Systems Design Laboratory

Eclipse Supervisory Control Engineering Toolkit (ESCET)

Matteo Zavatteri

IDepartment of Mathematics, University of Padova, ITALY

2Department of Computer Science, University of Verona, ITALY

Motivation for Model-Based Systems Engineering

& =l

In the development of systems and supervisory controllers:

¢ the use of (formal) models and methods for controller design allows for the
validation and verification of controllers before they are actually
implemented and integrated into the system.

e the approach of early validation and verification have been shown to lead
to fewer defects and reduced costs.

As a result, more and more companies have been increasingly adopting the

Model-Based Systems Engineering (MBSE) paradigm. 1

Eclipse Supervisory Control Engineering Toolkit

Eclipse ESCET™ /Project ¥ Home About Download D ion D @

Eclipse ESCET™

The Eclipse ESCET project provides a model-based
approach and toolkit for the development of supervisory
controllers.

Learn more

The Eclipse Supervisory Control Engineering Toolkit (Eclipse ESCET™) project is
an Eclipse Foundation open-source project that provides a toolkit for the
development of supervisory controllers in the Model-Based Systems Engineering
(MBSE) paradigm.

e The use of (formal) models for controller design allows for the validation
and verification of controllers before they are actually implemented and
integrated into the system.

e Early validation and verification have been shown to lead to fewer defects
and reduced costs.

https://www.eclipse.org/escet/ 2

https://www.eclipse.org/escet/

Model-Based Systems Engineering

Eclipse ESCET™ /Project ¥ Home About Download D ion D @ t

Eclipse ESCET™

The Eclipse ESCET project provides a model-based
approach and toolkit for the development of supervisory
controllers.

Learn more

e The toolkit has a strong focus on model-based design, supervisory
controller synthesis, and industrial applicability, for example to
cyber-physical systems.

e The toolkit supports the entire development process of (supervisory)
controllers, from modeling, supervisory controller synthesis,
simulation-based validation and visualization, and formal verification, to
real-time testing and implementation.

Eclipse Supervisory Control Engineering Toolkit (ESCET)

Eclipse ESCET™ /Project ¥ Home About Download D ion D @

Eclipse ESCET™

The Eclipse ESCET project provides a model-based
approach and toolkit for the development of supervisory
controllers.

Learn more

The Eclipse Supervisory Control Engineering Toolkit (ESCET) was developed
approximately over a period of approximately two decades (starting from the
early 2000s) at the Eindhoven University of Technology (TU/e) in cooperation

with many European and national projects.

Eclipse Supervisory Control Engineering Toolkit (ESCET)

Eclipse ESCET™ /Project ¥ Home About Download D ion D @

Eclipse ESCET™

The Eclipse ESCET project provides a model-based
approach and toolkit for the development of supervisory
controllers.

Learn more

In 2021, Eclipse ESCET became an independent Eclipse Foundation open source

project, and is no longer formally associated with the TU/e.

Eclipse Supervisory Control Engineering Toolkit (ESCET)

Eclipse ESCET™ /Project ¥ Home About Download

Eclipse ESCET™

The Eclipse ESCET project provides a model-based
approach and toolkit for the development of supervisory
controllers.

Learn more

Languages and tools

¥ CIF ¥ Chi ¥ ToolDef
CIF is amodeling language and Chiis a modeling language and ToolDef is a cross-platform and
extensive toolset supporting the toolset to analyze the machine-independent scripting
entire development process of performance of supervisory language to automate CIF and
supervisory controllers. controllers. Chitools.

Learn more Learn more Learn more

Eclipse ESCET is based on CIF: the Compositional Interchange Format for hybrid
systems. CIF is an automata-based modeling language for the specification of

discrete event, timed, and hybrid systems.

Eclipse Supervisory Control Engineering Toolkit (ESCET)

Eclipse ESCET™ /Project ¥ Home About Download D ion D C

Eclipse ESCET™

The Eclipse ESCET project provides a model-based
approach and toolkit for the development of supervisory
controllers.

