The simulation relation is a subset

Sa,b ⊂ {0,1,2,3,4,5}×{0and3,1and4,2and5}.

3.4. SIMULATION AND BISIMULATION 97

The names of the states in (b) (which are arbitrary) are suggestive of the appropriate
simulation relation. Specifically,

Sa,b = {(0,0and3),(1,1and4),(2,2and5),(3,0and3),(4,1and4),(5,2and5)}.

The first condition of a simulation relation, that the initial states match, is satisfied
because (0,0and3) ∈ Sa,b. The second condition can be tested by playing the game,
starting in each pair of states in Sa,b.

Start with the two machines in one pair of states in Sa,b, such as the initial states
(0,0and3). Then consider the moves that machine (a) can make in a reaction. Ig-
noring stuttering, if we start with (0,0and3), (a) must move to state 1 (given input 1).
Given the same input symbol, can (b) match the move? To match the move, it must
react to the same input symbol, produce the same output symbol, and move to a state
so that the new state of (a) paired with the new state of (b) is in Sa,b. Indeed, given input
symbol 1, (b) produces output symbol 1, and moves to state 1and4 which is matched to
state 1 of (a).

It is easy (albeit somewhat tedious) to check that this matching can be done from any
starting point in Sa,b.

This example shows how to use the game to check that a particular subset of StatesX ×StatesY is a
simulation relation. Thus, the game can be used either to construct a simulation relation or to check
whether a particular set is a simulation relation.

For the machines in figure 3.7, we have shown that (c) simulates (b) and that (b) simulates (a).
Simulation is transitive, meaning that we can immediately conclude that (c) simulates (a). In
particular, if we are given simulation relations Sa,b ⊂ Statesa×Statesb ((b) simulates (a)) and Sb,c ⊂
Statesb×Statesc ((c) simulates (b)), then

Sa,c = {(sa,sc) ∈ Statesa×Statesc | there exists sb ∈ Sb where (sa,sb) ∈ Sa,b and (sb,sc) ∈ Sb,c}
(3.12)

is the simulation relation showing that (c) simulates (a).

Example 3.13: For the examples in figure 3.7, we have already determined

Sa,b = {(0,0and3),(1,1and4),(2,2and5),(3,0and3),(4,1and4),(5,2and5)}.

and
Sb,c = {(0and3,0),(1and4,1to5),(2and5,1to5)}.

From (3.12) we can conclude that

Sa,c = {(0,0),(1,1to5),(2,1to5),(3,0),(4,1to5),(5,1to5)},

which further supports the suggestive choices of state names.

Simulation relations are not (necessarily) symmetric.

98 CHAPTER 3. STATE MACHINES

0 1

{1}/0

{1}/1

2

{1}/1

{1}/0

3

{1}/0

{1}/1

0and2 1and3

{1}/0

{1}/1

(a)

(b)

0to3

(c)

{1}/0

{1}/1

Figure 3.8: Three state machines where (a) and (b) are bisimilar and (c)
simulates (a) and (b)

Example 3.14: For the examples in figure 3.7, (b) does not simulate (c). To see this,
we can attempt to construct a simulation relation by playing the game. Starting in the
initial states,

s0 = (0and3,0),

we allow (c) to move first. Presented with a nonstuttering input symbol, 1, it produces
1 and moves to 1to5. Machine (b) can match this by producing 1 and moving to 1and4.
But from state 1to5, (c) can now produce 0 with input symbol 1, which (b) cannot
match. Thus, the game gets stuck, and we fail to construct a simulation relation.

Consider another example, one that illustrates that there may be more than one similarity relation
between two machines.

Example 3.15: In figure 3.8, it is easy to check that (c) simulates (a) and (b). We now
verify that (b) simulates (a) and also (a) simulates (b) by determining that not only can
(b) match any move (a) makes, but (a) can also match any move (b) makes. In fact,
since (a) is nondeterministic, in two of its states it has two distinct ways of matching
the moves of (b). Since it moves second, it can arbitrarily choose from among these
possibilities.

If from state 1 it always chooses to return to state 0, then the simulation relation is

Sb,a = {(0and2,0),(1and3,1)}.
Otherwise, if from state 2 it always chooses to return to state 1, then the simulation
relation is

Sb,a = {(0and2,0),(1and3,1),(0and2,2)}.

3.4. SIMULATION AND BISIMULATION 99

Otherwise, the simulation relation is

Sb,a = {(0and2,0),(1and3,1),(0and2,2),(1and3,3)}.
Thus, the simulation relation is not unique.

A common use of simulation is to establish a relationship between a more abstract model and a
more detailed model. In the example above, (c) is a more abstract model of either (b) or (a). It is
more abstract in the sense that it loses detail. For example, it has lost the property that 0’s and 1’s al-
ternate in the output sequence. We now give a more compelling example of such abstraction, where
the abstraction dramatically reduces the number of states while still preserving some properties of
interest.

Example 3.16: In the case of the parking meter, the bottom machine in figure 3.6
simulates the top machine. Let A denote the top machine, and let B denote the bottom
machine. We will now identify the simulation relation.

The simulation relation is a subset S ⊂ {0,1, · · · ,60}× {0,1,more}. It is intuitively
clear that 0 and 1 of the bottom machine correspond to 0 and 1, respectively, of the
top machine. Thus, (0,0) ∈ S and (1,1) ∈ S. It is also intuitive that more corresponds
to all of the remaining states 2, · · ·60 of the top machine. So we propose to define the
simulation relation as

S = {(0,0),(1,1)}∪{(sA,more) | 2≤ sA ≤ 60} (3.13)

We now check that S is indeed a simulation relation, as defined above.

The first condition of a simulation relation, that the initial states match, is satisfied
because (0,0) ∈ S. The second condition is more tedious to verify. It says that for each
pair of states in S, and for each input symbol, the two machines can transition to a pair
of new states that is also in S, and that these two transitions produce the same output
symbol. Since machine A is deterministic, there is no choice about which transition it
takes and which output symbol it produces. In machine B, there are choices, but all we
require is that one of the choices match.

The only state of machine B that actually offers choices is more. Upon receiving tick,
the machine can transition back to more or down to 1. In either case, the output symbol
is safe. It is easy to see that these two choices are sufficient for state more to match
states 2,3, ...60 of machine A.

Thus the bottom machine indeed simulates the top machine with the simulation relation
(3.13).

3.4.1 Relating behaviors

A simulation relation establishes a correspondence between two state machines, one of which is
typically much simpler than the other. The relation lends confidence that analyzing the simpler
machine indeed reveals properties of the more complicated machine.

100 CHAPTER 3. STATE MACHINES

This confidence rests on a theorem and corollary that we will develop in this section. These results
relate the input/output behaviors of state machines that are related by simulation.

Given an input sequence x = (x(0),x(1),x(2), · · ·), if a state machine can produce the output se-
quence y = (y(0),y(1),y(2), · · ·), then (x,y) is said to be a behavior of the state machine. The set of
all behaviors of a state machine obviously satisfies

Behaviors⊂ InputSignals×OutputSignals.

Theorem Let B simulate A. Then

BehaviorsA ⊂ BehaviorsB.

This theorem is easy to prove. Consider a behavior (x,y) ∈ BehaviorsA. We need to show that
(x,y) ∈ BehaviorsB.

Let the simulation relation be S. Find all possible state responses for A

sA = (sA(0),sA(1), · · ·)
that result in behavior (x,y). (If A is deterministic, then there will be only one.) The simulation
relation assures us that we can find a state response for B

sB = (sB(0),sB(1), · · ·)
where (sA(i),sB(i)) ∈ S, such that given input symbol x, B produces y. Thus, (x,y) ∈ BehaviorsB.

Intuitively, the theorem simply states that B can match every move of A and produce the same output
sequence. It also implies that if B cannot produce a particular output sequence, then neither can A.
This is stated formally in the following corollary.

Corollary Let B simulate A. Then if

(x,y) /∈ BehaviorsB

then
(x,y) /∈ BehaviorsA.

The theorem and corollary are useful for analysis. The general approach is as follows. We have
a state machine A. We wish to show that its input-output function satisfies some property. That
is, every behavior satisfies some condition. We construct a simpler machine B whose input-output
relation satisfies the same property, and where B simulates A. Then the theorem guarantees that A
will satisfy this property, too. That is, since all behaviors of B satisfy the property, all behaviors of
A must also. This technique is useful since it is often easier to understand a simple state machine
than a complex state machine with many states.

Conversely, if there is some property that we must assure that no behavior of A has, it is sufficient to
find a simpler machine B which simulates A and does not have this property. This scenario is typical
of a safety problem, where we must show that dangerous outputs from our system are not possible.

3.4. SIMULATION AND BISIMULATION 101

a b

c

d

{1} / 1

{1} / 1

{1} / 0

(a)

g

e

f

h

{1} / 1

{1} / 1

(b)

{1} / 1

i
{1} / 0

Figure 3.9: Two state machines with the same behaviors that are not bisim-
ilar.

Example 3.17: For the parking meter of figure 3.6, for example, we can use the nonde-
terministic machine to show that if a coin is inserted at step n, the output symbol at steps
n and n + 1 is safe. By the corollary, it is sufficient to show that the nondeterministic
machine cannot do any differently.

It is important to understand what the theorem says, and what it does not say. It does not say, for
example, that if BehaviorsA ⊂ BehaviorsB then B simulates A. In fact, this statement is not true.
Consider the two machines in figure 3.9, where

Inputs = {1,absent},

Outputs = {0,1,absent}.
These two machines have the same behaviors. The non-stuttering output symbols are (1,0) or (1,1),
selected nondeterministically, assuming the input sequence has at least two non-stuttering symbols.
However, they are not bisimilar. In particular, (b) does not simulate (a). To see this, we play the
matching game. Machine (a) is allowed to move first. Ignoring stuttering, it has no choice but to
move from a to b and produce output symbol 1. Machine (b) can match this two ways; it has no

102 CHAPTER 3. STATE MACHINES

basis upon which to prefer one way to match it over another, so it picks one, say moving to state f .
Now it is the turn of machine (a), which has two choices. If it choses to move to d, then machine
(b) cannot match its move. (A similar argument works if (b) picks state h.) Thus, machine (b) does
not simulate machine (a), despite the fact that BehaviorsA ⊂ BehaviorsB.5

3.5 Summary

State machines are models of systems whose input and output signal spaces consist of sequences of
symbols. There are three ways of defining state machines: sets and functions, state transition dia-
gram, and the update table. The state machine model gives a step-by-step procedure for evaluating
the output signal. This is a state-determined system: once we know the current state, we can tell the
future behavior for any future input symbols.

