INTUITIONISM



Consider the problem “Are there two irrational numbers a and b such that a® is

2
rational?” We apply the following smart reasoning: suppose \/§f is rational,

3 i\ V2
then we have solved the problem. Should V2" " be irrational then <\/§ )

is rational. In both cases there is a solution, so the answer to the problem is:
Yes. However, should somebody ask us to produce such a pair a, b, then we
have to engage in some serious number theory in order to come up with the
right choice between the numbers mentioned above.



(A) a proves v A := a is a pair (b, ¢) such that b proves ¢ and ¢ proves 1.

(V) a proves ¢ V ¢ := a is a pair (b, c) such that b is a natural number and
if b = 0 then c proves o, if b # 0 then c proves .

(—) a proves ¢ — ¥ := a is a construction that converts any proof p of ¢
into a proof a(p) of .

(L) no a proves L.

In order to deal with the quantifiers we assume that some domain D of
objects is given.

(V) a proves Vxp(xr) := a is a construction such that for each b € D a(b)
proves ©(b).

(3) a proves dxp(x) := a is a pair (b, c¢) such that b € D and ¢ proves ¢(b)




1. p A — ¢ is true, for let (a,b) be a proof of ¢ A 1), then the construction
c with ¢(a,b) = a converts a proof of © A1 into a proof of v. So ¢ proves

(p Np — ).

let c the first projection of a pair, namely
c(a,b)=a (c may be defined as A(x,y).x)

(oA — o) — (o — (¥ — 0)). Let a prove o A1) — o, i.e. a converts

each proof (b, c) of ¢ A1 into a proof a(b, c) of o. Now the required proof
p of ¢ — (¥ — o) is a construction that converts each proof b of ¢ into
a p(b) of v — o. So p(b) is a construction that converts a proof ¢ of
into a proof (p(b))(c) of . Recall that we had a proof a(b, ¢) of o, so put
(p(b)(c) = a(b,c); let q be given by ¢q(c) = a(b,c), then p is defined by
p(b) = q. Clearly, the above contains the description of a construction
that converts a into a proof p of ¢ — (¢ — o). (For those familiar with
the A-notation: p = Ab.Ac.a(b, c), so Aa.\b.Ac.a(b, c) is the proof we are
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A natural deduction system for
Intuitionism is obtained by dropping RAA and

S 1
maintaining o
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X-'@b — denotes a (possibly
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of leaves labelled with
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Derivation with
hypothesis

denotes a set

[xw] —ly Of leaves labelled

with the formula g

D marked
: : : as "cancelled" /
A derlvat!on with % “discharged”
hypothesis 1 cancelled Each discharged
O formula is labelled

with X



(o = P) — (7 — =)

| .(gp — Qp) —> (_I_ISO —> —u—lzp)
—Vrp(z) — Vep(x)













Theorem
It & does not contain v or 3 and all atoms but L in ¢ are negated,

then

— (I)(—) —|—|q)_




Definition 5.2.7 The mapping ° : FORM — FORM 1s defined by

(i) 1°:= 1 and ©° := == for atomic ¢ dinstinct from 1
(1) (P AY)° = ° Ay°

(11i) (o V) = (=% A =9p°)

() (p—1)° = ¢° —¢Y°

(v) (Vzp(x))® = Vap®(r)

(vi) (Fzp(x))® 1= ~Va—p®(z)

Theorem 5.2.8 ['. o & 1° ; ©°.




An Kripke model for propositional intuitionistic logic is a triple
H =K, <, V, IF)

S.1.

+ K is a set of “worlds”

+ < IS a partial order on K

* \V: K22PROP gt peV(k) and k < k’ then peV(K’)

+ I € Kx FORM is called forcing relation satistying the following conditions:
o KIFp & peV(k) for pePROP

KIF dAYP < KkiF & AND KiF @

KIF dvp & kI d OR kiF

<KIF L

KIF = & foreach k'. K<k = it k' IF ¢ then K’ I
KIF ¢ & foreach kK. k<k' =it k' It ¢

We say that # I+ iff for each k in &# we have ki ¢

We say that i+ iff for each o#we have # I+ @

We say that N+ iff for each s# and for each k in #we have k -H= Kk I ¢

THEOREM
[ It TIFD
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NORMALIZATION
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((pAO) (prO) = (x— @)

xX—=Q







conversions

Redex/cut: sequence —|, —E



hpD+ Chp Do






DD (D 1-step reduces to D*): D™ is obtained by applying a
conversion to a subderivation of &

D>D* (D reduces to D*): 1 D1..Dnst. D=D1, D" =D, D1—.. 2Dy
» is the reflexive and transitive closure of —

9 is in normal form (irreducible) if @»9* implies that ="
9 is in normal form (irreducible) if there is no @* s.t. = D*

Theorem (weak normalisation)
for each 9 there iIs D* s.t. D=D* and D™ is in normal form




cut formula

conversion with cut formula y—@




d(¢p)= size of ¢

¢ Is maximal in a derivation 9 |if:

1. ¢ is a cut formula
2. d(d)=max{d(d): d is a cut formula in &}




Theorem (weak normalisation)
for each 9 there is 9* s.t. D»>D* and D* is in normal form

d=max{d(d): d is a cut formula in &}

n=#{d : d is an occurrence of a maximal cut}

Let call R(<9) the pair (d,n) of 9.

