Riconoscimento e recupero dell'informazione per bioinformatica

Teoria della decisione di Bayes

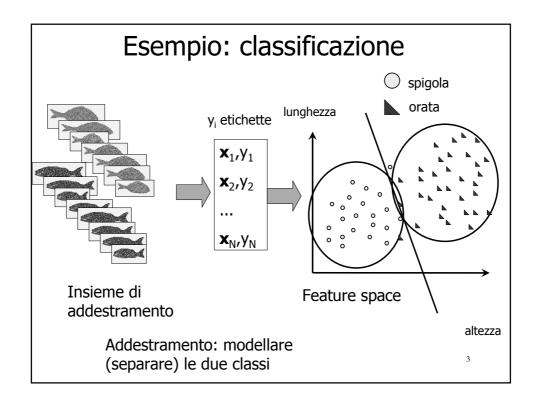
Manuele Bicego

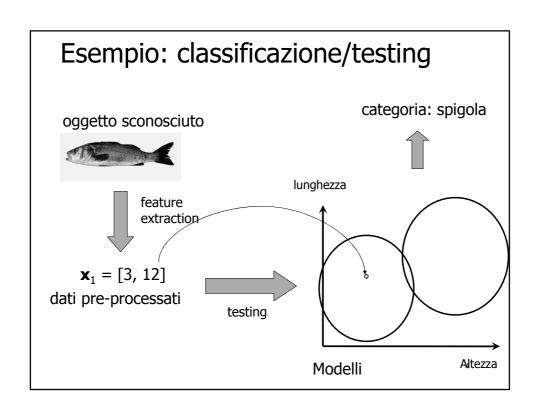
Corso di Laurea in Bioinformatica

Dipartimento di Informatica - Università di Verona

Sommario

- ⇒ Sistema di classificazione
- ⇒ La teoria della decisione di Bayes
 - ⇒ versione base
 - ⇒ estensioni
- ⇒ Rischio condizionale
- ⇒ Classificatori, funzioni discriminanti
- ⇒ Funzioni discriminanti nel caso gaussiano





Sistema di classificazione

- ⇒ Il fuoco è sul sistema di decisione:
 - ⇒ un sistema che ci permette di dire, dato un oggetto in ingresso, a quale classe l'oggetto appartiene
 - ⇒ un sistema che "classifica" l'oggetto: un classificatore
- ⇒ Dato un oggetto x, un classificatore è una funzione f che ritorna un valore y discreto (una delle possibili categorie/classi)

$$y = f(x)$$

⇒ Differente dalla regressione (y continuo)

.

Sistema di classificazione

- ⇒ Goal: stimare la funzione f
- ⇒ Requisito: si vuole trovare una funzione f che "sbagli" il meno possibile (ridurre gli errori che può fare un sistema di decisione)
 - ⇒ nel senso dell'errore di generalizzazione
- ⇒ Errore: un oggetto appartiene alla classe 1 e viene classificato come appartenente alla classe 2

Sistema di classificazione

- ⇒ Concetto di "costo della decisione"
 - ⇒ quanto costa prendere una decisione sbagliata
- ⇒ Esempio:
 - ⇒ oggetto: immagine di un bosco
 - ⇒ sistema di decisione: deve classificare l'immagine in due classi:
 - 1. "c'è un incendio"
 - 2. "non c'è un incendio"
- ⇒ Costo della decisione: è diverso rilevare un incendio che non c'è o non rilevare un incendio che c'è?

,

Sistema di classificazione

- ⇒ Più in generale, il sistema di decisione non solo determina la classe (categoria) dell'oggetto in questione ma permette anche di effettuare un'azione sulla base di tale classe
- ⇒ Esempio di prima:
 - ⇒ Azione: nel caso l'oggetto appartenga alla classe 1 ("incendio") viene effettuata la chiamata alle guardie forestali

Sistema di classificazione

- ⇒ Teorie della decisione: come costruire il classificatore
- ⇒ Ce ne sono diverse, caratterizzate da:
 - ⇒ come vengono espresse/caratterizzate le entità in gioco
 - ⇒ come viene determinata la regola di decisione
 - ⇒ come possono essere interpretate le soluzioni
- ⇒ Esempi:
 - ⇒ Teoria di Bayes: approccio probabilistico
 - ⇒ Statistical Learning Theory: approccio geometrico
- ⇒ Non c'è una chiara separazione tra le teorie