A state machine can be non-deterministic: given the current state and current input symbol, it
may have more than one possible next state and current output symbol. Non-determistic machines
typically arise through abstraction of deterministic machines. Two state machines, with the same
input and output alphabets, may be related through simulation and bisimulation. Simulation is
used to understand properties of the behavior of one machine in terms of the behaviors of another
(presumably simpler) machine. Bisimulation is used to establish a form of equivalence between
state machines.

Exercises

In some of the following exercises you are asked to design state machines that carry out a given
task. The design is simple and elegant if the state space is properly chosen. Although the state space
is not unique, there often is a natural choice. As usual, each problem is annotated with the letter E,
T, C which stands for exercise, requires some thought, requires some conceptualization. Problems
labeled E are usually mechanical, those labeled T require a plan of attack, those labeled C usually
have more than one defensible answer.

1. E A state machine with
Inputs = {a,b,c,d,absent},

has a state s with two emerging arcs with guards

guard1 = {a}

and
guard2 = {a,b,d}.

(a) Is this state machine deterministic?

(b) Define the set else for state s and specify the source and destination state for the else arc.

5Recall that in our notation ⊂ allows the two sets to be equal.

3.5. SUMMARY 103

2. E For the answering machine example of figure 3.1, assume the input sequence is

(offhook,offhook,ring,offhook,ring,ring,ring,offhook, · · ·).
This corresponds to a user of the answering machine making two phone calls, answering a
third after the first ring, and answering a second after the third ring.

(a) Give the state response of the answering machine.

(b) Give the trace of the answering machine.

(c) Give the output sequence.

3. E Consider the alphabets

Inputs = Outputs = Binary = {0,1}.
Note that there is no stuttering input or output symbols here. This simplifies the notation in
the problem somewhat.

(a) Construct a state machine that uses these alphabets such that if (x(0),x(1), · · ·) is any
input sequence without stuttering symbols, the output sequence is given by

∀ n ∈ Naturals0, y(n) =
{

1 if n≥ 2∧ (x(n−2),x(n−1),x(n)) = (1,1,1)
0 otherwise

In words, the machine outputs 1 if the current input symbol and the two previous input
symbols are all 1’s, otherwise it outputs 0. (Had we included a stuttering symbol, the
above equation would be a bit more complicated.)

(b) For the same input and output alphabet, construct a state machine that outputs 1 if the
current input symbol and two previous input symbols are either (1,1,1) or (1,0,1), and
otherwise it outputs 0.

4. E A modulo N counter is a device that can output any integer between 0 and N− 1. The
device has three input symbols, increment, decrement, and reset, plus, as always, a stuttering
symbol absent; increment increases the output integer by 1; decrement decreases this integer
by 1; and reset sets the output symbol to 0. Here increment and decrement are modulo N
operations.

Note: Modulo N numbers work as follows. For any integer m, m mod N = k where 0 ≤
k ≤ N− 1 is the unique integer such that N divides (m− k). Thus there are only N distinct
modulo-N numbers, namely, 0, · · · ,N−1.

(a) Give the state transition diagram of this counter for N = 4.

(b) Give the update table of this counter for N = 4.

(c) Give a description of the state machine by specifying the five entities that appear in
(3.1); again assume N = 4.

(d) Take N = 3. Calculate the state response for the input sequence

(increment4,decrement3, · · ·)
starting with initial state 1, where sn means s repeated n times.

104 CHAPTER 3. STATE MACHINES

0
 1

{1}/
0

{0}/
1

2

{1}/
1

{0}/
1

3

{1}/
1

{0}/
1

{1}/
1

{0}/
1

Figure 3.10: Machine that outputs at least one 1 between any two 0’s.

5. T The state machine UnitDelay is defined to behave as follows. On the first non-stuttering
reaction (when the first non-stuttering input symbol arrives), the output symbol a is produced.
On subsequent reactions (when subsequent input symbols arrive), the input symbol that ar-
rived at the previous non-stuttering reaction is produced as an output symbol.

(a) Assume the input and output alphabets are

Inputs = Outputs = {a,b,c,absent}.

Give a finite state machine that implements UnitDelay for this input set. Give both a
state transition diagram and a definition of each of the components in (3.1).

(b) Assume the input and output sets are

Inputs = Outputs = Naturals0∪{absent},

and that on the first non-stuttering reaction, the machine produces 0 instead of a. Give
an (informal) argument that no finite state machine can implement UnitDelay for this
input set. Give an infinite state machine by defining each of the components in (3.1).

6. T Construct an infinite state machine that realizes Equal.

7. C An elevator connects two floors, 1 and 2. It can go up (if it is on floor 1), down (if it is
on floor 2) and stop on either floor. Passengers at any floor may press a button requesting
service. Design a controller for the elevator so that (1) every request is served, and (2) if
there is no pending request, the elevator is stopped. For simplicity, do not be concerned about
responding to requests from passengers inside the elevator.

8. T The state machine in figure 3.10 has the property that it outputs at least one 1 between
any two 0’s. Construct a two-state nondeterministic state machine that simulates this one and
preserves that property.

9. T For the nondeterministic state machine in figure 3.11 the input and output alphabets are

Inputs = Outputs = {0,1,absent}.

(a) Define the possibleUpdates function (3.9) for this state machine.

3.5. SUMMARY 105

A

B

{1}/1

{1}/0

{0,1}/1

C

{0,1}/0

{0}/0

Figure 3.11: Nondeterministic state machine for exercise 9.

(b) Define the relation Behaviors in (3.11) for this state machine. Part of the challenge here
is to find a way to describe this relation compactly. For simplicity, ignore stuttering; i.e.
assume the input symbol is never absent.

10. E The state machine in figure 3.12 implements CodeRecognizer, but has more states than the
one in figure 3.4. Show that it is equivalent by giving a bisimulation relation with the machine
in figure 3.4.

11. E The state machine in figure 3.13 has input and output alphabets

Inputs = {1,a},

Outputs = {0,1,a},
where a (short for absent) is the stuttering symbol. State whether each of the following is in
the set Behaviors for this machine. In each of the following, the ellipsis “· · ·” means that the
last symbol is repeated forever. Also, in each case, the input and output signals are given as
sequences.

(a) ((1,1,1,1,1, · · ·),(0,1,1,0,0, · · ·))
(b) ((1,1,1,1,1, · · ·),(0,1,1,0,a, · · ·))
(c) ((a,1,a,1,a, · · ·),(a,1,a,0,a, · · ·))
(d) ((1,1,1,1,1, · · ·),(0,0,a,a,a, · · ·))
(e) ((1,1,1,1,1, · · ·),(0,a,0,a,a, · · ·))

12. E The state machine in figure 3.14 has

Inputs = {1,absent},

106 CHAPTER 3. STATE MACHINES

start 1 11

{1} {1}

{0}
{0}

110

{0}/recognize

1100

{0}

{1}

{1}

{0}

{1}

Figure 3.12: A machine that implements CodeRecognizer , but has more
states than the one in figure 3.4.

a b
{1} / 0

c
{1} / 0

{1} / 1

Figure 3.13: State machine for problem 11.

a

b

d

{1} / 1

c

{1} / 0

{1} / 1{1} / 0

Figure 3.14: A machine that has more states than it needs.

3.5. SUMMARY 107

Outputs = {0,1,absent}.
Find a bisimilar state machine with only two states, and give the bisimulation relation.

13. E You are told that state machine A has

Inputs = {1,2,absent},

Outputs = {1,2,absent},
States = {a,b,c,d}.

but you are told nothing further. Do you have enough information to construct a state machine
B that simulates A? If so, give such a state machine, and the simulation relation.

14. E Construct a state machine with Inputs = {0,1,absent}, Outputs = {r,absent}, that outputs
r whenever the input signal (without stuttering symbols) contains the sequence (0,0,0), oth-
erwise it outputs absent. More precisely, if x = (x(0),x(1), · · ·) is the input sequence then
y = (y(0),y(1), · · ·) is the output sequence, where

y(n) =
{

r, if (x(n−2),x(n−1),x(n)) = (0,0,0)
absent otherwise

15. T Consider a state machine where

Inputs = {1,absent},

Outputs = {0,1,absent},
States = {a,b,c,d,e, f},

initialState = a,

and the update function is given by the following table (ignoring stuttering):

(currentState, inputSymbol) (nextState,outputSymbol)
(a,1) (b,1)
(b,1) (c,0)
(c,1) (d,0)
(d,1) (e,1)
(e,1) (f ,0)
(f ,1) (a,0)

(a) Draw the state transition diagram for this machine.

(b) Ignoring stuttering, give the Behaviors relation for this machine.

(c) Find a state machine with three states that is bisimilar to this one. Draw that state
machine, and give the bisimulation relation.

108 CHAPTER 3. STATE MACHINES

Chapter 4

Composing State Machines

We design interesting systems by composing simpler components. Since systems are functions,
their composition is function composition, as discussed in section 2.1.5. State machines, however,
are not given directly as functions that map input sequences into output sequences. Instead, they are
given procedurally, where the update function defines how to progress from one state to the next.
This chapter explains how to define a new state machine that describes a composition of multiple
state machines.

In section 2.3.4 we used a block diagram syntax to define compositions of systems. We will use
the same syntax here, and we will similarly build up an understanding of composition by first
considering easy cases. The hardest cases are those where there is feedback, because the input
of one state machine may depend on its own output. It is challenging in this case to come up with a
procedure for updating the state of the composite machine. For some compositions, in fact, it isn’t
even possible. Such compositions are said to be ill-formed.

4.1 Synchrony

We consider a set of interconnected components, where each component is a state machine. By
“interconnected” we mean that the outputs of one component may be inputs of another. We wish to
construct a state machine model for the composition of components. Composition has two aspects.
The first aspect is straightforward: it specifies which outputs of one component are the inputs of
another component. These input-output connections are specified using block diagrams.

The second aspect of composition concerns the timing relationships between inputs and outputs. We
choose a particular style of composition called synchrony. This style dictates that each state ma-
chine in the composition reacts simultaneously and instantaneously. So a reaction of the composite
machine consists of a set of simultaneous reactions of each of the component machines.

A reaction of the composite machine is triggered by inputs from the environment. Thus, when a
reaction occurs is externally determined. This is the same as for a single machine. As with a single
state machine, a composite machine may stutter. This simply means that each component machine

109

110 CHAPTER 4. COMPOSING STATE MACHINES

stutters.

A system that reacts only in response to external stimulus is said to be reactive. Because our
compositions are synchronous, they are often called synchronous/reactive systems.

The reactions of the component machines and of the composite machine are viewed as being instan-
taneous. That is, a reaction does not take time. In particular, the output symbol from a state machine
is viewed as being simultaneous with the input symbol, without delay. This creates some interesting
subtleties, especially for feedback composition when the input of a state machine is connected to its
own output. We will discuss the ramifications of the synchronous/reactive interpretation below.