Learn more

Modeling of hybrid systems e Controller synthesis for (extended)

Graphical user interface finite state automata

e PLC code generation

e Simulation
e Employed in many real-world case
studies

o Finite state automata operations

Eindhoven University of Technology (TU/e) - 4TCO00 course

4TC00 Home
» 4TC00 Model-based systems engineering

4TCO00 Model-based systems engineering

Doibe

4TC00 Model-based systems engineering is third year bachelor course given by the Control Systems Technology Group of

the Mechanical Technology’
process of » a
time testing on 3D digital The video at the top of . 2.5 minute

overview of the course.

This website interested i part of the. Juc

as'”. This part Je only to students from the Eindhoven

u of Technology who are offcally taking ti

web page, it page”, ort
hich refreshes al your webpages). When in doubt, you can ind the date of each page at the bottom.

STUDY GUIDE > MODULES -

| SCHEDULE >

Employed in the course 4TC00 Model-Based Systems Engineering (bachelor
degree, 3rd year) Eindhoven University of Technology (TU/e).

https://cstweb.wtb.tue.nl/4tc00/index.html 8

https://cstweb.wtb.tue.nl/4tc00/index.html

Eindhoven University of Technology (TU/e) - 4TCO00 course

ffmg , 4TCO0 Model-based systems engineering SUBSCRIBE
& T

HoME viDEos. PLAVLISTS CHANNELS asout

4ca
4TCO0 Modebased systems engine.. @ +

Check out the youtube channel for videos, examples, and more.

https://www.youtube.com/channel/UC11krIkRkgtbYDul9BwI_Bw

https://www.youtube.com/channel/UC1lkrIkRkgtbYDul9BwI_Bw

Compositional Interchange Format (CIF)

Eclipse ESCET™ /CIF ~ Home About Download Documentation Development Contact/Support

CIF

CIF is a declarative modeling language for the specification of discrete event, timed, and
hybrid systems as a collection of synchronizing automata.

The CIF tooling supports the entire development process of controllers, including among
others

y synthesis, dati
visualization, verification, real-time testing, and code generation.

Leam more

Features

Powerful language ¥ Extensive tools 2 World-class algorithms

CIF features a powerful declarative

The CIF tooling supports the er

The CIF toolset features world-class
of controlers, algorithms for synthesis of supervisory

g 2 controllers. Focus on the 'what' rather
than the 'how'!

language for

timed and hybrid systems.

https://www.eclipse.org/escet/cif/

10

https://www.eclipse.org/escet/cif/

CIF - Language

Eclipse ESCET™ /CIF ¥ Home About Download Documentation Development Contact/Support

Version: v0.4

About CIF

CIF is a rich state machine language with the following main features:

e Modular specification with synchronized events and communication
between automata

¢ Many data types are available (booleans, integers, reals, tuples, lists,
arrays, sets, and dictionaries), combined with a powerful expression
language for compact variable updates.

e Text-based specification of the automata, with many features to simplify
modeling large non-trivial industrial systems.

e Primitives for supervisory controller synthesis are integrated in the
language.

11

CIF - Tools

Eclipse ESCET™ /CIF ¥ Home About Download Documentation Develoj Contact/Support

Version: v0.4

About CIF

The CIF tooling supports the entire development process of controllers, including
among others specification, supervisory controller synthesis, simulation-based
validation and visualization, verification, real-time testing, and code generation.

Highlights of the CIF tooling include:

e Text-based editor that allows to easily specify and edit models.

e Feature-rich powerful event-based and data-based supervisory controller
synthesis tool.

e A simulator that supports both interactive and automated validation of
specifications. Powerful visualization features allow for interactive
visualization-based validation.

e Conversion to other formal verification tools such as mCRL2 and UPPAAL.

¢ Implementation language code generation (PLC languages, Java, C, and 12
Simulink) for real-time testing and implementation of controllers.