9

Teoria della decisione di Bayes

La teoria della decisione di Bayes

Rev. Thomas Bayes, F.R.S (1702-1761)

11

Introduzione

- ⇒ Approccio statistico fondamentale di classificazione di pattern
- ⇒ Ipotesi:
 - ⇒ Il problema di decisione è posto in termini probabilistici;
 - ⇒ Tutte le probabilità rilevanti sono conosciute;
- ⇒ Goal:
 - ⇒ Discriminare tra le diverse classi (determinare le regole di decisione) usando le probabilità ed i costi ad esse associati;

Scenario

- ⇒ Sia ω lo stato di natura da descrivere probabilisticamente;
 - ⇒ stato di natura = stato del sistema, classe, categoria,...
- ⇒ ω rappresenta le varie classi
 - ⇒ Problema a due classi: ω può essere ω1 o ω2
- ⇒ Devo inferire la regola di classificazione (o regola di decisione).
 - ⇒ Dato un oggetto **x**, **ω1** oppure **ω2**?
- ⇒ Quantità che si possono utilizzare:
 - ⇒ Probabilità a priori
 - ⇒ Probabilità condizionale (o likelihood)
 - ⇒ Probabilità a posteriori (regola di Bayes)

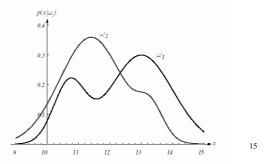
13

Probabilità a priori

- ⇒ Probabilità a priori:
 - probabilità P(ω): rappresenta la probabilità dello stato nota a priori (senza aver osservato nulla del sistema)
 - ⇒ Esempio: due classi ω1 and ω2 per cui sono note
 - $\Rightarrow P(\omega = \omega 1) = 0.7$
 - $\Rightarrow P(\omega = \omega 2) = 0.3$
- ⇒ Regola di decisione:
 - ⇒ Decidi $\omega 1$ se P($\omega 1$) > P($\omega 2$); altrimenti decidi $\omega 2$
- ⇒ Ovviamente è un sistema limitato:
 - ⇒ Più che decidere, indovino lo stato di natura.

Probabilità condizionale

- ⇒ sia x una misurazione del sistema
 - ⇒ x è una variabile aleatoria dipendente da ωj
- \Rightarrow La probabilità condizionale (o likelihood) è definita come $P(x|\omega j)$
 - misura la probabilità di avere la misurazione x sapendo che lo stato di natura è ωj



Probabilità condizionale

- ⇒ Osservazione: fissata la misurazione x, più è alta p(x|ωj) più
 è probabile che ωj sia lo stato giusto
- ⇒ Regola di decisione (maximum likelihood)
 - \Rightarrow dato x, decidi $\omega 1$ se $p(x|\omega 1) > p(x|\omega 2)$, $\omega 2$ altrimenti
- ➡ Migliore della regola precedente, ma non tiene conto dell'eventuale conoscenza a priori

Esempio

- ⇒ Discriminare tra calciatore professionista / non calciatore professionista
- ⇒ osservazione x = "stipendio"
- ⇒ Problema: dato uno stipendio x, si deve decidere se è un calciatore o no
- ⇒ Approccio 1: Prob. a priori
 - ⇒ La conoscenza a priori che si ha sul problema dice che la probabilità che una persona sia un calciatore professionista è molto bassa (1%)
 - \Rightarrow P($\omega = \omega 1$) = 0.01, P($\omega = \omega 2$) = 0.99
 - Data una persona, e dato il suo stipendio x, si classifica sempre come ω1
 - ⇒ Approccio chiaramente limitato

17

Esempio

- ⇒ Approccio 2: maximum likelihood
 - \Rightarrow si conosce lo stipendio x. Si sa che un calciatore professionista ha uno stipendio x molto elevato. Si può modellare la probabilità condizionale $p(x|\omega 1)$ e $p(x|\omega 2)$
 - \Rightarrow Data una persona, e dato il suo stipendio x, si decide la classe guardando il massimo tra $p(x|\omega 1)$ e $p(x|\omega 2)$
 - ⇒ probabilmente, se uno ha uno stipendio alto viene classificato come calciatore
 - ⇒ Approccio limitato perché non tiene conto del fatto che pochissime persone sono calciatori professionisti