Synchrony is a very useful model of the behavior of physical systems. Digital circuits, for example,
are almost always designed using this model. Circuit elements are viewed as taking no time to
calculate their outputs given their inputs, and time overall is viewed as progressing in a sequence
of discrete time steps according to ticks of a clock. Of course, the time that it takes for a circuit
element to produce an output cannot ultimately be ignored, but the model is useful because for most
circuit elements in a complex design, this time can be ignored. Only the time delay of the circuit
elements along a critical path affects the overall performance of the circuit.

More recently than for circuits, synchrony has come to be used in software as well. Concurrent
software modules interact according to the synchronous model. Languages built on this principle
are called synchronous languages. They are used primarily in real-time embedded system1 design.

4.2 Side-by-side composition

A simple form of composition of two state machines is shown in figure 4.1. We call this side-by-side
composition. Side-by-side composition in itself is not useful, but it is useful in combination with
other types of composition. The two state machines in figure 4.1 do not interact with one another.
Nonetheless we wish to define a single state machine representing the synchronous operation of the
two component state machines.

The state space of the composite state machine is simply

States = StatesA×StatesB.

We could take the cross product in the opposite order, resulting in a different but bisimilar composite
state machine. The initial state is

initialState = (initialStateA, initialStateB).

The input and output alphabets are

Inputs = InputsA× InputsB, (4.1)

1An embedded system is a computing system (a computer and its software) that is embedded in a larger system that
is not first and foremost a computer. A digital cellular telephone, for example, contains computers that realize the radio
modem and the speech codec. Recent cars contain computers for ignition control, anti-lock brakes, and traction control.
Aircraft contain computers for navigation and flight control. In fact, most modern electronic controllers of physical
systems are realized as embedded systems.

4.2. SIDE-BY-SIDE COMPOSITION 111

(StatesB, InputsB, OutputsB, updateB, initialStateB)

(StatesA, InputsA, OutputsA, updateA, initialStateA)

(States, Inputs, Outputs, update, initialState)

Definition of the side-by-side composite machine:
States = StatesA×StatesB

Inputs = InputsA× InputsB
Outputs = OutputsA×OutputsB
initialState = (initialStateA, initialStateB)
((sA(n+1),sB(n+1)),(yA(n),yB(n)))
= update((sA(n),sB(n)),(xA(n),xB(n))),

where

(sA(n+1),yA(n)) = updateA(sA(n),xA(n)) and
(sB(n+1),yB(n)) = updateB(sB(n),xB(n))

Figure 4.1: Summary of side-by-side composition of state machines.

112 CHAPTER 4. COMPOSING STATE MACHINES

Outputs = OutputsA×OutputsB. (4.2)

The update function of the composite machine, update, consists of the update functions of the
component machines, side-by-side:

((sA(n+1),sB(n+1)),(yA(n),yB(n))) = update((sA(n),sB(n)),(xA(n),xB(n))),

where
(sA(n+1),yA(n)) = updateA(sA(n),xA(n)),

and
(sB(n+1),yB(n)) = updateB(sB(n),xB(n)).

Recall that InputsA and InputsB include a stuttering element. This is convenient because it allows
a reaction of the composite when we really want only one of the machines to react. Suppose the
stuttering elements are absentA and absentB. Then if the second component of the input symbol
is absentB, the reaction of the composite consists only of the reaction of the first machine. The
stuttering element of the composite is the pair of stuttering elements of the component machines,
(absentA,absentB).

Example 4.1: The side-by-side composition in the top of figure 4.2 has the composite
machine with state space

States = StatesA×StatesB = {(1,1),(2,1)},

and alphabets

Inputs = {(0,0),(1,0),(absentA,0),(0,absentB),(1,absentB),(absentA,absentB)},

Outputs = {(a,c),(b,c),(absentA,c),(a,absentB),(b,absentB),(absentA,absentB)}.
The initial state is

initialState = (1,1).

The update function can be given as a table, only a part of which is displayed below.
The state transition diagram in the lower part of figure 4.2 gives the same part of the
update function.

current (next state, output) for input
state (0,0) (1,0) (absentA,0) · · ·
(1,1) ((1,1),(a,c)) ((2,1),(b,c)) ((1,1)((absentA,c)) · · ·
(2,1) ((2,1),(b,c)) ((1,1),(a,c)) ((2,1), ((absentA,c)) · · ·

Notice that if the second component of the input sequence is always absentB, then the
side-by-side composition behaves essentially as machine A, and if the first component is
always absentA, then it behaves as machine B. The stuttering element of the composite
is of course the pair (absentA,absentB).

4.3. CASCADE COMPOSITION 113

A

1 2

{1}/b {0}/ b{0}/ a

{1}/a

B

1

{0}/ c

{0, 1, absentA}

{0, absentB} {c, absentB}

A

(1,1) (2,1)
{(1,0)}/(b, c)

{(0,0)}/
(b, c)

{(0,0)}/
(a, c)

{(1,0)}/(a, c)

{(absentA, 0)}/
(absentA, c)

{(absentA, 0)}/
(absentA, c)

{(1,absentB)}/
(b, absentB)

{(1,absentB)}/
(a, absentB)

{0, 1, absentA}

{0, absentB}

{a, b, absentA}

{c, absentB}

{a, b, absentA}

Figure 4.2: Example of a side-by-side composition.

114 CHAPTER 4. COMPOSING STATE MACHINES

(StatesB, InputsB, OutputsB, updateB, initialStateB)

(StatesA, InputsA, OutputsA, updateA, initialStateA)

(States, Inputs, Outputs, update, initialState)

Assumptions about the component machines:
OutputsA ⊂ InputsB

Definition of the cascade composite machine:
States = StatesA×StatesB

Inputs = InputsA
Outputs = OutputsB
initialState = (initialStateA, initialStateB)
((sA(n+1),sB(n+1)),yB(n)) = update((sA(n),sB(n)),x(n)),

where

(sA(n+1),yA(n)) = updateA(sA(n),x(n)) and
(sB(n+1),yB(n)) = updateB(sB(n),yA(n)).

Figure 4.3: Summary of cascade composition of state machines.

4.3. CASCADE COMPOSITION 115

4.3 Cascade composition

We now interconnect two state machines as shown in figure 4.3, where the output of one is the
input of the other. This is called a cascade composition or a series connection. We define the
composition so that the component machines react together, synchronously, as one state machine.

Suppose the two state machines are given by

StateMachineA = (StatesA, InputsA,OutputsA,updateA, initialStateA)

and
StateMachineB = (StatesB, InputsB,OutputsB,updateB, initialStateB).

Let the composition be given by

StateMachine = (States, Inputs,Outputs,update, initialState).

Clearly, for a composition like that in figure 4.3 to be possible we must have

OutputsA ⊂ InputsB.

Then any output sequence produced by machine A can be an input sequence for machine B. As a
result,

OutputSignalsA ⊂ InputSignalsB.

This is analogous to a type constraint in programming languages, where in order for two pieces
of code to interact, they must use compatible data types. We encountered a similar constraint in
discussing function composition, section 2.1.5.

We are ready to construct a state machine model for this series connection. As noted in the figure,
the input alphabet of the composite is

Inputs = InputsA.

The stuttering element of Inputs, of course, is just the stuttering element of InputsA. The output
alphabet of the composite is

Outputs = OutputsB.

The state space of the composite state machine is the product set

States = StatesA×StatesB. (4.3)

This asserts that the composite state machine is in state (sA(n),sB(n)) when StateMachineA is in
state sA(n) and StateMachineB is in state sB(n). The initial state is

initialState = (initialStateA, initialStateB).

We could equally well have defined the states of the composite state machine in the opposite order,

States = StatesB×StatesA.

116 CHAPTER 4. COMPOSING STATE MACHINES

This would result in a different but bisimilar state machine description (either one simulates the
other). Intuitively, it does not matter which of these two choices we make, and we choose (4.3).

To complete the description of the composite machine, we need to define its update function in
terms of the component machines. Here, a slight subtlety arises. Since we are using synchronous
composition, the output symbol of machine A is simultaneous with its input symbol. Thus, in a
reaction, the output symbol of machine A in that reaction must be available to machine B in the
same reaction. This seems intuitive, but it has some counterintuitive consequences. Although the
reactions of machine A and B are simultaneous, we must determine the reaction of A before we can
determine the reaction of B. This apparent paradox is an intrinsic feature of synchronous compo-
sition. We will have to deal with it carefully in feedback composition, where it is not immediately
evident which reactions need to be determined first.

In the cascade composition, it is intuitively clear what we need to do to define the update function.
We first determine the reaction of machine A. Suppose that at the n-th reaction the input symbol is
x(n) and the state is s(n) = (sA(n),sB(n)), where sA(n) is the state of machine A and sB(n) is the
state of machine B. Machine A reacts by updating its state to sA(n+1) and producing output symbol
yA(n),

(sA(n+1),yA(n)) = updateA(sA(n),x(n)). (4.4)

Its output symbol yA(n) becomes the input symbol to machine B. Machine B reacts by updating its
state to sB(n+1) and producing output symbol yB(n),

(sB(n+1),yB(n)) = updateB(sB(n),yA(n)). (4.5)

The output of the composite machine, of course, is just the output of machine B, and the next state
of the composite machine is just (sA(n+1),sB(n+1)), so the composite machine’s update is

((sA(n+1),sB(n+1)),yB(n)) = update((sA(n),sB(n)),x(n)),

where sA(n+1), sB(n+1), and yB(n) are given by (4.4) and (4.5). The definition of the composite
machine is summarized in figure 4.3.

Example 4.2: The cascade composition in figure 4.4 has the composite machine with
state space

States = StatesA×StatesB = {(0,0),(0,1),(1,0),(1,1))}
and alphabets

Inputs = Outputs = {0,1,absent}.
The initial state is

initialState = (0,0).

The update function is given by the table:

current (next state, output) for input
state 0 1 absent
(0,0) ((0,0),0) ((1,1),1) ((0,0), absent)
(0,1) ((0,0),1) ((1,1),0) ((0,1), absent)
(1,0) ((1,1),1) ((0,0),0) ((1,0), absent)
(1,1) ((1,1),0) ((0,0),1) ((1,1), absent)

4.3. CASCADE COMPOSITION 117

A

0 1

{1}/1

{1}/0

{0}/0

{0,1,absent}

Inputs =
{0,1,absent}

Outputs={0,1,absent}

{0}/1

B

0 1

{1}/1

{0}/1

{0}/0 {1}/0

{0,0}

{1,1}

{1}/1

{1}/1

{0}/0

Inputs =
{0,1,absent}

{0}/0

Outputs={0,1,absent}

{1,0}
{1}/0

{0}/1
{0}/1

{1}/0
{0,1}

Figure 4.4: Example of a cascade composition. The composed state ma-
chine is on the right.

