
Java and Android Concurrency

Task Execution

fausto.spoto@univr.it

git@bitbucket.org:spoto/java-and-android-concurrency.git

git@bitbucket.org:spoto/java-and-android-concurrency-examples.git

Fausto Spoto Università di Verona, Italy - 1 / 23



Single Thread Scheduling of Task

Many concurrent applications are organized around the idea of the
execution of tasks, that is, of (likely independent) units of work
Tasks can be executed on a single thread:

@ThreadSafe

public class SingleThreadWebServer {
public static void main(String[] args) throws IOException {
try (ServerSocket socket = new ServerSocket(80)) {
while (true) {

Socket connection = socket.accept();

handleRequest(connection);

}
}

}
}

It is the simplest scheduling policy, which avoids any concurrency problem,
but it is of course rather inefficient

Fausto Spoto Università di Verona, Italy - 2 / 23



Explicit Creation of Threads per Task

Better responsiveness can be achieved by starting a new thread for each
task:

@ThreadSafe

public class ThreadPerTaskWebServer {
public static void main(String[] args) throws IOException {
try (ServerSocket socket = new ServerSocket(80)) {
while (true) {

Socket connection = socket.accept();

Runnable task = () -> handleRequest(connection);

new Thread(task).start();

}
}

}
}

Better Responsiveness, parallel execution of CPU bound and I/O bound
tasks. Tasks must be thread-safe!

Fausto Spoto Università di Verona, Italy - 3 / 23



Drawbacks of Unbound Thread Creation

The implicity of ThreadPerTaskWebServer comes at some price:

thread lifecycle overhead: creating and destroying threads is slow

resource consumption: creating more runnable threads than available
CPUs costs memory without any efficiency gain

there is a limit on the number of threads. Trespassing that limit
brings the application to an out-of-memory exception and the server
to a denial-of-service

Up to a certain point, more threads can improve throughput, but beyond
that point creating more threads just slows down the application, and cre-
ating one thread too many can cause the entire application to crash horribly

Fausto Spoto Università di Verona, Italy - 4 / 23



The Executor Framework

Fausto Spoto Università di Verona, Italy - 5 / 23



Using an Executor for a Parallel Web Service

@ThreadSafe

public class TaskExecutionWebServer {
private static final int NTHREADS = 100;

private static final Executor exec

= Executors.newFixedThreadPool(NTHREADS);

public static void main(String[] args) throws IOException {
try (ServerSocket socket = new ServerSocket(80)) {
while (true) {

Socket connection = socket.accept();

Runnable task = () -> handleRequest(connection);

exec.execute(task);

}
}

}
}

Fausto Spoto Università di Verona, Italy - 6 / 23



Thread Pools

Thread pools are the implementation of an executor:

a set of threads, ready to run tasks

a queue holding the task to process

Advantages

threads are recycled, hence amortizing creation and teardown costs

the right number of threads allows one to keep the processor busy
without running into out of memory

Creation of Thread Pools

by using the factory methods of Executors, for predefined
configurations (preferred)

by using the constructors of ThreadPoolExecutor, for fine-grained
configuration

Fausto Spoto Università di Verona, Italy - 7 / 23



Predefined Thread Pool Configurations from Executors

Executors.newFixedThreadPool(int nThreads)

yields a thread pool that creates threads up to the given limit and adds a
new thread if one dies

Executors.newCachedThreadPool()

yields an unboound thread pool, whose size grows and shrinks with the
number of pending tasks

Executors.newSingleThreadExecutor()

yields a thread pool with a single thread, that executes tasks sequentially
and replaces the only thread if it dies

Executors.newScheduledThreadPool(int corePoolSize)

yields a thread pool with the given number of threads, able to schedule
delayed or periodic tasks

Fausto Spoto Università di Verona, Italy - 8 / 23



ExecutorService’s Shutdown

The JVM does not terminate until the last non-daemon thread has
terminated

Creating a thread pool prevents JVM’s termination
Thread pools must be shut down when no longer in use

An ExecutorService transitions through the following states (from left
to right, never backwards):

running ⇒ shutting down ⇒ terminated

Fausto Spoto Università di Verona, Italy - 9 / 23



ExecutorService’s Lifecycle Methods

void shutdown(): running ⇒ shutting down

Graceful shutdown: wait for all pending tasks to finish but don’t accept any
more work. At the end, transition to the terminated state