⇒ SOLUZIONE:

⇒ Regola di Bayes: mette assieme probabilità a priori e probabilità condizionale

La regola di Bayes

⇒ (alla lavagna)

19

Regola di Bayes

Ricapitolando:

$$P(\omega_j \mid x) = \frac{p(x \mid \omega_j)P(\omega_j)}{p(x)} \iff posterior = \frac{likelihood \times prior}{evidence}$$

Regola di decisione di Bayes:

- \Rightarrow dato x, decidi $\omega 1$ se p($\omega 1|x$) > p($\omega 2|x$), $\omega 2$ altrimenti
- ⇒ La regola di decisione di Bayes minimizza la probabilità di errore!

Regola di Bayes

- ⇒ Regola di decisione equivalente:
 - ⇒ La forma della regola di decisione evidenzia l'importanza della probabilità a posteriori, e sottolinea l'ininfluenza dell'evidenza, un fattore di scala che mostra quanto frequentemente si osserva un pattern x; eliminandola, si ottiene la equivalente regola di decisione:
 - \Rightarrow Decidi ω1 se p(x|ω1)P(ω1) > p(x|ω1)P(ω1), ω1 altrimenti

Problema principale: le probabilità non sono note, ma occorre stimarle dal training set

2

Stima delle probabilità

- ⇒ Stime parametrica: si conosce la forma della pdf, se ne vogliono stimare i parametri
 - ⇒ esempio gaussiana, stimo la media
- ⇒ Stime non parametriche: non si assume nota la forma, la pdf è stimata direttamente dai dati
 - ⇒ esempio istogramma
- ⇒ Stime semi-parametriche: ibrido tra le due i parametri possono cambiare la forma della funzione
 - ⇒ esempio Neural Networks

Estensione della teoria di decisione di Bayes

Estensione della teoria di decisione di Bayes

È possibile estendere l'approccio Bayesiano utilizzando:

- ⇒ Più di un tipo di osservazioni o feature x , p.e., peso, altezza, ...
 - \Rightarrow x diventa $\mathbf{x} = \{x_1, x_2, ..., x_d\}$ con R^d spazio delle features
- ⇒ Più di due stati di natura (classi o categorie)
 ⇒ ω1, ω2 diventano {ω1, ω2,..., ωc}
- ⇒ Azioni diverse (associate alla scelta delle classi) ⇒ $\{\alpha_1, ..., \alpha_a\}$ (azioni, ad esempio il rigetto di classificazione)
- \Rightarrow Una **funzione di costo** più generale della probabilità di errore, ossia una funzione $\lambda(\alpha_i|\omega j)$ che descrive il costo (o la perdita) dell'intraprendere l'azione α_i quando la classe è ωj

Estensione della teoria di decisione di Bayes

⇒ Le estensioni mostrate non cambiano la forma della probabilità a posteriori, che rimane:

$$P(\boldsymbol{\omega}_{j} \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid \boldsymbol{\omega}_{j})P(\boldsymbol{\omega}_{j})}{p(\mathbf{x})}, \mathbf{x} = \{x_{1}, x_{2}, ..., x_{d}\}, \mathbf{x} \in \mathbb{R}^{d}$$

 \Rightarrow Supponiamo di osservare un particolare **x**, e decidiamo di effettuare l'azione α_i : per definizione, saremo soggetti alla perdita $\lambda(\alpha_i|\omega j)$. Poiché ωj non si conosce, la perdita attesa (o *rischio*) *associata a questa decisione* sarà:

$$R(\alpha_i \mid \mathbf{x}) = \sum_{j=1}^{c} \lambda(\alpha_i \mid \omega_j) P(\omega_j \mid \mathbf{x})$$

Estensione della teoria di decisione di Bayes

 \Rightarrow In questo caso la teoria di decisione di Bayes indica di effettuare l'azione che minimizza il rischio condizionale ossia, formalmente, una *funzione di decisione* $\alpha(\mathbf{x})$:

$$\alpha(\mathbf{x}) \rightarrow \alpha_i, \alpha_i \in \{\alpha_1, \alpha_2, ..., \alpha_a\}$$

 \Rightarrow tale che R($\alpha_i | \mathbf{x}$) sia minimo

26

Estensione della teoria di decisione di Bayes

Per valutare una simile funzione si introduce il *Rischio complessivo*, ossia *la perdita attesa data una regola di decisione*; dato che R(α_i|**x**) è il rischio condizionale associato all'azione e visto che la regola di decisione specifica l'azione, il rischio complessivo risulta

$$R = \int R(\alpha(\mathbf{x}) \mid \mathbf{x}) p(\mathbf{x}) d\mathbf{x}$$

 \Rightarrow Chiaramente, se $\alpha(\mathbf{x})$ viene scelto in modo che $R(\alpha_i|\mathbf{x})$ sia il minore possibile per ogni \mathbf{x} , il rischio complessivo viene minimizzato.