118 CHAPTER 4. COMPOSING STATE MACHINES

InputsB

InputsA
(States, Inputs, Outputs, update, initialState)

OutputsA

OutputsBInputs = InputsA × InputsB

Outputs = OutputsA × OutputsB

Figure 4.5: State machine with product-form inputs and outputs.

The update function is also presented in the state transition diagram of figure 4.4. The
self-loops corresponding to the stuttering input symbol absent are not shown in the
diagram.

Observe from the table or the diagram that states (0,1) and (1,0) are not reachable from
the initial state. A state s is said to be reachable if some sequence of input symbols can
take the state machine from the initial state to s. This suggests that a simpler machine
with fewer states would exhibit the same input/output behaviors. In fact, notice from
the table that the input is always equal to the output! A trivial one-state machine can
exhibit the same input/output behaviors. (Exercise 8 gives a procedure for calculating
the reachable states of an arbitrary state machine.)

The simple behavior of the composite machine is not immediately apparent from figure
4.4. We have to systematically construct the composite machine to derive this simple
behavior. In fact, this composite machine can be viewed as an encoder and decoder,
because the input bit sequence is encoded by a distinctly different bit sequence (the
intermediate signal in figure 4.4), and then the second machine, given the intermediate
signal, reconstructs the original.

This particular encoder is known as a differential precoder. It is “differential” in
that when the input symbol is 0, the intermediate signal sample is unchanged from the
previous sample (whether it was 0 or 1), and when the input symbol is 1, the sample is
changed. Thus, the input symbol indicates change in the input with a 1, and no change
with a 0. Differential precoders are used when it is important that the average number
of 1’s and 0’s is the same, regardless of the input sequence that is encoded.

4.4 Product-form inputs and outputs

In the state machine model of (3.1), at each step the environment selects one input symbol to which
the machine reacts and produces one output symbol. Sometimes we wish to model the fact that some
input values are selected by one part of the environment, while other input values are simultaneously
selected by another part. Also, some output values are sent to one part of the environment, while
other output values are simultaneously sent to another part. The product-form composition permits
these models.

The machine in figure 4.5 is shown as a block with two distinct input and output arrows. The figure
suggests that the machine receives inputs from two sources and sends outputs to two destinations.

4.4. PRODUCT-FORM INPUTS AND OUTPUTS 119

In the answering machine example of chapter 3, for instance, the end greeting input value might
originate in a physically different piece of hardware in the machine than the offhook value.

The distinct arrows into and out of a block are called ports. Each port has a set of values called
the port alphabet associated with it, as shown in figure 4.5. Each port alphabet must include a
stuttering element. The set Inputs of input values to the state machine is the product of the input
sets associated with the ports. Of course, the product can be constructed in any order; each ordering
results in a distinct (but bisimilar) state machine model.

In figure 4.5 there are two input ports and two output ports. The upper input port can present to the
state machine any value in the alphabet InputsA, which includes absent, its stuttering element. The
lower port can present any value in the set InputsB, which also includes absent. The input value
actually presented to the state machine in a reaction is taken from the set

Inputs = InputsA× InputsB.

The stuttering element for this alphabet is the pair (absent,absent). The output value produced by
a reaction is taken from the set

Outputs = OutputsA×OutputsB.

If the output of the n-th reaction is (yA(n),yB(n)), then the upper port shows yA(n) and the lower
port shows yB(n). These can now be separately presented as inputs to downstream state machines.
Again, the stuttering element is (absent,absent).

Example 4.3: The answering machine of figure 3.1 has input alphabet

Inputs = {ring,offhook,end greeting,end message}.

In a typical realization of an answering machine, ring and offhook come from a subsys-
tem (often an ASIC, or application-specific integrated circuit) that interfaces to the
telephone line. The value end greeting comes from another subsystem, such as a mag-
netic tape machine or digital audio storage device, that plays the answer message. The
value end message comes from a similar, but distinct, subsystem that records incoming
messages. So a more convenient model will show three separate factors for the inputs,
as in figure 4.6. That figure also shows the outputs in product form, anticipating that
the distinct output values will need to be sent to distinct subsystems.

Several features distinguish the diagram in figure 4.6 from that of figure 3.1. Each state
except the idle state has acquired a self-loop labeled stutter, which is a name for the
guard

stutter = {(absent,absent,absent)}.
This self loop prevents the state machine from returning to the idle state (via the else
transition) when nothing interesting is happening on the inputs. Usually, there will not
be a reaction if nothing interesting is happening on the inputs, but because of synchrony,
this machine may be composed with others, and all machines have to react at the same
time. So if anything interesting is happening elsewhere in the system, then this machine

120 CHAPTER 4. COMPOSING STATE MACHINES

idle

count1

count2

{(
absent
,
ring
,
absent
)}

{(
absent
,
ring
,
absent
)}

{(
absent
,
ring
,
absent
)}/

(
answer
,
absent
,
absent
)

else

else

play greeting

{(
end greeting
,
absent
,
absent
)}/

(
absent
,
absent
,
record
)

record

message

else
/(
absent
,
recorded ,
absent
)

else

{(*,
offhook
,*)}

{
r
in

g
,

o

ff

h
o

o
k

,
a

b
s

e
n

t
}

{
e

n
d

m

e
s

s
a

g
e

,
a

b
s

e
n

t
}

{
r

e
c

o
r

d
e

d
,

a
b

s
e

n
t

}

else

{
e

n
d

g

r
e

e
t

i
n

g
,

a

b
s

e
n

t
}

{
a

n
s

w

e
r

,
a

b
s

e
n

t
}

{
r

e
c

o
r

d
,

a

b
s

e
n

t
}

stutter

stutter

stutter

stutter

NOTE
:
stutter
= {(
absent
,
absent
,
absent
)}

Figure 4.6: Answering machine with product-form inputs and outputs has
three input ports and three output ports.

4.5. GENERAL FEEDFORWARD COMPOSITION 121

(StatesB, InputsB, OutputsB, updateB, initialStateB)

(StatesA, InputsA, OutputsA, updateA, initialStateA)

(States, Inputs, Outputs, update, initialState)

InputsA

OutputsA1

OutputsA2 ⊂ InputsB1

InputsB2

OutputsB

OutputsA2

Figure 4.7: More complex composition.

has to react even though nothing interesting is happening here. Recall that such a
reaction is called a stutter. The state does not change, and the output symbol produced
is the stuttering element of the output alphabet.

Each guard now consists of a set of triples, since the product-form input has three
components. The shorthand “(*, offhook, *)” on the arc from the record message state
to the idle state represents a set,

(∗,offhook,∗) = {(absent,offhook,absent),(end greeting,offhook,absent),
(absent,offhook,end message),(end greeting,offhook,end message)}.

The “*” is a don’t care or wildcard notation. Anything in its position will trigger the
guard.

Because there are three output ports, the output symbols are also triples, but most of
them are implicitly (absent,absent,absent).

4.5 General feedforward composition

Given that state machines can have product-form inputs and outputs, it is easy to construct a com-
position of state machines that combines features of both the cascade composition of figure 4.3 and
the side-by-side composition of figure 4.1. An example is shown in figure 4.7. In that figure,

OutputsA = OutputsA1×OutputsA2

InputsB = InputsB1× InputsB2.

122 CHAPTER 4. COMPOSING STATE MACHINES

no
messages

message
pending

playing

{(recorded ,*,*)}/
(light on, absent)

{(*,play,*)}/
(absent, play messages)

{(*, *, done playing)}/
(light off, absent)

else

else

else

{recorded ,absent}

{play, absent}

{done playing, absent}

{light on, light off, absent}

{play messages, absent}

Figure 4.8: Playback system for composing with the answering machine.

Notice that the bottom port of machine A goes both to the output of the composite machine and to
the top port of machine B. Sending a value to multiple destinations like this is called forking. In
exercise 1 at the end of this chapter you are asked to define the composite machine for this example.

Example 4.4:

We compose the answering machine of figure 4.6 with a playback system, shown in
figure 4.8, which plays messages that have been recorded by the answering machine.
The playback system receives the recorded input symbol from the answering machine
whenever the answering machine is done recording a message. Its task is to light an
indicator that a message is pending, and to wait for a user to press a play button on the
answering machine to request that pending messages be played back. When that button
is pressed, all pending messages are played back. When they are done being played
back, then the indicator light is turned off.

The composition is shown in figure 4.9. The figure shows a number of other com-
ponents, not modeled as state machines, to help understand how everything works in
practice. These other components are shown as three-dimensional objects, to empha-
size their physicality. We have simplified the figure by omitting the absent elements of
all the sets. They are implicit.

A telephone line interface provides ring and offhook when these are detected. De-
tection of one of these can trigger a reaction of the composite machine. In fact, any
output symbol from any of the physical components can trigger a reaction of the com-
posite machine. When AnsweringMachine generates the answer output symbol, then
the “greeting playback device” plays back the greeting. From the perspective of the
state machine model, all that happens is that time passes (during which some reactions
may occur), and then an end greeting input symbol is received. The recording device

4.5. GENERAL FEEDFORWARD COMPOSITION 123

telephone
line

interface

greeting
playback device

light

play
button

message playback
device

{end greeting}

{ring, offhook}

{end message}

AnsweringMachine

{answer}

{recorded message}

Playback

{play}

{light on, light off}

{done playing} {play messages}

recording device

{record}

Figure 4.9: Composition of an answering machine with a message playback
machine. The three-dimensional boxes are physical components that are
not modeled as state machines. They are the sources of some inputs and
the destinations of some outputs.

124 CHAPTER 4. COMPOSING STATE MACHINES

(StatesB, InputsB, OutputsB, updateB, initialStateB)

(StatesA, InputsA, OutputsA, updateA, initialStateA)

(States, Inputs, Outputs, update, initialState)

(StatesC, InputsC, OutputsC, updateC, initialStateC)

Figure 4.10: Cascade composition of three state machines. They can be
composed in different ways into different, but bisimilar, state machines.

works similarly. When AnsweringMachine generates a recorded output symbol, then
the Playback machine will respond by lighting the indicator light. When a user presses
the play button the input symbol play is generated, the composite machine reacts, and
the Playback machine issues a play messages output symbol to the “message playback
device.” This device also allows time to pass, then generates a done playing input sym-
bol to the composite state machine.

If we wish to model the playback or recording subsystem in more detail using finite
state machines, then we need to be able to handle feedback compositions. These are
considered below.

4.6 Hierarchical composition

By using the compositions discussed above, we can now handle any interconnection of state ma-
chines that does not have feedback. Consider for example the cascade of three state machines shown
in figure 4.10. The composition techniques we have discussed so far involved only two state ma-
chines. It is easy to generalize the composition in figure 4.3 to handle three state machines (see
exercise 2), but a more systematic method might be to apply the composition of figure 4.3 to com-
pose two of the state machines, and then apply it again to compose the third state machine with the
result of the first composition. This is called hierarchical composition.