CIF - Supervisory controller synthesis

Eclipse ESCET™ /CIF ¥ Home About Download Documentation Development Contact/Support

Version: v0.4

About CIF

Supervisory controller synthesis is a key feature of CIF.

e It involves the automatic generation of supervisory controllers from a
specification of the uncontrolled system and the (safety) requirements that
the controller needs to enforce.

e This moves controller design from “how should the implementation work”
to “what should the controller do”.

e Implementation of the controller is achieved through code generation,
reducing the number of errors introduced at this stage.

13

CIF - Application

Eclipse ESCET™ /CIF ¥ Home About Download Documentation Development Contact/Support

Version: v0.4

About CIF

e CIF has been applied in industry, for various domains, including the
medical, semiconductor and public works (infrastructure) domains.

e The main application area of CIF is the development of supervisory
controllers.

e The language and tools are generic, and can be used to work with state
machines in general for various other purposes.

14

CIF - Application

Eclipse ESCET™ /CIF ¥ Home About Download Documentation Development Contact/Support
Version: v0.4

e The CIF language and tools are being developed as part of the Eclipse
ESCET open-source project.

e The CIF tools are part of the Eclipse ESCET toolkit.

15

ToolDef: An Integrated Scripting Language

Eclipse ESCET™ / ToolDef ~ Home About Download Documentation D

Version: v0.4
Tired of scripting with Windows batch files and Linux shell scripts?

ToolDef is a cross-platform scripting language with the simplicity of Python and the
power of Java.

Features

Intuitive language © Reduce mistakes ¥ Powerful tools

ToolDef features a simple and intuitive yping redt ToolDef feat built-in data
Python-inspired syntax that makes it compared to Windows batch files, types and tools, and integrates well
«easy to write scripts. Linux shell scripts and Python. with Java and the Eclipse ESCET tools.

Getting started

The ToolDef tooling is part of the Eclipse ESCET toolkit
Itis available for Windows, Linux and macOS, portable and ready to go.

https://www.eclipse.org/escet/tooldef/

16

https://www.eclipse.org/escet/tooldef/

ToolDef - Language

Eclipse ESCET™ / ToolDef ¥ Home About Download Documentation Development Contact/Support
Version: v0.4

ToolDef allows us to:

e write scripts using a simple and intuitive syntax, loosely based on the
better aspects of Python.

e catch simple mistakes early on due to static typing,.

e work with data of all kinds, using a large number of built-in data types.

e manipulate data and paths, work with files and directories, and much more,
with over 80 built-in tools.

e share your tools as ToolDef libraries.

e unleash the full power of Java by importing any Java static method and
using it like any other ToolDef tool.

17

Eclipse Supervisory Control Engineering Toolkit (ESCET)

Eclipse ESCET™ /Project ¥ Home About Download Documentation Development Contact/Support

Eclipse ESCET™ downloads

The Eclipse ESCET toolkit contains the tooling for CIF, Chi and ToolDef.

@ IDE Command line ¢ P2 update site
The Eclipse ESCET IDE offers the most The Eclipse ESCET command line tools The Eclipse ESCET P2 update site
complete and integrated experience, allow execution on headless systems contains all the toolkit's plugins and
from convenient editing to execution of and also support integration with other features, for easy integration into OSGi-
the various tools. It suits most users. tools, for advanced usage. based applications.

The Eclipse ESCET toolkit includes both the IDE (all platforms) and the command line tools
(Windows and Linux only). Itis portable, so just download, extract, and run it to get started
quickly.