27

Estensione della teoria di decisione di Bayes

⇒ Quindi, la regola di decisione di Bayes estesa è

1. Calcola
$$R(\alpha_i | \mathbf{x}) = \sum_{j=1}^{c} \lambda(\alpha_i | \omega_j) P(\omega_j | \mathbf{x})$$

2. Scegli l'azione
$$i^* = \min_i R(\alpha_i \mid \mathbf{x})$$

➡ Il risultante rischio complessivo minimo prende il nome di Rischio di Bayes R* ed è la migliore performance che può essere raggiunta.

Caso 2 categorie

- ⇒ regola che minimizza il rischio nel caso di due classi
- ⇒ (alla lavagna)

29

Caso 2 categorie

- ⇒ Ricapitolando: tre forme
 - \Rightarrow Posterior

1.
$$(\lambda_{21} - \lambda_{11}) P(\omega_1 \mid \mathbf{x}) > (\lambda_{12} - \lambda_{22}) P(\omega_2 \mid \mathbf{x}).$$

⇒ Likelihood e prior

2.
$$(\lambda_{21} - \lambda_{11}) p(\mathbf{x} \mid \omega_1) P(\omega_1) > (\lambda_{12} - \lambda_{22}) p(\mathbf{x} \mid \omega_2) P(\omega_2)$$
.

⇒ Likelihood ratio

3.
$$\frac{p(\mathbf{x} \mid \boldsymbol{\omega}_1)}{p(\mathbf{x} \mid \boldsymbol{\omega}_2)} > \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \frac{P(\boldsymbol{\omega}_2)}{P(\boldsymbol{\omega}_1)}$$

Chiusura del cerchio

- ⇒ Tornando ai problemi di classificazione
 - ⇒ le azioni αi rappresentano la decisione "lo stato giusto è ωj"
- ⇒ In questo caso la funzione di perdita è chiamata "perdita 0-1"

 $\lambda(\alpha_i \mid \omega_j) = \begin{cases} 0 & \text{se } i = j \\ 1 & \text{se } i \neq j \end{cases}$

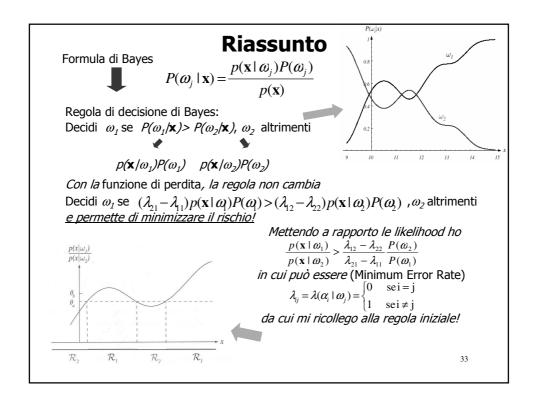
⇒ Rischio corrispondente:

$$R(\alpha_i \mid \mathbf{x}) = \sum_{j=1}^{c} \lambda(\alpha_i \mid \omega_j) P(\omega_j \mid \mathbf{x}) =$$
$$= \sum_{j \neq i}^{c} P(\omega_j \mid \mathbf{x}) = 1 - P(\omega_i \mid \mathbf{x})$$

3

Chiusura del cerchio

- ⇒ 1-P(wj|x) rappresenta la probabilità di errore
- ⇒ Minimizzando il Rischio, si minimizza la probabilità di errore
- ⇒ Minimizzare 1-P(ωj|x) per ogni x implica scegliere la j che massimizzi P(ωj|x)
- ⇒ Si torna alla regola di Bayes (che in questo caso si chiama "Classificazione Minimum Error Rate")