In general, given a collection of interconnected state machines, there are several ways to hierarchi-
cally compose them. For example, in figure 4.10, we could first compose machines A and B to get,

4.7. FEEDBACK 125

f g
yx

Figure 4.11: Illustration of a fixed point problem.

say, machine D, and then compose D with C. Alternatively, we could first compose B and C to get,
say, machine E, and then compose E and A. These two procedures result in different but bisimilar
state machine models (each simulates the other).

4.7 Feedback

In simple feedback systems, an output from a state machine is fed back as an input to the same state
machine. In more complicated feedback systems, several state machines might be connected in a
loop; the output of one eventually affects its own input through some intervening state machines.

Feedback is a subtle form of composition in the synchronous model. In synchronous composition,
in a reaction, the output symbol of a state machine is simultaneous with the input symbol. So the
output symbol of a machine in feedback composition depends on an input symbol that depends on
its own output symbol!

We frequently encounter such situations in mathematics. A common problem is to find x such that

x = f (x) (4.6)

for a given function f . A solution to this equation, if it exists, is called a fixed point in mathematics.
It is analogous to feedback because the ‘output’ f (x) of f is equal to its ‘input’ x, and vice versa.
The top diagram in figure 4.12 illustrates a similar relationship: the state machine’s output symbol
is the same as its (simultaneous) input symbol.

A more complicated problem, involving two equations, is to find x and y so that

x = f (y), and y = g(x).

The analogous feedback composition has two state machines in feedback, with the structure of
figure 4.11.2

A fixed-point equation like (4.6) may have no fixed point, a unique fixed point, or multiple fixed
points. Take for example the function f :Reals → Reals where ∀x ∈ Reals, f (x) = 1 + x2. In this
case, (4.6) becomes x = 1+x2, which has no fixed point in the reals. If f (x) = 1−x, (4.6) becomes

2Figure 4.9 would be a feedback composition if any of the three recording or playback devices were modeled as state
machines. In the figure, however, these devices are part of the environment.

126 CHAPTER 4. COMPOSING STATE MACHINES

(StatesA, InputsA, OutputsA, updateA, initialStateA)

(States, Inputs, Outputs, update, initialState)

OutputsA ⊂ InputsA

(StatesA, InputsA, OutputsA, updateA, initialStateA)

(States, Inputs, Outputs, update, initialState)

OutputsA ⊂ InputsA

{react, absent}

Figure 4.12: Feedback composition with no inputs.

x = 1−x, which has a unique fixed point, x = 0.5. Lastly, if f (x) = x2, (4.6) becomes x = x2, which
has two fixed points, x = 0 and x = 1.

In the context of state machines, a feedback composition with no fixed point in some reachable state
is a defective design; we call such a composition ill-formed. We can not evaluate an ill-formed
composition. Usually, we also wish to exclude feedback compositions that have more than one non-
stuttering fixed point in some reachable state. So these too are ill-formed. A feedback composition
with a unique non-stuttering fixed point in all reachable states is well-formed. Fortunately, it is easy
to construct well-formed feedback compositions, and they prove surprisingly useful. We explore this
further, beginning with a somewhat artificial case of feedback composition with no inputs.

4.7.1 Feedback composition with no inputs

The upper state machine in figure 4.12 has an output port that feeds back to its input port. We wish
to construct a state machine model that hides the feedback, as suggested by the figure. The result
will be a state machine with no input. This does not fit our model, which requires the environment
to provide inputs to which the machine reacts. So we artificially provide an input alphabet

Inputs = {react,absent},
as suggested in the lower machine in figure 4.12. We interpret the input symbol react as a command
for the internal machine to react, and the input symbol absent as a command for the internal machine
to stutter. The output alphabet is

Outputs = OutputsA.

This is an odd example of a synchronous/reactive system because of the need for this artificial
input alphabet. Typically, however, such a system will be composed with others, as suggested in

4.7. FEEDBACK 127

(StatesA, InputsA, OutputsA, updateA, initialStateA)

(States, Inputs, Outputs, update, initialState)

OutputsA ⊂ InputsA

(StatesB, InputsB, OutputsB, updateB, initialStateB)

Figure 4.13: Feedback composition composed with another state machine.

figure 4.13. That composition does have an external input. So the overall composition, including
the component with no external input, reacts whenever an external input symbol is presented, and
there is no need for the artificial inputs. Of course when a stuttering element is provided to the
composite, all components stutter.

Although it is not typical, we first consider the example in figure 4.12 because the formulation of
the composition is simplest. We will augment the model to allow inputs after this.

In figure 4.12, for the feedback connection to be possible, of course, we must have

OutputsA ⊂ InputsA.

Suppose the current state at the n-th reaction is s(n) ∈ StatesA. The problem is to find the output
symbol y(n) ∈ OutputsA. Since y(n) is also the input symbol, it must satisfy

(s(n+1),y(n)) = updateA(s(n),y(n)),

where s(n + 1) is the next state. The difficulty here is that the “unknown” y(n) appears on both
sides. Once we find y(n), s(n+1) is immediately determined by the updateA function. To simplify
the discussion, we get rid of s(n+1) by working with the function

outputA:StatesA× InputsA → OutputsA

This function gives the output symbol as a function of the current state and the current input symbol,
as we saw in section 3.1.1. So our problem is: given the current state s(n) and the known function
outputA, find y(n) such that

y(n) = outputA(s(n),y(n)). (4.7)

Here s(n) is a known constant, so the equation is of the form (4.6), and its solution, if it exists, is a
fixed point.

One solution that is always available is to stutter, i.e.,

y(n) = absent, (and then s(n+1) = s(n)),

128 CHAPTER 4. COMPOSING STATE MACHINES

since absent = outputA(s(n),absent), assuming that absent is the stuttering input symbol for ma-
chine A. But this is not an interesting solution, since the state does not change. We want to find a
non-stuttering solution for y(n).

We say that the composition of figure 4.12 is well-formed if for every reachable s(n) ∈ StatesA,
there is a unique non-stuttering output symbol y(n) that solves (4.7); otherwise, the composition is
ill-formed. If the composition is well-formed, the composite machine definition is:

States = StatesA

Inputs = {react,absent}
Outputs = OutputsA
initialState = initialStateA

update(s(n),x(n))=





updateA(s(n),y(n)),
where y(n) 6= absent uniquely satisfies (4.7) if x(n) = react

(s(n),x(n)) if x(n) = absent

Notice that the composite machine is defined only if the composition is well-formed, i.e., there is
a unique y(n) that satisfies (4.7). If there is no such y(n), the composition is ill-formed and the
composite machine is not defined.

The next example illustrates the difference between well-formed and ill-formed compositions. It
will suggest a procedure to solve (4.7) in the important special case of systems with state-determined
output.

Example 4.5: Consider the three feedback compositions in figure 4.14. In all cases,
the input and output alphabets of the component machines are

InputsA = OutputsA = {true, false,absent}.

The input alphabet to the composite machine is {react,absent}, as in figure 4.12, but
we do not show this (to reduce clutter in the figure). We want to find a non-stuttering
solution y(n) of (4.7). Since the output symbol is also the input symbol, we are looking
for a non-stuttering input symbol.

Consider the top machine first. Suppose the current state is the initial state, s(n) =
1. There are two outgoing arcs, and for a non-stuttering input symbol, both produce
y(n) = false, so we can conclude that the output symbol of the machine is false. Since
the output symbol is false, then the input symbol is also false, and the non-stuttering
fixed point of (4.7) is unique,

outputA(1, false) = false.

The state transition taken by the reaction goes from state 1 to state 2.

Suppose next that the current state is s(n) = 2. Again, there are two outgoing arcs. Both
arcs produce output symbol true for a non-stuttering input symbol, so we can conclude

4.7. FEEDBACK 129

1 2

{false}/false

{true}/true

{true}/false {false}/true

(a)

(b)

(c)

1 2

{false}/false

{true}/false

{true}/false {false}/true

1 2

{false}/false

{true}/true

{true}/true {false}/false

Figure 4.14: Three examples of feedback composition. Examples (b) and
(c) are ill-formed. Composition (b) has no non-stuttering fixed point in state
2, while composition (c) has two non-stuttering fixed points in either state.

130 CHAPTER 4. COMPOSING STATE MACHINES

1 2

{react}/false

{react}/true

{react,
stutter}

{true,
false}

Figure 4.15: Composite machine for figure 4.14(a).

that the output symbol is true. Since the output symbol is true, then the input symbol
is also true, there is a unique non-stuttering fixed point,

outputA(2, true) = true,

and the state transition taken goes from 2 to 1. Since there is a unique non-stuttering
fixed point in every reachable state, the feedback composition is well-formed.

The composite machine alternates states on each reaction, and produces the output
sequence

(false, true, false, true, false, true, · · ·)
for the input sequence

(react,react,react, · · ·).
The composite machine is shown in figure 4.15.

Now consider the second machine in figure 4.14. If the initial state is 1 the analysis is
the same as above. There is a unique non-stuttering fixed point, the output and input
symbols are both false, and the state transition goes from 1 to 2. But if the initial state is
2 and the unknown input symbol is true, the output symbol is false; and if the unknown
input symbol is false, the output symbol is true. Thus there is no non-stuttering fixed
point y(n) that solves,

outputA(2,y(n)) = y(n).

The feedback composition is not well-formed.

Consider the third machine in figure 4.14. This feedback composition is also ill-formed
but for a different reason. If the initial state is 1 and the unknown input symbol is true,
the output symbol is also true, so true is a fixed point, and the output symbol can be
true. However, the output symbol can also be false, since if it is, then a transition will
be taken that produces the input symbol false. So false is also a fixed point. Thus, the

4.7. FEEDBACK 131

problem here is that there is more than one non-stuttering solution, not that there are
none!

Our conclusion is that with machines like the second and third, you cannot connect
them in a feedback composition as shown. The second is rejected because it has no
solution and the third because it has more than one. We only accept feedback compo-
sitions where there is exactly one non-stuttering solution in each reachable state.

4.7.2 State-determined output

In the first machine of figure 4.14, in each state, all outgoing arcs produce the same output symbol,
independent of the input symbol. In other words, the output symbol y(n) depends only on the state;
in the example, y(n) = false if s(n) = 1, and y(n) = true if s(n) = 2. The unique fixed point of
(4.7) is this output symbol, and we can immediately conclude that the feedback composition is
well-formed.

We say that a machine A has state-determined output if in every reachable state s(n) ∈ StatesA,
there is a unique output symbol y(n) = b (which depends on s(n)) independent of the non-stuttering
input symbol; i.e. for every x(n) 6= absent,

outputA(s(n),x(n)) = b.