List<Runnable> shutdownNow(): running ⇒ shutting down

Abrupt shutdown: interrupt the running tasks, wait for them to finish, don’t
accept any more work and return the list of pending but not yet run tasks.
At the end, transition to the terminated state

boolean isShutdown()

Yields true if and only if the executor service is in the shutting down state

boolean isTerminated()

Yields true if and only if the executor service is in the terminated state

Fausto Spoto Università di Verona, Italy - 10 / 23



Wait for the Termination of an ExecutorService

boolean awaitTermination(long timeout, TimeUnit unit)

throws InterruptedException

Blocks and waits the given amount of time until the executor service reaches
the terminated state

if the terminated state is reached by the given timeout: yields true

if the terminated state is not reached by the given timeout: yields
false

if the current (waiting) thread is interrupted before the given timeout:
throws an InterruptedException

Fausto Spoto Università di Verona, Italy - 11 / 23



Rejected Tasks

What happens is a new, incoming task is submitted to an executor service
in the shutting down or terminated state?

RejectedExecutionException

This behavior can be changed by specifying a suitable rejected execution
handler

Fausto Spoto Università di Verona, Italy - 12 / 23



Stoppable Web Server

@ThreadSafe

public class LifecycleWebServer {
private final ExecutorService exec = Executors.newCachedThreadPool();

public void start() throws IOException {
try (ServerSocket socket = new ServerSocket(80)) {

while (!exec.isShutdown())

try {
Socket connection = socket.accept();

exec.execute(() -> handleRequest(connection));

}
catch (RejectedExecutionException e) {

log("task submission rejected", e);

}
}

}

public void stop() {
exec.shutdown(); // graceful shutdown

}
}

Fausto Spoto Università di Verona, Italy - 13 / 23



Delayed and Period Tasks

Do not use a java.util.TimerTask

The legacy class TimerTask has serious issues that make it deprecated
nowadays (a single thread for all TimerTasks, non-replaceable)

Instead, use a ScheduledExecutorService and its scheduling methods

ScheduledExecutorService exec

= Executors.newScheduledThreadPool(nThreads);

// run after 10 milliseconds from now

exec.schedule(task, 10L, TimeUnit.MILLISECONDS);

// run after 10 milliseconds from now and then every second

exec.scheduleAtFixedRate(task, 10L, 1000L, TimeUnit.MILLISECONDS);

Fausto Spoto Università di Verona, Italy - 14 / 23



Example: HTML Page Rendering

The sequential approach is simple and does not use any executor.
However, downloading all images might take a while, only then are images
rendered

public class SingleThreadRenderer {
void renderPage(CharSequence source) {
// render the text

renderText(source);

// download all images

List<ImageData> imageData = new ArrayList<>();

for (ImageInfo imageInfo: scanForImageInfo(source))

imageData.add(imageInfo.downloadImage());

// render the images

for (ImageData data: imageData)

renderImage(data);

}
}

Fausto Spoto Università di Verona, Italy - 15 / 23



Split Page Rendering in Two Concurrent Tasks

public abstract class FutureRenderer {
private final ExecutorService executor = Executors.newCachedThreadPool();

void renderPage(CharSequence source) {
final List<ImageInfo> imageInfos = scanForImageInfo(source);

Callable<List<ImageData>> task = () -> {
List<ImageData> result = new ArrayList<>();

for (ImageInfo imageInfo: imageInfos)

result.add(imageInfo.downloadImage());

return result;

};
Future<List<ImageData>> future = executor.submit(task);

renderText(source); // in parallel with image downloads

try {
for (ImageData data: future.get())

renderImage(data);

} catch (InterruptedException e) {
Thread.currentThread().interrupt();

future.cancel(true);

} catch (ExecutionException e) {
throw launderThrowable(e.getCause());

}
}

}
Fausto Spoto Università di Verona, Italy - 16 / 23



Limitations of Splitting Heterogeneous Tasks

If heterogeneous tasks require very different times, running them in parallel
might not be worthwhile and complicates the code

The real performance payoff of dividing a program’s workload into tasks
comes when there are a large number of independent, homogeneous tasks
that can be processed concurrently

Fausto Spoto Università di Verona, Italy - 17 / 23



Downloading Each Image in Parallel

A much faster and reactive page renderer would download each page in its
own thread and render the image as soon as its download finished.