Classificatori, funzioni discriminanti e superfici di separazione

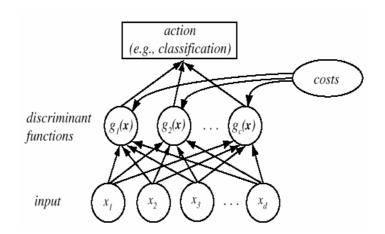
Classificatori, funzioni discriminanti e superfici di separazione

- \Rightarrow Uno dei vari metodi per rappresentare classificatori di pattern consiste in un set di **funzioni discriminanti** $g_i(\mathbf{x})$, i=1...c
- \Rightarrow Il classificatore assegna il vettore di feature ${\bf x}$ alla classe ω_i se

$$g_i(\mathbf{x}) > g_j(\mathbf{x})$$
 per ogni $j \neq i$

- ⇒ Un classificatore di Bayes si presta facilmente a questa rappresentazione:
 - \Rightarrow Rischio generico $g_i(\mathbf{x}) = -R(\alpha_i \mid \mathbf{x})$
 - \Rightarrow Minimum Error Rate $g_i(\mathbf{x}) = P(\omega_i \mid \mathbf{x})$

⇒ Un tale classificatore può essere considerato come una rete che calcola c funzioni discriminanti e sceglie la funzione che discrimina maggiormente



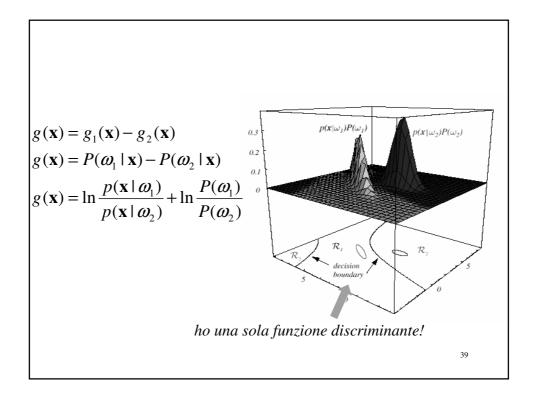
- ⇒ Esistono molte funzioni discriminanti <u>equivalenti</u>. Per esempio, tutte quelle per cui i risultati di classificazione sono gli stessi
- \Rightarrow Per esempio, se f è una funzione monotona crescente, allora

$$g_i(\mathbf{x}) \Leftrightarrow f(g_i(\mathbf{x}))$$

- ⇒ Alcune forme di funzioni discriminanti sono più semplici da capire o da calcolare
 - ⇒ quindi utilizziamo quelle
- ⇒ Esempio: minimum error rate

$$g_i(\mathbf{x}) = P(\omega_i | \mathbf{x}) = \frac{p(\mathbf{x} | \omega_i) P(\omega_i)}{\sum_{j=1}^{c} p(\mathbf{x} | \omega_j) P(\omega_j)}$$
$$g_i(\mathbf{x}) = p(\mathbf{x} | \omega_i) P(\omega_i)$$
$$g_i(\mathbf{x}) = \ln p(\mathbf{x} | \omega_i) + \ln P(\omega_i),$$

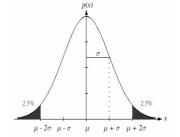
- ⇒ L'effetto di ogni decisione è quello di dividere lo spazio delle features in c superfici di separazione o decisione, R₁, ..., R_c
- ⇒ Le regioni sono separate con *confini di decisione*, linee descritte dalle massime funzioni discriminanti.
- ⇒ Nel caso a *due* categorie ho due funzioni discriminanti, g1,g2 per cui assegno x a ω 1 se g1 > g2 o g1-g2>0



La distribuzione normale Le funzioni discriminanti per la distribuzione normale

La densità normale

- ⇒ Una delle più importanti densità è la densità normale o Gaussiana multivariata; infatti:
 - ⇒ è analiticamente trattabile;
 - ⇒ più importante, fornisce la migliore modellazione di problemi sia teorici che pratici
 - ⇒ il teorema del Limite Centrale asserisce che "sotto varie condizioni, la distribuzione della somma di d variabili aleatorie indipendenti tende ad un limite particolare conosciuto come distribuzione normale".