In this special case of state-determined output, the composite machine is:

States = StatesA

Inputs = {react,absent}
Outputs = OutputsA
initialState = initialStateA

update(s(n),x(n))=





updateA(s(n),b),
where b is the unique output symbol in state s(n) if x(n) = react

(s(n),x(n)) if x(n) = absent

When a machine with state-determined output is combined with any other state machines in a feed-
back composition, the resulting composition is also well-formed, as illustrated in the next example.

Example 4.6:

In figure 4.16 the machine A is combined with machine B in a feedback composition.
A is the same as the first machine, and B is the same as the second machine in figure
4.14. (The output port of B is drawn on the left and the input port on the right so that
the block diagram looks neater.) A has state-determined output, but B does not. The
composition is well-formed.

To see this, suppose both machines are in their initial states 1. A produces output
symbol false, independent of its input symbol. This output is the input of B which then

132 CHAPTER 4. COMPOSING STATE MACHINES

1 2

{false}/false

{true}/true

{true}/false {false}/true

1 2

{false}/false

{true}/false

{true}/false {false}/true

B

A{react,
absent} {true,

false}

(1,1) (2,2)

{react}/false

{react}/true

{react,
absent}

{true,
false}

(1,2) {react}/false

{react}/true

(2,1)

(a)

(b)

Figure 4.16: Machine A has state-determined output, but B does not. The
feedback composition is well-formed, and the composite machine is shown
on the bottom. Note that state (1,2) is not reachable.

4.7. FEEDBACK 133

produces output symbol false and makes the transition to state 2. The output symbol
false of B is the input to A which makes the transition to its state 2. (A and B make
their state transitions together in our synchronous/reactive model.) We can determine
the output symbol and transition in the same way for all other states. The state diagram
of the composite machine is shown in the figure on the right. Note that state (1,2) is
not reachable from the initial state (1,1), so we could have ignored it in determining
whether the composition is well-formed.

The input alphabet of the composite machine is {react,absent}, taking absent as the
stuttering input symbol. The output alphabet is the same as the output alphabet of A,
{true, false,absent}. The state space is StatesA×StatesB. The update function is given
by the table:

current (next state, output) for input
state react absent
(1,1) ((2,2),false) ((1,1),absent)
(2,2) ((2,1),true) ((2,2), absent)
(1,2) ((1,2),false) ((1,2), absent)
(2,1) ((2,1),true) ((2,1), absent)

It is possible for a machine without state-determined outputs to be placed in a well-formed feedback
composition as illustrated in the next example.

Example 4.7: Consider the example in figure 4.17. For the component machine, the
output alphabet is OutputsA = {true, false,maybe,absent}, and the input alphabet is
InputsA = {true, false,absent}. The stuttering element is absent. The machine does not
have state-determined output because, for instance, the outgoing arcs from state 1 can
produce both maybe and false. Nevertheless, equation (4.7) has a unique non-stuttering
fixed point in each state:

outputA(1, false) = false, and outputA(2, true) = true.

So the feedback composition is well-formed. The composite machine is shown on the
bottom.

It can be considerably harder to find the behavior of a feedback composition without state-determined
outputs, even if the composition is well-formed. Below, in section 4.7.4, we give a constructive pro-
cedure that often works to quickly find a fixed point, and to determine whether it is unique. However,
even that procedure does not always work (and in fact, will fail on example 4.7). If the input al-
phabet is finite, the only strategy that always works is to try all possible output values y(n) is (4.7)
for each reachable state s(n). Before discussing this procedure, we generalize to more interesting
feedback compositions.

134 CHAPTER 4. COMPOSING STATE MACHINES

{react,
absent}

{true,
false}

1 2

{false}/false

{true}/true

{true}/
maybe

{false}/
maybe

1 2

{react}/false

{react}/true

{react,
absent}

{true,
false}

A

(a)

(b)

Figure 4.17: Machine A does not have state-determined outputs, but the
feedback composition is well-formed. The machine on the bottom is the
composite machine.

4.7. FEEDBACK 135

(StatesA, InputsA, OutputsA, updateA, initialStateA)

(States, Inputs, Outputs, update, initialState)
InputsA1 OutputsA1

OutputsA2 ⊂ InputsA2

A

 InputsA2 OutputsA2

Figure 4.18: Feedback composition of a state machine.

4.7.3 Feedback composition with inputs

Now consider the state machine in figure 4.18. It has two input and output ports. The second output
port feeds back to the second input port. We wish to construct a state machine model that hides
the feedback, as suggested by the figure, and becomes a simple input/output state machine. This is
similar to the example in figure 4.12, but now there is an additional input and an additional output.
The procedure for finding the composite machine is similar, but the notation is more cumbersome.
Given the current state and the current external input symbol, we must determine the “unknown”
output symbol.

The inputs and outputs of machine A are in product form:

InputsA = InputsA1× InputsA2,

OutputsA = OutputsA1×OutputsA2.

For the feedback composition to be possible we must have

OutputsA2 ⊂ InputsA1.

The output function of A is

outputA : StatesA× InputsA → OutputsA.

It is convenient to write it in product form as,

outputA = (outputA1,outputA2),

where
outputA1 : StatesA× InputsA → OutputsA1,

gives the output symbol at the first output port and

outputA2 : StatesA× InputsA → OutputsA2,

136 CHAPTER 4. COMPOSING STATE MACHINES

gives the output symbol at the second output port.

Suppose we are given that at the n-th reaction, the current state of A is s(n) and the current exter-
nal input symbol is x1(n) ∈ InputsA1. Then the problem is to find the “unknown” output symbol
(y1(n),y2(n)) ∈ OutputsA such that

outputA(s(n),(x1(n),y2(n))) = (y1(n),y2(n)). (4.8)

The symbol y2(n) appears on both sides because the second input x2(n) to machine A is equal to
y2(n). In terms of the product form, (4.8) is equivalent to two equations:

outputA1(s(n),(x1(n),y2(n))) = y1(n), (4.9)

outputA2(s(n),(x1(n),y2(n))) = y2(n). (4.10)

In these equations, s(n) and x1(n) are known, while y1(n) and y2(n) are unknown. Observe that if
(4.10) has a unique solution y2(n), then the input symbol to A is (x1(n),y2(n)) and the next state
s(n+1) and output symbol y1(n) are determined. So the fixed point equation (4.10) plays the same
role as (4.7).

We say that the composition of figure 4.18 is well-formed if for every reachable state s(n) ∈ StatesA

and for every external input symbol x1(n)∈ InputsA1, there is a unique non-stuttering output symbol
y2(n) ∈ OutputsA2 that solves (4.10). If the composition is well-formed, the composite machine
definition is:

States = StatesA

Inputs = InputsA1
Outputs = OutputsA1
initialState = initialStateA

update(s(n),x(n)) = (nextState(s(n),x(n)),output(s(n),x(n))):
nextState(s(n),x(n)) = nextStateA(s(n),(x(n),y2(n))) and
output(s(n),x(n)) = outputA(s(n),(x(n),y2(n))), where y2(n) is the unique solution of

(4.10).

(The nextState function is defined in section 3.1.1.)

In the following example, we illustrate the procedure for defining the composition machine given a
sets and functions description (3.1) for the component machine A.

Example 4.8: Figure 4.19 shows a feedback composition, where component machine
A has two input ports and one output port,

InputsA = Reals×Reals, OutputsA = Reals,

and states StatesA = Reals. Thus A has infinite input and output alphabets and infinitely
many states. At the n-th reaction, the pair of input values is denoted by (x1(n),x2(n)),
the current state by s(n), the next state by s(n + 1), and the output symbol by y(n). In
terms of these, the update function is given by

(s(n+1),y(n)) = updateA(s(n),(x1(n),x2(n))) = (0.5s(n)+ x1(n)+ x2(n),s(n)).

Equivalently,

4.7. FEEDBACK 137

x
y

A

∀ n ∈ Reals,

s(n+1) = 0.5s(n) + x1(n) + x2(n)

y(n) = s(n)

x
 y∀ n ∈ Reals,

s(n+1) = 1.5s(n) + x(n)

y(n) = s(n)

x1

x2

Figure 4.19: Machine A has two input ports and one output port. The output
port is connected to the second input port. The composition is well-formed.
The composite machine is shown at the bottom.

s(n+1) = nextStateA(s(n),(x1(n),x2(n))) = 0.5s(n)+ x1(n)+ x2(n)
y(n) = outputA(s(n),(x1(n),x2(n))) = s(n)

Thus, the component machine A has state-determined output. The feedback connects
the output port to the second input port, so x2(n) = y(n). Given the current state s(n)
and the external input symbol x(n) at the first input port, (4.10) becomes,

outputA(s(n),(x1(n),x2(n))) = x2(n),

which gives
s(n) = x2(n).

So the composite machine is defined by

Inputs = Reals, Outputs = Reals, States = Reals
update(s(n),x(n)) = (0.5s(n)+ x(n)+ s(n),s(n)) = (1.5s(n)+ x(n),s(n)).

Note that the input to the composite machine is a scalar. The composite machine is
shown in the lower part of the figure.

4.7.4 Constructive procedure for feedback composition

Our examples so far involve one or two state machines and a feedback loop. If any machine in the
loop has state determined output, then finding the fixed point is easy. Most interesting designs are

138 CHAPTER 4. COMPOSING STATE MACHINES

a b

{1}/(1,1)

{1}/(1,0)

{0}/(0,1) {0}/(0,0)

{0, 1, absent}

{0, 1, absent}{react, absent}

A

Figure 4.20: Feedback composition without state-determined output.

more complicated, involving several state machines and several feedback loops, and the loops do
not necessarily include mahcines with state-determined output.

In this section, we describe a constructive procedure for finding the fixed point that often (but not
always) works. It is “constructive” in the sense that it can it be applied mechanically, and will,
in a finite number of steps, either identify a fixed point or give up. The approach is simple. At
each reaction, begin with all unspecified signals having value unknown. Then with what is known
about the input symbols, try each state machine to determine as much as possible about the output
symbols. You can try the state machines in any order. Given what you learn about the output
symbols, then update what you know about the feedback input symbols, and repeat the process,
trying each state machine again. Repeat this process until all signal values are specified, or until you
learn nothing more about the output symbols. We illustrate the procedure in an example involving
only one machine, but keep in mind that the procedure works for any number of machines.

Example 4.9: Figure 4.20 shows a feedback composition without state-determined
output. Nonetheless, our constructive procedure can be used to find a unique fixed
point for each reaction. Suppose that the current state is a, and that the input to the
composition is react. Begin by assuming that the symbol on the feedback connection
is unknown. Try component machine A (this is the only component machine in this
example, but if there were more, we could try them in any order). Examining machine
A, we see that in its current state, a, the output symbol cannot be fully determined.
Thus, this machine does not have state-determined output. However, more careful ex-
amination reveals that in state a, the second element of the output tuple is determined.
That second element has value 1. Fortunately, this changes the value on the feedback
connection from unknown to 1.