A completion service is a bridge between an executor and a blocking queue

tasks submitted to the completion service are delegated to the
executor

when a task finishes, its future is put in the blocking queue

By taking futures from the queue, one gets fully computed futures, whose
get() method will not block

Fausto Spoto Università di Verona, Italy - 18 / 23



Render Each Image As Soon As It Becomes Available

public abstract class Renderer {
private final ExecutorService executor;

Renderer(ExecutorService executor) {
this.executor = executor;

}

void renderPage(CharSequence source) {
List<ImageInfo> info = scanForImageInfo(source);

CompletionService<ImageData> completionService =

new ExecutorCompletionService<>(executor);

for (ImageInfo imageInfo: info)

completionService.submit(() -> imageInfo.downloadImage());

renderText(source);

try {
for (int t = 0, n = info.size(); t < n; t++) {

Future<ImageData> f = completionService.take();

renderImage(f.get());

}
}
catch (InterruptedException e) { Thread.currentThread().interrupt(); }
catch (ExecutionException e) { throw launderThrowable(e.getCause()); }

}
}

Fausto Spoto Università di Verona, Italy - 19 / 23



Running a Task with a Time Limit

public class RenderWithTimeBudget {
private static final Ad DEFAULT_AD = new Ad();

private static final long TIME_BUDGET = 1000;

private static final ExecutorService exec = Executors.newCachedThreadPool();

Page renderPageWithAd() throws InterruptedException {
long endNanos = System.nanoTime() + TIME_BUDGET;

Future<Ad> f = exec.submit(new FetchAdTask());

Page page = renderPageBody(); // render the page while waiting for the ad

Ad ad;

try {
// Only wait for the remaining time budget

long timeLeft = endNanos - System.nanoTime();

ad = f.get(timeLeft, TimeUnit.NANOSECONDS);

}
catch (ExecutionException e) { ad = DEFAULT_AD; }
catch (TimeoutException e) {

ad = DEFAULT_AD;

f.cancel(true); // useful if the task reacts to cancellation

}
page.setAd(ad);

return page;

}
}

Fausto Spoto Università di Verona, Italy - 20 / 23



Running More Tasks with a Time Limit

The typical travel reservation portal:

it contacts many travel providers concurrently

if they answer under the time limit, their quote is reported

after the time limit expires, the travel provider is discarded

Fausto Spoto Università di Verona, Italy - 21 / 23



Asking More Travel Quotes under a Time Limit
public class TimeBudget {

private static ExecutorService exec = Executors.newCachedThreadPool();

public List<Quote> getRankedQuotes(Travel travel, Set<Company> companies,

Comparator<Quote> ranking) throws InterruptedException {
List<QuoteTask> tasks = new ArrayList<>();

for (Company company: companies)

tasks.add(new QuoteTask(company, travel));

List<Future<Quote>> futures = exec.invokeAll(tasks, 10000, MILLISECONDS);

List<Quote> quotes = new ArrayList<>(tasks.size());

Iterator<QuoteTask> taskIter = tasks.iterator();

for (Future<Quote> f: futures) {
QuoteTask task = taskIter.next();

try {
quotes.add(f.get());

} catch (ExecutionException e) {
quotes.add(task.getFailureQuote(e.getCause()));

} catch (CancellationException e) {
quotes.add(task.getTimeoutQuote(e));

}
}
Collections.sort(quotes, ranking);

return quotes;

}
}

Fausto Spoto Università di Verona, Italy - 22 / 23



Exercise: Matrix Multiplication with an Executor

Consider the parallel multiplication again. Use an executor to avoid
repeated threads creation and teardown

How much faster is the resulting implementation? How much higher is the
CPU utilization average?

Use the same executor also in the constructor of random matrices. Make
that random construction parallel. What happens to the execution time
now? Are you sharing a data structure among the threads? Is it
thread-safe? Must it really be shared?

Fausto Spoto Università di Verona, Italy - 23 / 23