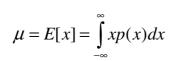


41

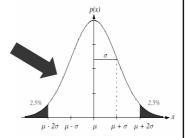
La densità normale univariata

- \Rightarrow Completamente specificata da due parametri, media μ e varianza σ^2 ,
- \Rightarrow si indica con N(µ, $\sigma^2)$ e si presenta nella forma

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^{2}\right\}$$



$$\sigma^2 = E[(x - \mu)^2] = \int_{-\infty}^{\infty} (x - \mu)^2 p(x) dx$$

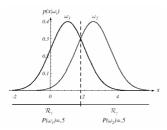


Densità normale multivariata

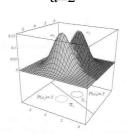
⇒ La generica densità normale multivariata a d dimensioni si presenta nella forma

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$

d=1



d=2



43

Densità normale multivariata

Parametri della densità:

 μ = vettore di *media* a *d* componenti

 Σ = matrice $d \times d \text{ di } covarianza$, dove

 $|\Sigma|$ = determinante della matrice

 Σ^{-1} = matrice inversa

$$\Sigma = E[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^t] = \int (\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^t p(\mathbf{x}) d\mathbf{x}$$
$$\sigma_{ij} = E[(x_i - \mu_i)(x_j - \mu_j)]$$

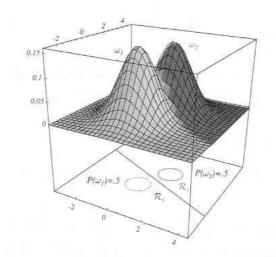
Densità normale multivariata

- ⇒ Caratteristiche della matrice di covarianza
 - ⇒Simmetrica
 - \Rightarrow Semidefinita positiva ($|\Sigma| \ge 0$)
 - $\Rightarrow \sigma_{ii}$ = varianza di x_i (= σ_i^2)
 - $\Rightarrow \sigma_{ij}$ = covarianza tra x_i e x_j
- \Rightarrow se x_i e x_j sono **statisticamente indipendenti**
 - $\Rightarrow \sigma_{ij} = 0$
 - \Rightarrow $p(\mathbf{x})$ è il prodotto della densità univariata per \mathbf{x} componente per componente.

45

Densità normale multivariata

⇒ Forma della matrice di covarianza (alla lavagna)



Funzioni discriminanti per la normale

- ⇒ Si assuma che le classi siano modellate da distribuzioni normali (stima parametrica delle pdf)
- ⇒ Vediamo la forma della funzione discriminante nel caso di Minimum Error Rate (formula con la likelihood e prior e il logaritmo)

$$g_i(\mathbf{x}) = \ln p(\mathbf{x} \mid \omega_i) + \ln P(\omega_i)$$

47

Funzioni discriminanti per la normale

- ⇒ Alla lavagna:
 - ⇒ caso generale
 - ⇒ casi semplificati

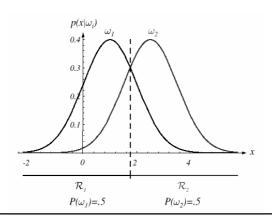
Funzioni discriminanti per la normale

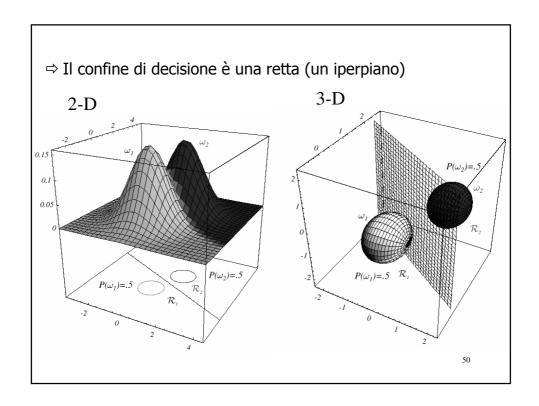
Ricapitolando:

$$\Rightarrow \Sigma_i = \sigma^2$$

$$\Rightarrow \Sigma_{\mathbf{i}} = \sigma^{2} \mathbf{I}$$

$$g_{i}(\mathbf{x}) = -\frac{\|\mathbf{x} - \boldsymbol{\mu}_{i}\|^{2}}{2\sigma^{2}} + \ln P(\boldsymbol{\omega}_{i})$$





$$\Rightarrow \Sigma_{\mathbf{i}} = \Sigma$$

$$g_{i}(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_{i})^{t} \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu}_{i}) + \ln P(\boldsymbol{\omega}_{i})$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=$$

