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Wavelets,  Fi l ter Banks and 
Multiresolution Signal Processing

“ I t  is  wi th logic that  one proves;
i t  is  wi th intui t ion that one invents.”

Henr i  Poincaré
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A bit  of history: from Fourier to Haar to wavelets

Old topic: representations of functions

1807: Joseph Fourier upsets the French Academy

1898: Gibbs’ paper 1899: Gibbs’ correction
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1910: Alfred Haar discovers the Haar wavelet
dual to the Fourier construction

Why do this? What makes it  work?
•  basic atoms form an orthonormal set

Note
•  s ines/cosines and Haar funct ions are ON bases for
•  both are structured orthonormal bases
• they have di fferent t ime and frequency behavior
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1930: Heisenberg discovers that 
you cannot have your cake and eat i t  too!

Uncertainty principle
•  lower bound on TF product
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1945: Gabor localizes the Fourier transform ⇒  STFT

1980: Morlet proposes the continuous wavelet transform

short-t ime Fourier transform  wavelet transform
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Analogy with the musical score
Bach knew about wavelets!
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Time-frequency t i l ing for a sine + Delta
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1983: Lena discovers pyramids 
(actually,  Burt and Adelson)
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1984: Lena gets crit ical
(subband coding)
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1986: Lena gets formal. . .
(multiresolution theory by Mallat,  Meyer. . . )
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Wavelets,  f i l ter banks and multiresolution analysis

Filter banks
(DSP)

Wavelets
(applied mathematics)

Multiresolution signal analysis
(computer vision)

Construction of bases
 for

signal expansions
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Wavelets. . .

‘ ‘Al l  th is t ime, the guard was looking at  her,
f i rst  through a te lescope,

then through a microscope,
and then through an opera glass. ’ ’

Lewis Carrol l ,  Through the Looking Glass
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. . .  what are they and how to build them?

Orthonormal bases of wavelets
•  Haar ’s construct ion of  a basis for   (1910)
• Meyer,  Batt le-Lemarié,  Stromberg (1980’s)
•  Mal lat  and Meyer ’s mult i resolut ion analysis (1986)

Wavelets from iterated f i l ter banks
• Daubechies’ construction of compactly supported wavelets
• smooth wavelet bases for  and computational algorithms

Relation to other constructions
•  successive ref inements in graphics and interpolat ion
• mult i resolut ion in computer v is ion
• mult igr id methods in numerical  analysis
•  subband coding in speech and image processing

Goal: f ind ψ(t) such that i ts scales and shifts form an 
orthonormal basis for .
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Why expand signals?

Suppose

Advantages
•  easier to analyze signal  in pieces: “div ide and conquer”
•  extracts important features
• pieces can be treated in an independent manner

original coarse detail

signal block 1 block 2

signal
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Example: Example:  

•  or thogonal basis
• biorthogonal basis
•  t ight  f rame

Note
•  or thonormal basis has successive approximat ion

property,  b ior thogonal  basis and frames do not
•  quant izat ion in orthogonal  case is easy, 

unl ike in the other cases
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Why not use Fourier?

Block Fourier transform: bad frequency localization

Gabor transform: i l l -behaved for crit ical sampling

Balian-Low theorem: there is no local Fourier basis with 
good t ime and frequency localization

•  however:  good local  cosine bases!

•  shi ft  and modulat ion
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How do f i l ter banks expand signals?

Analogy
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. . .and multiresolution analysis?

IDEA: successive approximation/refinement of the signal

original
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. . .  how about wavelets?

“mother” wavelet ψ

Who?
•  fami l ies of  funct ions obtained from “mother”  wavelet

by di lat ion and translat ion

Why?
•  wel l  local ized in t ime and frequency
• i t  has the abi l i ty  to “zoom”
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Haar system

Basis functions

Basis functions across scales
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Haar system.. .
. . .  as a basis for L2 ℜ( )
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Haar system.. .
. . .  scaling function and wavelet

The Haar scaling function
(indicator of unit  interval)

helps in the construction 
of the wavelet,  since

and satisfies a 
two-scale equation

Note: 
•  Haar wavelet  a bi t  too 

t r iv ia l  to be useful . . .
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Discrete version of the wavelet transform

Compute WT on a discrete grid
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Perfect reconstruction f i l ter banks

Perfect reconstruction:

Orthogonal system:
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Daubechies’ construction.. .
. . .  i terated f i l ter banks

Iteration wil l  generate an orthonormal basis for 
the space of square-summable sequences 

Consider equivalent basis sequences  and 
(generates octave-band frequency analysis)

Interesting question: what happens in the l imit?
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Daubechies’ construction.. .
. . .  i teration algorithm

At ith step associate piecewise constant approximation of length 
with 

Fundamental l ink between discrete and continuous t ime!
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Daubechies’ construction.. .
. . .scaling function and wavelet

• Haar and sync systems: either good time OR frequency localization
• Daubechies system: good time AND frequency localization

Finite length, continuous  and , based on L=4 iterated filter
Many other constructions: biorthogonal, IIR, multidimensional...
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Daubechies’ construction.. .
. . .  two-scale equation

Hat function

Daubechies’ scaling function
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Not every discrete scheme leads to wavelets

How do we know which ones wil l?. . .  wait  and see.. .
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Applications

“That which shr inks must f i rst  expand.”