Version: v0.4
Windows x64 (64-bit) | Download
Linux 364 (64-bi) | Downioad

macOS 64 (64-bit) | Download

Eclipse ESCET is also available as an Eclipse P2 update site:
https://download.eclipse.org/escet/v0. 4/update-site/

https://www.eclipse.org/escet/download.html

18

https://www.eclipse.org/escet/download.html

ESCET - Integrated Development Environment

clipse ESCET (Incubatio
Eile Edit Navigate Search Project Run Window Help

= Q- o - Fl-G e Q[fee
Projectplo.. 3 = O
e g g | B ks 5 Plot Visualzer 31
BSY § ~

15 group tank:

& CIFbxamples-0.1.0.qualiier | 12~ 80P 5T o

v & hybrid 17 alg real Qi = controller.n * 5.0;
(= bouncing_ball sqre(V);

equation V'

svgout 1d "

svgout id
id

svgout id "Qo

ve 7.5 % v;
e Fre("V
text value fmt("0i
text value frt("Qo =

ater” attr "height” val
text val v); 5 10 15 20 2 30 35
s oi); time

2);

IRRRUNREE

2 synthesis
5 timed

= automaton controller %) SVG Visualizer 52
alg

s

location closed
equation n = o;
edge when tank.V

2 goto opened;

EES

location opened v

7 State Visualizer 52

Name Value
(time EX
§ocontrller opened
"controllern 1

kG 50 "

< >

v Applications 52 = B

° Probler Properties) Console 52
ToolDef interpreter [TERMINATED after 425 638ms] /CIFExamples-0.1.0.quealifier/hybric/tank/tank.tooldef (started at 2020-05-07 14:26:53.278)

Clie
~ B ToolDef interpreter
B CF simulator
Transition: delaying for 3.1883805325514274 time units at time 36.918671836315674
Simulation was terminated per the user’s request

<

S ot e

19

CIF Basics - Automata

e CIF models consist of automaton Componenti:
components location L1:
e Each component

represents a part of the
system location Ln:

e Components are modeled

end
as automata.

e Automata are the basics
of CIF constructs

e The name “locations” automaton ComponentM:
comes from hybrid location Li:
automata

e State = location + values
of continuous variables location Ln:

e For finite state automata,

. end
states = locations

© 6 0 O

20

CIF Basics - Locations

Locations can be:
.. automaton Component: start —
o initial

location L1:
e marked initial;

e initial and marked 200
e none of the . @
previous location L2:
location L3: @

Location L1 is initial, whereas locations L2 and L3 are neither

end

initial nor marked.

21

CIF Basics - Locations

Locations can be:
L. automaton Component: start —
o initial

location L1:

e marked initial;
e initial and marked 500
e none of the
. location L2:
previous
marked;

location L3: @

Location L1 is initial, location L2 is marked, whereas location L3 is

end

neither initial nor marked.

22

CIF Basics - Locations

Locations can be:
automaton Component:
o initial omp start
location L1:

e marked initial; marked;

e initial and marked

e none of the

previous location L2:

marked;

location L3:

® 0 0

end

Location L1 is both initial and marked, location L2 is marked,
whereas location L3 is neither initial nor marked.

23

CIF - Events

Events can be:

event a;
e local automaton Component:
event b
L] global event c;

location L1:

initial; marked;

location L2:
end

Event a is global, whereas events b and c are local.

24

CIF - Edges (i.e., Transitions)

Edges:
event a;

e model transitions
automaton Component:

¢ have a unique event b;
source location L1: start
e have a unique initial; marked;

target edge a goto L2; b 3

e are associated to

location L2:
events
edge b goto L1; Q

end
We have two transitions

1) A transition from L1 to L2 executing event a
2) A transition from L2 to L1 executing event b

So basically, the automaton will continue executing

a,b,a,b,a,b,a,b,a,b,a,b,...

25

CIF - Edges (cont.)

