
Multimedia communications 
to become 

Multiresolution analysis: theory and 
applications 

Comunicazione multimediale 
G. Menegaz 

gloria.menegaz@univr.it 



Course overview 

Course structure 

•  The course is about wavelets and 
multiresolution 

–  Theory: 4 hours per week 
!  Mon. 11.30-13.00, room I 
!  Thu. 16.30-18.00, room C 

–  Laboratory 
!  Mon. 14.00-15.30 (Lab. Gamma) LM32 
!  Fri. 14.00-15.30 (Lab. Alpha) LM9 

•  Exam 
–  Theory: Oral (in general) 
–  Lab: Evaluation of lab. sessions and questions 

during the exam 
–  Projects: only in case of diploma project 

Contents 
•  Review of Fourier theory 

•  Wavelets and multiresolution 

•  Review of Information theoretic concepts 

•  Applications 
–  Image coding (JPEG2000) 
–  Feature extraction and signal/image analysis 

•  Wavelets and sparsity in neuroimaging 
and vision sciences 

•  Seminal lectures 



Books 
Stephane Mallat  

(Ecole Polytechnique) 
Martin Vetterli (EPFL) 
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Telecommunications for Multimedia 

Good news 

•  It is fun! 

•  Get in touch with the state-of-the-art 
technology 

•  Convince yourself that the time spent on 
maths&stats was not wasted 

•  Learn how to map theories into applications 

•  Acquiring the tools for doing good research! 

Bad news 

•  Some theoretical background is unavoidable 
–  Mathematics 

!  Fourier transform 
!  Linear operators 
!  Digital filters 
!  Wavelet transform 

–  (some) Information theory 



A glance on applications 
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JPEG2000 



Mathematical tools 



Introduction 

•  Sparse representations: few coefficients reveal the information we are looking for.  
–  Such representations can be constructed by decomposing signals over elementary waveforms 

chosen in a family called a dictionary. 
–  An orthogonal basis is a dictionary of minimum size that can yield a sparse representation if 

designed to concentrate the signal energy over a set of few vectors. This set gives a geometric 
signal description. 
!  Signal compression and noise reduction 

–  Dictionaries of vectors that are larger than bases are needed to build sparse representations of 
complex signals. But choosing is difficult and requires more complex algorithms.  
!  Sparse representations in redundant dictionaries can improve pattern recognition, compression and noise 

reduction 

•  Basic ingredients: Fourier and Wavelet transforms 
–  They decompose signals over oscillatory waveforms that reveal many signal properties and 

provide a path to sparse representations 



Signals as functions 

•  CT analogue signals (real valued functions of continuous independent variables) 
–  1D: f=f(t) 
–  2D: f=f(x,y) x,y 
–  Real world signals (audio, ECG, pictures taken with an analog camera) 

•  DT analogue signals (real valued functions of discrete variables) 
–  1D: f=f[k] 
–  2D: f=f[i,j] 
–  Sampled signals 

•  Digital signals (discrete valued functions of DT variables) 
–  1D: y=y[k] 
–  2D: y=y[i,j] 
–  Sampled and discretized signals 



Images as functions 

•  Gray scale images: 2D functions 
–  Domain of the functions: set of (x,y) values for which f(x,y) is defined : 2D lattice [i,j] defining 

the pixel locations 
–  Set of values taken by the function : gray levels 

•  Digital images can be seen as functions defined over a discrete domain {i,j: 0<i<I, 0<j<J} 
–  I,J: number of rows (columns) of the matrix corresponding to the image 
–  f=f[i,j]: gray level in position [i,j] 



Example 1: δ function 

[ ]
!
"
#

≠≠

==
=

jiji
ji

ji
;0,0
01

,δ

[ ]
!
"
# ==

=−
otherwise

Jji
Jji

0
;01

,δ



Example 2: Gaussian 
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Continuous function 

Discrete version 



Example 3: Natural image 



Example 3: Natural image 



The Fourier kingdom 

•  Frequency domain characterization of signals 

Frequency domain 

Signal domain 
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The Fourier kingdom 
Gaussian function 



The Fourier kingdom 
rect function 

sinc function 



2D Fourier transform 

( ) ( ) ( )

( ) ( ) ( )
2

ˆ , ,

1 ˆ, ,
4

x y

x y

j x y
x y

j x y
x y x y

f f x y e dxdy

f x y f e d d

ω ω

ω ω

ω ω

ω ω ω ω
π

+∞
− +

−∞

+∞
+

−∞

=

=

∫

∫

( ) ( ) ( ) ( )

( ) ( )

* *
2

22
2

1 ˆ, , , ,ˆ
4

1 ˆ, ,
4

x y x y x y

x y x y

f x y g x y dxdy f g d d

f g f x y dxdy f d d

ω ω ω ω ω ω
π

ω ω ω ω
π

=

= → =

∫∫ ∫∫

∫∫ ∫∫

Parseval formula 

Plancherel equality 



The Fourier kingdom 



Wavelets 

Wavalet in signal (time or space) domain 

Wavalet in frequency (Fourier) domain 



Wavelet representation 
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Wavelets are good for transients 

scalogram 



Wavelets&Pyramids 
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Wavelets&Pyramids 
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Wavelets&Pyramids 



Wavelets&Filterbanks 
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Wavelets&Filterbanks 
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Very efficient implementation by recursive filtering 



Fourier versus Wavelets 

Fourier 
–  Basis functions are sinusoids 

!  More in general, complex exponentials 

–  Switching from signal domain t to 
frequency domain f  
!  Either spatial or temporal  

–  Good localization either in time or in 
frequency 
!  Transformed domain: Information on the 

sharpness of the transient but not on its 
position   

–  Good for stationary signals but unsuitable 
for transient phenomena 

Wavelets 
–  Different families of basis functions are 

possible 
!  Haar, Daubechies�, biorthogonal 

–  Switching from the signal domain to a 
multiresolution representation 

–  Good localization in time and frequency 
!  Information on both the sharpness of the 

transient and the point where it happens 

–  Good for any type of signal 



Applications 

•  Compression and coding 
–  Critically sampled representations (discrete wavelet transforms, DWT) 

•  Feature extraction for signal analysis 
–  Overcomplete bases (continuous wavelet transform, wavelet frames) 

•  Image modeling 
–  Modeling the human visual system: Objective metrics for visual quality assessment 
–  Texture synthesis 

•  Image enhancement  
–  Denoising by wavelet thresholding, deblurring, hole filling 

•  Image processing on manyfolds 
–  Wavelet transform on the sphere: applications in diffusion MRI 



    Wavelet   Coefficients
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Non-Linear Wavelet Approximation
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  Wavelet Bases of Images
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   Wavelet Image Approximations

Original
Image

Linear
Approximation

Non-linear
Approximation

M = N/16 largest
 wavelet coeffs.



f ∗ hf

       Good but Not Optimal

The number

of large wavelet

coefficient is

proportional to 

the length of the 

contour.

Need less adapted

triangles if the 

contour geometry

is regular. 



    Compression with JPEG-2000

Non-zero
wavelet 
coefficients

0.2 bit/pixel 0.05 bit/pixel



   Wavelet Image Thresholding
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