

Multimedia communications to become Multiresolution analysis: theory and applications

Comunicazione multimediale

G. Menegaz

gloria.menegaz@univr.it

Course overview

Course structure

- The course is about wavelets and multiresolution
 - Theory: 4 hours per week
 - Mon. **11.30-13.00**, room I
 - Thu. 16.30-18.00, room C
 - Laboratory
 - Mon. 14.00-15.30 (Lab. Gamma) LM32
 - Fri. 14.00-15.30 (Lab. Alpha) LM9
- Exam
 - Theory: Oral (in general)
 - Lab: Evaluation of lab. sessions and questions during the exam
 - Projects: only in case of diploma project

Contents

- Review of Fourier theory
- Wavelets and multiresolution
- Review of Information theoretic concepts
- Applications
 - Image coding (JPEG2000)
 - Feature extraction and signal/image analysis
- Wavelets and sparsity in neuroimaging and vision sciences
- Seminal lectures

Stephane Mallat (Ecole Polytechnique)

Stéphane Mallat

Books

Martin Vetterli (EPFL)

Subband Coding

Telecommunications for Multimedia

Good news

- It is fun!
- Get in touch with the state-of-the-art technology
- Convince yourself that the time spent on maths&stats was not wasted
- Learn how to map theories into applications
- Acquiring the tools for doing good research!

Bad news

- Some theoretical background is unavoidable
 - Mathematics
 - Fourier transform
 - Linear operators
 - Digital filters
 - Wavelet transform
 - (some) Information theory

A glance on applications

JPEG2000

3LL 3HL 3LH 3HH	2HL	1HL
2LH	2HH	IIIL
1LH		1HH

Mathematical tools

Introduction

- Such representations can be constructed by decomposing signals over elementary waveforms chosen in a family called a *dictionary*.
- An orthogonal basis is a dictionary of minimum size that can yield a sparse representation if designed to concentrate the signal energy over a set of few vectors. This set gives a *geometric* signal description.
 - Signal compression and noise reduction
- Dictionaries of vectors that are larger than bases are needed to build sparse representations of complex signals. But choosing is difficult and requires more complex algorithms.
 - Sparse representations in redundant dictionaries can improve pattern recognition, compression and noise reduction
- Basic ingredients: Fourier and Wavelet transforms
 - They decompose signals over oscillatory waveforms that reveal many signal properties and provide a path to sparse representations

Signals as functions

- CT analogue signals (real valued functions of continuous independent variables)
 - 1D: f = f(t)
 - 2D: f = f(x,y) x, y
 - Real world signals (audio, ECG, pictures taken with an analog camera)
- DT analogue signals (real valued functions of discrete variables)
 - 1D:*f=f[k]*
 - 2D: *f=f[i,j]*
 - *Sampled* signals
- Digital signals (discrete valued functions of DT variables)
 - 1D: y = y[k]
 - 2D: *y*=*y*[*i*,*j*]
 - Sampled and discretized signals

Images as functions

- Gray scale images: 2D functions
 - Domain of the functions: set of (x,y) values for which f(x,y) is defined : 2D lattice [i,j] defining the pixel locations
 - Set of values taken by the function : gray levels
- Digital images can be seen as functions defined over a discrete domain $\{i, j: 0 \le i \le I, 0 \le j \le J\}$
 - I,J: number of rows (columns) of the matrix corresponding to the image
 - *f=f[i,j]*: gray level in position [*i,j*]

Example 1: δ function

$$\delta[i,j] = \begin{cases} 1 & i=j=0\\ 0 & i, j \neq 0; i \neq j \end{cases}$$

$$\delta[i, j-J] = \begin{cases} 1 & i = 0; j = J \\ 0 & otherwise \end{cases}$$

Example 2: Gaussian

Continuous function

$$f(x, y) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{x^2 + y^2}{2\sigma^2}}$$

Discrete version

Example 3: Natural image

Wavelet representation

-

Wavelet representation

Fourier

- Basis functions are sinusoids
 - More in general, complex exponentials
- Switching from signal domain t to frequency domain f
 - Either spatial or temporal
- Good localization either in time or in frequency
 - Transformed domain: Information on the sharpness of the transient but not on its position
- Good for stationary signals but unsuitable for transient phenomena

Wavelets

- Different families of basis functions are possible
 - Haar, Daubechies', biorthogonal
- Switching from the signal domain to a *multiresolution* representation
- Good localization in time and frequency
 - Information on *both* the *sharpness* of the transient and the *point* where it happens
- Good for any type of signal

Applications

- Compression and coding
 - Critically sampled representations (discrete wavelet transforms, DWT)
- Feature extraction for signal analysis
 - Overcomplete bases (continuous wavelet transform, wavelet frames)
- Image modeling
 - Modeling the human visual system: Objective metrics for visual quality assessment
 - Texture synthesis
- Image enhancement
 - Denoising by wavelet thresholding, deblurring, hole filling
- Image processing on manyfolds
 - Wavelet transform on the sphere: applications in diffusion MRI

Wavelet Image Approximations Non-linear Original Approximation Image M = N/16 largest

wavelet coeffs.

Linear Approximation

The number of large wavelet coefficient is proportional to the length of the contour.

Need less adapted triangles if the contour geometry is regular.