Edges:
event a;

e model transitions
automaton Component:

G
e have a unique event b;
source oveEl @R start
e have a unique location L1:
target initial; marked; b a
edge a goto L2;
d

e are associated to
edge b goto L2;

events c
edge c goto L1;
location L2:

edge b goto L1;
edge a goto L2;
edge ¢ goto L2;

We have 6 transitions end

1) A transition from L1 to 3) A self-loop transition 5) A self-loop transition
L2 executing event a at L1 executing event c at L2 executing event a

2) A transition from L1 to 4) A transition from L2 to 6) A self-loop transition
L2 executing event b L1 executing event b at L2 executing event,c

CIF - Edges - Short Notations

event a; event a; C
automaton Component: automaton Component:
event b; event b,c;
event c; location L1: start
location L1: initial; marked;
initial; marked; edge a,b goto L2; b a7b
edge a goto L2; edge c;

edge b goto L2; =
edge ¢ goto L1; location L2: e
edge b goto L1;
location L2: edge a,c;
edge b goto L1; end a,c
edge a goto L2;
edge ¢ goto L2;

end

General syntax:

d sby . .. to Ljl;
edge al] [goto Ljl 7

CIF Basics - Nameless Locations

When an automaton
has a single location:

e we can omit the
name of the
location

e only self-loop
transitions are
allowed (no need
to specify the
target)

a

automaton Component:
event a; 8
location: start
initial; marked;

edge a;

end

28

CIF - Implicit Alphabet

event a,d;

Automaton Alphabet: automaton Component : ot
. q star
e Not defined in the event b,c;

location L1:

code
o The union of all ARABILANE WAL b a, b
. edge a,b goto L2;
events appearing
q edge c; e
in edge
statements (of

1 ti 12 8
that automaton) OCZ 102 -
edge goto B

edge a,c; a,c

end

Y :={a,b,c}

Event d is always executable in a concurrent execution with some other

automaton that can execute d.

29

CIF - Explicit Alphabet

Automaton Alphabet:
o Explicitly defined
e No obligation of
using alphabet
events on
transitions

event a,d;

automaton Component:
event b,c; start
alphabet a,b,c,d;
location L1: b a’b
initial; marked;

edge a,b goto L2;
edge c;

location L2:

edge b goto L1; a,c

edge a,c;

end Y :={a,b,c,d}

Watch out: being in the alphabet of the automaton but not taking part in any of

its transitions, event d is never executable in a concurrent execution with some

other automaton that can execute d.

30

CIF - Non Determinism

event aj;

o More edges for automaton Component: S

event b;
the same event. ’

(5)o-

location L1:

e Multiple initial Indaally masRed b o
statesinot edge a,b goto L2; 7
supported edge b;

e ¢ transitions not Q
supported location L2:

edge b goto L1;
edge b b

end

By executing event b from location L2 we can either remain there or move to L1.

31

Supervisory Control - Event Controllability

Beside globality or locality,

events are also partitioned in:

e controllable (default)

e uncontrollable

controllable event a;
automaton Component:
uncontrollable event b;
event c;
location L1:

initial; marked;

location L2:

end

Event a is global and controllable, b is local and uncontrollable,

whereas c is local and controllable.

32

Supervisory Control - Events - Short Notation

controllable event a;
automaton Component:
event b;
event c;
uncontrollable event
location L1:

initial; marked;

location L2:

end

Controllable events

event al,b,...];

controllable event al,b,..

controllable al,b,...]1;

controllable aj;
automaton Component:
event b, c;
uncontrollable d;
location L1:

initial; marked;

location L2:

end

General syntax

Uncontrollable events

uncontrollable event al[,b,...];

odl 8 odl B

uncontrollable al[,b,..

33

CIF - Edges - Uncontrollable Transitions

Edges related to
uncontrollable events
model uncontrollable

transitions.

General syntax:

event a;

automaton Component:

end

C
event b;
uncontrollable c; start

location L1:
initial; marked; b a,b
edge a,b goto L2;

edge c;
C
a

location L2:
edge b goto L1;

edge a,c;

edge al[,b,...] [goto Ljl;

34

Supervisory Control - Automata Types

plant automaton C:

Automata can be of the end
following types

requirement automaton R:
e Plant

end
¢ Requirement

. supervisor automaton S:
e Supervisor

end

35

Supervisory Control - Automata Types - Short Notation

plant automaton C:

end

requirement automaton R:

end

supervisor automaton S:

end

plant C:

end

requirement R:

end

supervisor S:

end

36

The Database Concurrency Example

O

b

e

@

e Two transactions
° T1 = a1b1
o Tr:= axbs

(x; some operation by transaction i
on record x)

e G is the initial state

e Gg is the marked state (=completion
of T1 and T3)

“From the theory of database concurrency control, it can be shown that the only

admissible strings are those where a1 precedes ax if and only if by precedes by.”