Now we repeat the procedure. We choose a state machine to try. Again, there is only
one state machine in this example, so we try A. This time, we know that the input
symbol is 1, so we know that the machine must take the transition from a to b and

4.7. FEEDBACK 139

produce the output tuple (1,1). This results in all symbols being known for the reaction,
so we are done evaluating the reaction.

Now assume the current state is b. Again, the feedback symbol is initially unknown,
but once again, trying A, we see that the second element of the output tuple must be 0.
Thus, we change the feedback symbol from unknown to 0 and try the machine again.
This time, its input is 0, so it must take the self loop back to b and produce the output
tuple (0,0).

Recall that the set Behaviors is the set of all (x,y) such that x is an input sequence and
y is an output sequence. For this machine, ignoring stuttering, the only possible input
sequence is (react,react,react, · · ·). We have just determined that the resulting output
sequence is (1,0,0,0, · · ·). Thus, ignoring stuttering,

Behaviors = {((react,react,react, · · ·),(1,0,0,0, · · ·))}.

Of course, we should take into account stuttering, so this set needs to be augmented
with all (x,y) pairs that look like the one above but have stuttering symbols inserted.

This procedure can be applied in general to any composition of state machines. If the procedure
can be applied successfully (nothing remains unknown) for all reachable states of the composition,
then the composition is well-formed. The following example applies the procedure to a more com-
plicated example.

Example 4.10: We add more detail to the message recorder in figure 4.9. In particular,
as shown in figure 4.21, we wish to model the fact that the message recorder stops
recording when either it detects a dialtone or when a timeout period is reached. This
is modeled by a two-state finite state machine, shown in figure 4.22. Note that this
machine does not have state-determined output. For example, in state idle, the output
could be (absent,start recording) or it could be (absent,absent) when the input is not
the stuttering input.

The MessageRecorder and AnsweringMachine state machines form a feedback loop.
Let us verify that composition is well-formed. First, note that in the idle state of the
MessageRecorder, the upper output symbol is known to be absent (see figure 4.22).
Thus, only in the recording state is there any possibility of a problem that would lead to
the composition being ill-formed. In that state, the output symbol is not known unless
the input symbols are known. However, notice that the recording state is entered only
when a record input symbol is received. In figure 4.6, you can see that the record value
is generated only when entering state record message. But in all arcs emerging from
that state, the lower output symbol of AnsweringMachine will always be absent; the
input symbol does not need to be known to know that. Continuing this reasoning by
considering all possible state transitions from this point, we can convince ourselves that
the feedback loop is well-formed.

The sort of reasoning in this more complicated example is difficult and error-prone for even mod-
erate compositions of state machines. It is best automated. Compilers for synchronous languages

140 CHAPTER 4. COMPOSING STATE MACHINES

telephone
line interface

greeting playback
device

light

play
button

message playback
device

{end greeting}

{ring, offhook}

{end message}

AnsweringMachine

{answer}

{recorded message}

{record}

Playback
{play}

{light on, light off}

{done playing} {play messages}

recording device

MessageRecorder
{dialtone}

{start recording}
{timeout}

Figure 4.21: Answering machine composition with feedback. The absent
elements are not shown (to reduce clutter).

4.7. FEEDBACK 141

idle recording

{(record, absent, absent)}/
(absent, start recording)

{(absent, dialtone, absent), (absent, absent, timeout),
(absent, dialtone, timeout)}/

(end message , absent)

else

else

{record, absent}

{dialtone, absent}

{timeout, absent}

{end message,
absent}

{start recording ,
absent}

Figure 4.22: Message recorder subsystem of the answering system.

do exactly this. Successfully compiling a program involves proving that feedback loops are well-
formed.

4.7.5 Exhaustive search

If a feedback composition has one or more machines with state-determined output, then finding a
unique fixed point is easy. Without such state-determined output, we can apply the procedure in
the previous section. Unfortunately, if the procedure fails, we cannot conclude that the composition
is ill-formed. The procedure fails for example 4.7, shown in figure 4.17, despite the fact that this
example is well-formed. For that example, we can determine the unique fixed point by exhaustive
search. That is, for each reachable state of the composition, and for each possible input to the
composition, we try all possible transitions out of the current states of the component machines.
We reject those that lead to a contradiction. For example, in figure 4.17, assuming the current state
is 1, the output of the component machine cannot be maybe because then the input would have to
be maybe, which would result in the output being absent. If after rejecting all contradictions there
remains exactly one possibility in each reachable state, then the composition is well-formed.

Exhaustive search works in figure 4.17 only because the number of reachable states is finite and
the number of transitions out of each state is finite. If either of these conditions is violated, then
exhaustive search will not work. Thus, there are state machine that when put in a feedback loop are
well-formed, but where there is no constructive procedure for evaluating a reaction (see box on page
142). Even when exhaustive search is theoretically possible, in practice the number of possibilities
that must be tried grows extremely fast.

4.7.6 Nondeterministic machines

Nondeterministic state machines can be composed just as deterministic state machines are com-
posed. In fact, since deterministic state machines are a special case, the two types of state machines
can be mixed in a composition. Compositions without feedback are straightforward, and operate

142 CHAPTER 4. COMPOSING STATE MACHINES

Probing further: Constructive Semantics

The term “semantics” means meaning. We have defined the meaning of composi-
tions of state machines using the notion of synchrony, which makes feedback com-
positions particularly interesting. When we define “well-formed,” we are, in effect,
limiting the compositions that are valid. Compositions that are not well-formed fall
outside our synchronous semantics. They have no meaning.

One way to define the semantics of a composition is to give a procedure for evalu-
ating the composition (the resulting procedure is called an operational semantics).
We have given three successively more difficult procedures for evaluating a reac-
tion of a composition of state machines with feedback. If at least one machine in
each directed loop has state-determined output, then it is easy to evaluate a reaction.
If not, we can apply the constructive procedure of section 4.7.4. However, that pro-
cedure may result in some feedback connections remaining unknown even though
the composition is well-formed. The ultimate procedure is exhaustive search, as
described in section 4.7.5. However, exhaustive search is not always possible, and
even when it is theoretically possible, the number of possibilities to explore may be
so huge that it is not practical. There are state machines that when put in a feedback
loop are well-formed, but where there is no constructive procedure for evaluating a
reaction, and no constructive way to demonstrate that they are well-formed. Thus,
there is no operational semantics for our feedback compositions.

This situation is not uncommon in computing and in mathematics. Kurt Gödel’s
famous incompleteness theorem (1931), for example, states (loosely) that in any
formal logical system, there are statements that are true but not provable. This is
analogous in that we can have feedback compositions that are well-formed, but we
have no procedure that will always work to demonstrate that they are well-formed.
Around the same time, Alan Turing and Alonzo Church demonstrated that there are
functions that cannot be computed by any procedure.

To deal with this issue, Gerard Berry has proposed that synchronous composition
have a constructive semantics, which means precisely that well-formed composi-
tions are defined to be those for which the constructive procedure of section 4.7.4
works. When that procedure fails, we simply declare the composition to be unac-
ceptable. This is pragmatic solution, and in many situations, it is adequate. How-
ever, particularly in the field of feedback control, it proves too restrictive. Most
feedback control systems in practical use would be rejected by this semantics.

See G. Berry, The Constructive Semantics of Pure Esterel, Book Draft,
http://www.esterel-technologies.com/corporate/berry.htm.

4.8. SUMMARY 143

almost exactly as described above (see exercises 14 and 15). Compositions with feedback require a
small modification to our evaluation process.

Recall that to evaluate the reaction of a feedback composition, we begin by setting to unknown any
input symbols that are not initially known. We then proceed through a series of rounds where in
each round, we attempt to determine the output symbols of the state machines in the composition
given what we know about the input symbols. After some number of rounds, no more information
is gained. At this point, if all of the input and output symbols are known, then the composition is
well-formed. This procedure works for most (but not all) well-formed compositions.

This process needs to be modified slightly for nondeterministic machines because in each reaction,
a machine may have several possible output symbols and several possible next states. For each
machine, at each reaction, we define the sets PossibleInputs ⊂ Inputs, PossibleNextStates ⊂ States
and PossibleNextOutputs ⊂ Outputs. If the inputs to a particular machine in the composition are
known completely, then PossibleInputs has exactly one element. If they are completely unknown,
then PossibleInputs is empty.

The rounds proceed in a similar fashion to before. For each state machine in the composition, given
what is known about the input symbols, i.e. given PossibleInputs, determine what you can about the
next state and output symbols. This may result in elements being added to PossibleNextStates and
PossibleNextOutputs. When a round results in no such added elements, the process has converged.
If none of the PossibleInputs or PossibleOutputs sets is empty, then the composition is well-formed.

4.8 Summary

Many systems are designed as state machines. Usually the design is structured by composing com-
ponent state machines. In this chapter, we considered synchronous composition. Feedback com-
position proves particularly subtle because the input symbol of a state machine in a reaction may
depend on its own output symbol in the same reaction. We call a feedback composition well-formed
if every signal has a unique non-stuttering symbol in each reaction. In lab C.4, you contruct a well-
formed feedback composition of state machines.

Describing systems as compositions of state machines helps in many ways. It promotes understand-
ing. The block diagram syntax that describes the structure often shows that individual components
are responsible for distinct functions of the overall system. Some components may already be avail-
able and so we can reuse their designs. The design of the answering machine in figure 4.9 takes into
account the availability of the telephone line interface, recording device, etc. Composition also sim-
plifies description; once we specify the component state machines and the composition, the overall
state machine is automatically defined by the rules of composition. Compilers for synchronous
programming languages and tools for verification do this automatically.

We have three successively more difficult procedures for evaluating a reaction of a composition of
state machines with feedback. If at least one machine in each directed loop has state-determined
output, then it is easy to evaluate a reaction. If not, we can apply the constructive procedure of
section 4.7.4. But that procedure may be inconclusive. The ultimate procedure is exhaustive search,
as described in section 4.7.5. However, exhaustive search is not always possible, and even when it is

144 CHAPTER 4. COMPOSING STATE MACHINES

theoretically possible, the number of possibilities to explore may be so huge that it is not practical.

Exercises

In some of the following exercises you are asked to design state machines that carry out a given
task. The design is simplified and elegant if the state space is properly chosen. Although the state
space is not unique, there often is a natural choice. Each problem is annotated with the letter E,
T, C which stands for exercise, requires some thought, requires some conceptualization. Problems
labeled E are usually mechanical, those labeled T require a plan of attack, those labeled C usually
have more than one defensible answer.

