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Course structure

 The course is about wavelets and
multiresolution
— Theory: 4 hours per week

=  Mon. 11.30-13.00, room |
=  Thu. 16.30-18.00, room C

— Laboratory

=  Mon. 14.00-15.30 (Lab. Gamma) LM32
* Fri. 14.00-15.30 (Lab. Alpha) LM9

« Exam
— Theory: Oral (in general)

— Lab: Evaluation of lab. sessions and questions
during the exam

— Projects: only in case of diploma project

Course overview

Contents

e Review of Fourier theory

 Wavelets and multiresolution

» Review of Information theoretic concepts

* Applications
— Image coding (JPEG2000)

— Feature extraction and signal/image analysis

« Wavelets and sparsity in neuroimaging
and vision sciences

 Seminal lectures
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Telecommunications for Multimedia

Good news Bad news
e Itis fun! » Some theoretical background is unavoidable
e Get in touch with the state-of-the-art — Mathematics
technology = Fourier transform

» Linear operators

* Convince yourself that the time spent on = Digital filters
maths&stats was not wasted = Wavelet transform

e Learn how to map theories into applications —  (some) Information theory

* Acquiring the tools for doing good research!
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A glance on applications




JPEG2000




Mathematical tools




Introduction

Sparse representations: few coefficients reveal the information we are looking for.

— Such representations can be constructed by decomposing signals over elementary waveforms
chosen in a family called a dictionary.

— An orthogonal basis is a dictionary of minimum size that can yield a sparse representation if
designed to concentrate the signal energy over a set of few vectors. This set gives a geometric
signal description.

= Signal compression and noise reduction

— Dictionaries of vectors that are larger than bases are needed to build sparse representations of

complex signals. But choosing is difficult and requires more complex algorithms.

= Sparse representations in redundant dictionaries can improve pattern recognition, compression and noise
reduction

Basic ingredients: Fourier and Wavelet transforms

— They decompose signals over oscillatory waveforms that reveal many signal properties and
provide a path to sparse representations




Signals as functions

* CT analogue signals (real valued functions of continuous independent variables)

— 1D:f=f(1)
— 2D:f=ftxy) xy
— Real world signals (audio, ECG, pictures taken with an analog camera)

DT analogue signals (real valued functions of discrete variables)
— 1D: f=f[k]
- 2D: f=flij]
—  Sampled signals
« Digital signals (discrete valued functions of DT variables)
— 1D: y=y[k]
= 2D:y=y[ij]
—  Sampled and discretized signals




Images as functions

« QGray scale images: 2D functions

— Domain of the functions: set of (x,)) values for which f{x,y) is defined : 2D lattice [i,j/ defining
the pixel locations

— Set of values taken by the function : gray levels

» Digital images can be seen as functions defined over a discrete domain {i,j: 0<i<l[, 0<j<J}
— 1J: number of rows (columns) of the matrix corresponding to the image

— f=f[i,j]: gray level in position [i,j]




Example 1: 0 function

[t i=j=0
i {0 Q0=

Sli, j-J]=

1 i=0,7=J
0 otherwise




Example 2: Gaussian

Continuous function

1 x2 +_y2

J(x,») =m

Discrete version
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Example 3: Natural image
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Example 3: Natural image




* Frequency domain characterization of signals

0.5

051

80

60

40

20+

The Fourier kingdom

F(w) = f ft)e ™ dt

/

T f@) = 7F(a))ej””’dt

Signal domain

I
50

|
100

|
150 200 250

Frequency domain

|
50

|
100

! | !
150 200 250




0.8

0.6

0.4

0.2

12
10

N RO

The Fourier kingdom

Gaussian function

T

T

T T T T T

50 100 150 200 250

300

T

50 100 150 200




The Fourier kingdom
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2D Fourier transform

fffxy xydxdy—

2ff|f w,,0, |da)xa’a)y

f=g%fﬂf(x,y dxdy =

ff (a) a)) ( x,a)y)da)xda)y

Parseval formula

Plancherel equality




The Fourier kingdom
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Wavelets

Wavalet in signal (time or space) domain

Wavalet in frequency (Fourier) domain




Wavelet representation

Decomposition atlevel4 :s=a4 +d4 + d3 + d2 + d1.

[
/N

- i~ 1'%
s S . S bl
3 o : I e ol e
X4 2y \/
A\ d \/

e
N
T

|

e
N
T
|

1 1 1 1
50 100 150 200 250




Wavelet representation

Decomposition atlevel4 :s=a4 +d4 + d3 +d2 + d1.
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Wavelets are good for transients
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Waveletsﬁchramids

Decomposition at level 3
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Wavelets&Pyramids
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Wavelets& Filterbanks




Wavelets& Filterbanks
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Very efficient implementation by recursive filtering




Fourier versus Wavelets

Fourier

Basis functions are sinusoids

* More in general, complex exponentials

Switching from signal domain ¢ to
frequency domain f

= Either spatial or temporal

Good localization either in time or in
frequency
= Transformed domain: Information on the
sharpness of the transient but not on its
position
Good for stationary signals but unsuitable
for transient phenomena

Wavelets
Different families of basis functions are
possible

» Haar, Daubechies’, biorthogonal

Switching from the signal domain to a
multiresolution representation

Good localization in time and frequency

» Information on both the sharpness of the
transient and the point where it happens

Good for any type of signal




Applications

Compression and coding

— Critically sampled representations (discrete wavelet transforms, DWT)
Feature extraction for signal analysis

— Overcomplete bases (continuous wavelet transform, wavelet frames)
Image modeling

— Modeling the human visual system: Objective metrics for visual quality assessment

— Texture synthesis
Image enhancement
— Denoising by wavelet thresholding, deblurring, hole filling

Image processing on manyfolds

— Wavelet transform on the sphere: applications in diffusion MRI
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-Non-Linear Wavelet Approximation n'f
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mavelet Bases of Images !:j

e Wavelet basis of L2[0,1)2: J 1 x(%= 27n
27 v

27 ) 1<k<3,j<0

2J nel0,1]2

Wavelet coeflicients
k=123

- j=-1,-2,-3,-4

= 2n € [0,1)?




Wavelet Image Approximations !:ﬁ
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Good but Not Optimal
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Compression with JPEG-2000

Non-zero
wavelet
coefficients

0.2 bit/pixel 0.05 bit/pixel

| *
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