Cassandras, Lafortune - Introduction to Discrete Event Systems

37

Example 1

]J kc e Events a1, a, are uncontrollable

ay
start Gy \\

£ E 2
by

N
N

Events by, by are controllable

Gg is the initial state

Gg is the marked state

()
TN/
()
_/
()

Z]

Requirement: a; precedes a, if and only if b; precedes b,

38

Example 1 - Plant and Requirement
Plant
o

)

Full Requirement H

by

)

@

O,

’g
/:\y
N

O—0—0
LG A

OO

O

Requirement: a; precedes a, if and only if b; precedes b,

Note: Full Requirement := Plant || Essential Requirement

39

Example 1 - Controller Synthesis

Plant Requirement

Requirement: a; precedes a, if

and only if b; precedes b,

40

Example 1 - Controller Synthesis

Plant G Full Requirement H

Requirement: a; precedes a, if

and only if b; precedes b

e No states to remove
N8

e Final supervisor
41

Example 1 - Controller Synthesis

Plant G

Full Requirement H

Control Policy:

e If the plant gets to G4 by
executing a;ay, then S disables b,.

e If the plant gets to G4 by
executing a,a; and S disables b;.

)

Example 2

Events a;, by are controllable

start Go /;\ Gy
) N o
Events a, b, are uncontrollable

by

A e

Z]

Gg is the initial state

Gg is the marked state

()
TN
()
N
()

Same Requirement: a; precedes a, if and only if b; precedes b,

43

Example 2 - Plant and Requirement

Plant G Full Requirement H

>
OO

(.
(.
-
o
O

()

OO

OO
o

44

Example 2 - Controller Synthesis

Plant G Full Requirement H

45

Example 2 - Controller Synthesis

Plant G Full Requirement H

e {Ga, Hg} is uncontrollable

46

Example 2 - Controller Synthesis

Plant G Full Requirement H

47

Example 2 - Controller Synthesis

nt G Full Requirement H

f ‘ T
E £
b

““"” e {Gy, Hy} is non-accessible
. (unreachable from the initial
@ state {Gop, Ho})

48

Example 2 - Controller Synthesis

nt G Full Requirement H

f ‘ T
E £
b

(unreachable from the initial
state {Gop, Ho})

mw e {Gs, Hs} is non-accessible

49

Example 2 - Controller Synthesis

Plant G Full Requirement H

ot —|
by

Final Supervisor S Control Policy:

SSSSS @ e At the beginning S disables a;.
o If the plant G is in state G;, S
@ @ disables b .

50

)

Essential Requirement
Full Requirement H

Plant
B0 -G
ROBNO=ONRO.

b, by

-0 O—0-0

Requirement: a; precedes a, if and only if b; precedes b,
Question: Can we write some other R so that G||R = G||H (i.e.,
such that £(G|R) = L(G||H) and L,,(G|R) = L(G]||H))?

O,

©

OO

51

Essential Requirement - Decomposition

Plant G Full Reqmrement H

4®
O

()
N

A = B

OO
OO
o

O,
5

Requirement: a; precedes a, if and only if b; precedes b,
e A= B : If a; precedes a,, then b; precedes b,
e B = A:If by precedes by, then a; precedes a,