1. E Define the composite state machine in figure 4.7 in terms of the component machines,
as done for the simpler compositions in figures 4.3 and 4.1. Be sure to state any required
assumptions.

2. E Define the composite state machine in figure 4.10 in terms of the component machines,
as done for the simpler compositions in figures 4.3 and 4.1. Be sure to state any required
assumptions. Give the definition in two different ways:

(a) Directly form a product of the three state spaces.

(b) First compose the A and B state machines to get a new D state machine, and then com-
pose D with C.

(c) Comment on the relationship between the models in part (a) and (b).

3. T Consider the state machine UnitDelay studied in part (a) of exercise 5 at the end of the
previous chapter.

(a) Construct a state machine model for a cascade composition of two such machines. Give
the sets and functions model (it is easier than the state transition diagram or table).

(b) Are all of the states in the state space of your model in part (a) reachable? If not, give
an example of an unreachable state.

(c) Give the state space (only) for cascade compositions of three and four unit delays. How
many elements are there in each of these state spaces?

(d) Give an expression for the size of the state space as function of the number N of cascaded
delays in the cascade composition.

4. C Consider the parking meter example of the previous chapter, example 3.1, and the modulo
N counter of exercise 4 at the end of the previous chapter. Use these two machines to model a
citizen that parks at the meter when the machines start, and inserts 25 cents every 30 minutes,
and a police officer who checks the meter every 45 minutes, and issues a ticket if the meter
is expired. For simplicity, assume that the police office issues a new ticket each time he finds
the meter expired, and that the citizen remains parked forever.

You may construct the model at the block diagram level, as in figure 4.9, but describe in words
any changes you need to make to the designs of the previous chapter. Give state transition

4.8. SUMMARY 145

diagrams for any additional state machines you need. How long does it take for the citizen to
get the first parking ticket?

Assume you have an eternal clock that emits an event tick every minute.

Note that the output alphabet of the modulo N counter does not match the input alphabet of the
parking meter. Neither does its input alphabet match the output alphabet of the parking meter.
Thus, one or more intermediate state machines will be needed to translate these alphabets.
You should fully specify these state machines (i.e., don’t just give them at the block diagram
level). Hint: These state machines, which perform an operation called renaming, only need
one state.

5. C Consider a machine with

States = {0,1,2,3},
Inputs = {increment,decrement,reset,absent},

Outputs = {zero,absent},
initialState = 0,

such that increment increases the state by 1 (modulo 4), decrement decreases the state by 1
(modulo 4), reset resets the state to 0, and the output symbol is absent unless the next state is
0, in which case the output symbol is zero. So, for example, if the current state is 3 and the
input is increment, then the new state will be 0 and the output will be zero. If the current state
is 0 and the input is decrement, then the new state will be 3 and the output will be absent.

(a) Give the update function for this machine, and sketch the state transition diagram.

(b) Design a cascade composition of two state machines, each with two states, such that
the composition has the same behaviors as the one above. Give a diagram of the state
machines and their composition, and carefully define all the input and output alphabets.

(c) Give a bisumulation relation between the single machine and the cascade composition.

6. C A road has a pedestrian crossing with a traffic light. The light is normally green for
vehicles, and the pedestrian is told to wait. However, if a pedestrian presses a button, the light
turns yellow for 30 seconds and then red for 30 seconds. When it is red, the pedestrian is told
“cross now.” After the 30 seconds of red, the light turns back to green. If a pedestrian presses
the button again while the light is red, then the red is extended to a full minute.

Construct a composite model for this system that has at least two state machines, TrafficLight
for the traffic light seen by the cars, and WalkLight for the walk light seen by the pedestrians.
The state of machine should represent the state of the lights. For example, TrafficLight should
have at least three states, one for green, one for yellow, and one for red. Each color may,
however, have more than one state associated with it. For example, there may be more than
one state in which the light is red. It is typical in modeling systems for the states of the model
to represent states of the physical system.

Assume you have a timer available such that if you emit an output start timer, then 30 seconds
later an input symbol timeout will appear. It is sufficient to give the state transition graphs for
the machines. State any assumptions you need to make.

146 CHAPTER 4. COMPOSING STATE MACHINES

7. E Suppose you are given two state machines A and B, Suppose the sizes of the input alpha-
bets are iA, iB, respectively, the sizes of the output alphabets are oA,oB respectively, and the
numbers of states are sA,sB, repectively. Give the sizes of the input and output alphabets and
the number of states for the following compositions:

(a) side-by-side,

(b) cascade,

(c) and feedback, where the structure of the feedback follows the pattern in figure 4.16(a).

8. T Example 4.2 shows a state machine in which a state is not reachable from the initial state.
Here is a recursive algorithm to calculate the reachable states for any nondeterministic ma-
chine,

StateMachine = (States, Inputs,Outputs,possibleUpdates, initialState).

Recursively define subsets ReachableStates(n), n = 0,1, · · · of States by:

ReachableStates(0) = {initialState}, and for n≥ 0

ReachableStates(n+1) = {s(n+1) | ∃s(n) ∈ ReachableStates(n),∃x(n) ∈ Inputs,∃y(n) ∈ Outputs

(s(n+1),y(n)) ∈ possibleUpdates(s(n),x(n))}
∪ReachableStates(n).

In words: ReachableStates(n+1) is the set of states that can be reached from ReachableStates(n)
in one step using any input symbol, together with ReachableStates(n).

(a) Show that for all n, ReachableStates(n)⊂ ReachableStates(n+1).

(b) Show that ReachableStates(n) is the set of states that can be reached in n or fewer steps,
starting in initialState. Now show that if for some n,

ReachableStates(n) = ReachableStates(n+1), (4.11)

then ReachableStates(n) = ReachableStates(n+ k) for all k ≥ 0.

(c) Suppose (4.11) holds for n = N. Show that ReachableStates(N) is the set of all reachable
states, i.e. this set comprises all the states that can be reached using any input sequence
starting in initialState.

(d) Suppose there are N states. Show that (4.11) holds for n = N.

(e) Compute ReachableStates(n) for all n for the machine in figure 4.4.

(f) Suppose States is infinite. Show that the set of reachable states is given by

∪∞
n=0ReachableStates(n).

9. T The algorithm in Exercise 8 has a fixed point interpretation. For a nondeterministic state
machine,

StateMachine = (States, Inputs,Outputs,possibleUpdates, initialState),

4.8. SUMMARY 147

define the function nextStep : P(States)→ P(States) that maps subsets of States into subsets
of States (recall that P(A) is the power set of A) as follows: for any S(n)⊂ States

nextStep(S(n)) = {s(n+1) | ∃s(n) ∈ S(n),∃x(n) ∈ Inputs,∃y(n) ∈ Outputs,

(s(n+1),y(n)) ∈ possibleUpdates(s(n),x(n))}∪S(n).

By definition, a fixed point of nextStep is any subset S⊂ States such that nextStep(S) = S.

(a) Show that /0 and States are both fixed points of nextState.

(b) Let ReachableStates be the set of all states that can be reached starting in initialState.
Show that ReachableStates is also a fixed point.

(c) Show that ReachableStates is the least fixed point of nextStep containing initialState.

10. C Recall the playback machine of figure 4.8 and the CodeRecognizer machine of Figure
3.4. Enclose CodeRecognizer in a block and compose it with the playback machine so that
someone can play back the recorded messages only if she correctly enters the code 1100. You
will need to modify the playback machine appropriately.

11. E Consider the following state machine in a feedback composition, where the input and output
alphabets for the state machine is {1,2,3,absent}:

1 2

{2}/2

{3}/3

{1,3}/2 {1,2}/3

3{1}/1

{2,3}/1

Is it well-formed? If so, then find the output symbols for the first 10 reactions.

12. E In this problem, we will explore the fact that a carefully defined delay in a feedback com-
position always makes the composition well-formed.

(a) For an input and output alphabet

Inputs = Outputs = {true, false,absent}

148 CHAPTER 4. COMPOSING STATE MACHINES

design a state machine that outputs false on the first reaction, and then in subsequent
reactions, outputs the value observed at the input in the previous reaction. This is similar
to UnitDelay of problem 5 at the end of chapter 3, with the only difference being that it
outputs an initial false instead of absent.

(b) Compose the machine in figure 4.14 (b) with the delay from part (a) of this problem in a
feedback loop (as in figure 4.16). Give an argument that the composition is well-formed.
Then do the same for figure 4.14 (c) instead of (b).

13. C Construct a feedback state machine with the structure of figure 4.12 that outputs the peri-
odic sequence a,b,c,a,b,c · · · (with, as usual, any number of intervening stuttering outputs
between the non-stuttering outputs).

14. E Modify figure 4.1 as necessary so that the machines in the side-by-side composition are
both nondeterministic.

15. E Modify figure 4.3 as necessary so that the machines in the cascade composition are both
nondeterministic.

16. C,T Data packets are to be reliably exchanged between two computers over communication
links that may lose packets. The following protocol has been suggested. Suppose computer
A is sending and B is receiving. Then A sends a packet and starts a timer. If B receives the
packet it sends back an acknowledgment. (The packet or the acknowledgment or both may
be lost.) If A does not receive the acknowledgment before the timer expires, it retransmits the
packet. If the acknowledgment arrives before the timer expires, A sends the next packet.

(a) Construct two state machines, one for A and one for B, that implement the protocol.
(b) Construct a two-state nondeterministic machine to model the link from A to B, and

another copy to model the link from B to A. Remember that the link may correctly
deliver a packet, or it may lose it.

(c) Compose the four machines to model the entire system.
(d) Suppose the link correctly delivers a packet, but after a delay that exceeds the timer

setting. What will happen?

17. T Consider the following three state machines:

a b

{1}/0 {1}/0{0}/ 0

{0}/1

machine A

c d

{1, 0}/1 {0}/0

{1}/0

e

{1}/0

machine B

4.8. SUMMARY 149

machine A machine B

machine C

Machines A and B have input and output alphabets

Inputs = Outputs = {0,1,absent}.

Machine C has the same output alphabet, but input alphabet InputsC = {react,absent}.

(a) Which of these machines is deterministic?

(b) Draw the state transition diagram for the composition (machine C), showing only states
that are reachable from the initial state.

(c) Give the BehaviorsC relation for the composition of machine C, ignoring stuttering.

18. T The feedback composition in figure 4.14(c) is ill-formed because it has two non-stuttering
fixed points in each of the two states of the component machine. Instead of declaring it to be
ill-formed, we could have interpreted the composition as representing a nondeterministic state
machine. That is, in each state, we accept either of the two possible fixed points as possible
reactions of the machine. Using this interpretation, give the nondeterministic machine for the
feedback composition by giving its sets and functions model and a state transition diagram.