Lao-Tzu, Tao Te Ching

Compression
Communications

Denoising
Graphics
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What is mult iresolution?

High resolution Low resolution
subtract info

add info

= +
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. . .  and why use multiresolution?

A number of applications require signals to be processed 
and transmitted at multiple resolutions and multiple rates

•  d igi ta l  audio and video coding
• conversions between TV standards
• digi ta l  HDTV and audio broadcast
•  remote image databases with searching
• storage media with random access
• MR coding for mult icast  over the Internet
•  MR graphics

Compression: sti l l  a key technique in communications
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Multiresolution compression.. .
. . .  the DCT versus wavelet game

Question
given Lena (you have never seen before),  what is the ‘ ‘best ’ ’  
t ransform to code i t?

Fourier versus wavelet bases
•  l inear versus octave-band frequency scale
• DCT versus subband coding
• JPEG versus mult i resolut ion

Multiresolution source coding
•  successive approximat ion
• browsing
• progressive transmission
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Compression systems based on l inear transforms

Goal: remove built- in redundancy, send only necessary 
info

•  LT: l inear t ransform (KLT, WT, SBC, DCT, STFT)
• Q: quant izat ion
• EC: entropy coding

LT Q EC 0100101001

0.5 bits/pixel8 bits/pixel
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Gibbs phenomenon

“Blocking” effect in image compression

Wavelets
•  smooth t ransi t ions
• mult iscale propert ies
• mult i resolut ion
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A rate-distort ion primer. . .

Compression: rate-distortion is fundamental trade-off
•  more bi t rate ⇒  less distort ion
• less bi t rate ⇒  more distort ion

Standard image coder
•  operates at  one part icular point  on D(R) curve

Multiresolution coder ( layered, scalable)
•  t ravels rate-distort ion curve (successive approximat ion)
•  computat ion scalabi l i ty
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x
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Best image coder?
.. .  wavelet based!

Shapiro’s embedded zero-tree algorithm (EZW)

•  standard wavelet  decomposi t ion (biorthogonal)
•  b i t  p lane coding and zero-tree structure
• beats JPEG whi le achieving successive approximat ion
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Next image coding standard.. .  JPEG 2000

All  the best coders based on wavelets
•  24 ful l  proposals and a few part ia l  ones
• 18 used wavelets,  4 used DCT and 5 used others
• top 75% are wavelet-based
• top 5 use advanced wavelet  or iented quant izat ion
• systems requirements ask for mult i resolut ion

Final JPEG 2000 standard is wavelet based
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Digital  video coding

•  s ignal  decomposi t ion for compression
• compat ib le subchannels
• t ight  control  over coding error
•  easy jo int  source/channel coding
• robustness to channel  errors
• easy random access for digi ta l  storage

MR
processing

block

variety of
scales and
resolutions
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Conversion between TV formats

•  HDTV/NTSC
• inter laced/progressive

50Hz

USA

60Hz Europe



Introduction - 41

Interaction of source and channel coding

full  reconstruction coarse reconstruction

MR
coder

high priority
high protection

low priority
little protection
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MR transmission for digital  broadcast

Embedding of coarse information within detai l
•  c loud: carr ies 
coarse info
• satellite: carries detail
•  b lend MR 
transmission with MR 
coding

Trade-off  in broad-
cast ranges [miles]

cloud with
satellites
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MR coding for mult icast over the Internet

‘ ‘ I  want to say a special  welcome to everyone
that ’s c l imbed into the Internet tonight,  and has got into the

MBone ---  and I  hope i t  doesn’ t  a l l  col lapse! ’ ’

Mick Jagger,  Rol l ings Stones on Internet,11/18/94

Motivation: Internet is a heterogeneous mess!

Video multicast over Mbone 
•  v ideo by VIC
• software encoder/decoder
• learning exper ience

(seminars. . . )

Heterogeneous user population

On-going experience
ATM
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64
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MR coding for mult icast over the Internet

Fact: different users receive different bit  rates
•  t ransmission heterogenei ty

Different users absorb different bit  rates
•  computat ion heterogenei ty

Solution: layered multicast trees
•  d i fferent layers are t ransmit ted over independent t rees
• automat ic subscr ibe/unsubscr ibe
• dynamic qual i ty management
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Remote image databases with browsing
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Multiresolution graphics

Example: optimize quality (distortion) for a target rate
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Skull  page

not reproduced due to copyright restrictions