52

Essential Requirement - Logical Equivalence Rewriting

Plant G Full Reqmrement H

(=) =)
O—0~0 @ﬂ;\m@

A = B

@

Requirement: a; precedes a, if and only if b; precedes b,
e A= B: If a; precedes a,, then b; precedes b,

e —-A = —-B: If a; does not precede a,, then b; does not

precede b, 53

Essential Requirement - Logical Equivalence Rewriting

Plant G Full Reqmrement H

(=) =)
O—0~0 @ﬂ;\m@

A = B

@

Requirement: a; precedes a, if and only if b; precedes b,

e A= B: If a; precedes a,, then b; precedes b,

precede—b,

e -A= —-B: If a, precedes a;, then b, precedes b, 54

Essential Requirement - Better Equivalent Decomposition

Pla?t_g Full Reqmrement H
OanOanC @*‘@)
SO0 b

Requirement: a; precedes a, if and only if b; precedes b,

e A= B: If a; precedes a,, then b; precedes b, (R1)

e -A= —B: If a, precedes a;, then b, precedes b, (R2)

55

Essential Requirement - R; - Attempt 1

Plant G Essential Requirement R;

EBJ] @] @ e States?
)
OO0

Requirement: A = B : If a; precedes a,, then b; precedes b,

e Transitions?

()
N
()
N
()

56

Essential Requirement - R; - Attempt 1

Plant G Essential Requirement R;

G) o G} & Cc) Rationale:

e We care about seeing either a; or a; at
b 2 & the beginning.

\ f\ f e If it’s going to be a;, then whatever
6 2 G 2 @ happens is ok.

e Otherwise it's going to be a; and the idea
Structure! Every path from Gg is that we eventually see a> (it's not

important exactly when) and we need to

to Gg contains exactly 1
see by before bs.

occurrence of each event.

Requirement R;: A = B : If a; precedes a,, then b; precedes b, .

Essential Requirement - R; - Attempt 2

Plant G Essential Requirement R;

a1.a, by, by

= Rationale:

GD - G} = CG) e We care about seeing either a; or a; at

the beginning.

b b b e If it’s going to be a;, then whatever

\ f\ f happens is ok.
G = U . @ o Otherwise it’s going to be a; and the idea
is that we eventually see a> (it's not
Structure! Every path from Gy important exactly when) and we need to
see by before bs.

to Gg contains exactly 1

occurrence of each event.
Requirement R;: A = B : If a; precedes a,, then b; precedes b,

58

Essential Requirement - R, - Attempt 1

OO

Structure! Every path from Gg
to Gg contains exactly 1

occurrence of each event.

Requirement R;: -A= —-B:

Essential Requirement R»

Rationale:

e We care about seeing either a; or a; at
the beginning.

e If it’s going to be a;, then whatever
happens is ok.

e Otherwise it's going to be a; and the idea
is that we eventually see a; (it's not
important exactly when) and we need to
see by before b;.

If a, precedes a;, then b, precedes by

Essential Requirement - R, - Attempt 2

Plant G Essential Requirement R,

a1.a, by, by

= Rationale:

GD - G} = CG) e We care about seeing either a; or a; at

the beginning.

b b b e If it’s going to be a;, then whatever

\ f\ f happens is ok.
G = U . @ o Otherwise it’s going to be a, and the idea
is that we eventually see a; (it's not
Structure! Every path from Gy important exactly when) and we need to
see by before b;.

to Gg contains exactly 1

occurrence of each event.
Requirement R,: —A = —B : If a, precedes a;, then b, precedes b;

60

Essential Requirement - R := Ry ||R;

Plant G Essential Requirement R;

start et

a2
an - ksy - \62 & 2 % L S 2,30, by, by
2 2 a2

CG’\ N fg\ N C) Es:fntial Requirement R»
J N 1

2 by

a
NPV g
G]

Essential Requirement R := Ry ||R>

Structure! Every path from Gy to Gg

contains exactly 1 occurrence of each -
event.
Requirement R: A & B : a; precedes a; =

iff b, precedes by

61

Essential Requirement - R

Plant G Essential Requirement R

1 ' — G|R
O=mO=n0 © NS
Structure! Every path from Gy to -
Gg contains exactly 1 occurrence GSW) ,,GD
of each event. :)—“@\

Requirement R: A< B : ap

precedes a; iff b, precedes b;

62