Let us assume the lexicographic well order < for pairs of natural numbers:
(d,n) < (d’,n’) iff d <d’ or d=d’ and n< n’.

The proof is by induction on R(9).

Base: if R(9)=(0,0) then & is in normal form;

Induction step: let us suppose that R(£)=(d,n).

Make a reduction with a maximal cut formula &: -9, with R(2™)=(d*,n*)
Now observe that (d*,n*)<(d,n) (if n>1 then d*=d and n*=n-1, if n=1, then d*<d)
By induction hypothesis &9*»%°

Since 9—->D* and D*»>D° we have the thesis.




SUBFORMULA PROPERTY



Theorem Let & be a normal deduction in the = fragment. Then
1) every formula in & is a subformula of a conclusion or a hypothesis of &;

i) if @ ends in an elimination, it has a principal branch,
l.e. a sequence of formulae Ao,A1,...,Ansuch that:

* Apis an (undischarged) hypothesis;

* Anis the conclusion;

* Ajis the principal premise of an elimination of which the conclusion is Ai+1(for i=0,...,n—1).
In particular Anis a subformula of Ag

Proof 1. If & consists of a hypothesis, there is nothing to do.
2 If @ ends in an introduction, [¢]

D1
2
Y — @
then it suffices to apply the induction hypothesis to 9.
3. If @ ends in an elimination, Y Y=

¥
it is not possible that the proof above the principal premise ends in an introduction, so it

ends in an elimination and has a principal branch, which can be extended to a principal
branch of &




lemma
if p is a propositional symbol then +p

Proof
Each deduction &2 with conclusion p should terminate with an elimination rule.

Therefore there is an undischarged hypothesis 3 s.t. p is a sub formula of p, and it is not true
that & is a derivation without undischarged hypotheses of p.

Corollary
the natural deduction system based on — is consistent




COMPUTATIONS

s el Do—=D1—... 2 D with D« in normal form

infinite computation M ks indiimd ./ and®

A “computation”/“reduction sequence” of & of length k=w is a
sequence of deductions (9)) such that Do= 9 and 9.1 = Qi for

<k

all I<k.

Theorem (strong normalisation)
for each 9, alle the computations of & are finite




Theorem (confluence)
If DD’ and D>»D” then there exist D™ s.t.

P'>D* and D">D*

Theorem (existence and unicity of normal form)
It D»PD" and D»D” and D’ and D" are in normal form

9!=9!!
For each 9 there is @’ s.t. D>’ and D’ is in normal form




coding the derivation



we inductively associate a code to each derivation, by means of a suitable
decoration of formulas:

l.e. we assign to each occurrence of a formula 6 in a deduction tree the code
of the derivation with the occurrence 6 as conclusion (root)







We assume to have a denumerable set Xo,X1,... of “variables”

We decorate each assumption | with exactly one variable x.

Different occurrences of the same assumption  may be decorated with the
same variable Xx.

Occurrences of different formulas must be decoded with different variables.

The set of decorated derivations is the smallest set Y such that




THE STRINGS USED TO CODE DERIVATIONS ARE CALLED
A-TERMS




REDUCTIONS

[X:0] >,
D1

N:®
= D1[N/x]
AXS.M:0—=B N:©

N:B MI[N/x]:3
(Ax3.M)N:

(AXS.M)N:B = M[N/x]:B



(AS.MN:B = MIN/X]:B

(AXS.M)N:B — M[N/X]:B

M:B — M B M:B — M B

MN:B — M{N:B NM:B — NM; B

- IS the reflexive and transitive closure of —



exercise: prove that

[,BHP
B¢ =T+HR—Y
[FR2UY &THB =THY

we have the following rules for the derivation relation
BB

By
[

[y TP
[~y




exercise: prove that

,B-B
B¢ =T+HR—Y
[FRB2Y &THB =THY

we have the following rules for the derivation relation

BB [ X:BHX:

- [ X:B—M:y
[y [-AXB.M:B—y
-y [+ [-M:B—y T[HN:3

[ [-MN: Y



CURRY-HOWARD ISOMORPHISM

FORMULAS TYPES

PROOFS PROGRAMS (A-TERMS)
REDUCTIONS COMPUTATIONS




The full propositional system

we can restrict our attention to applications of the L —rule for atomic instances
1

7 p atomic

The proof is done by a trivial induction (exercise)
Hint: transform e.g.




The conversion for A and v




we need more conversions

la] [a] [a] [a]

ONA OAA

OANA
a

failure of subformula property



principal premise : A generic

elimination
rule




commuting conversions




Theorem (weak normalisation)
for each 9 there is 9* s.t. D>»>D* and D* is in normal form

Theorem (confluence)
It D»D’ and D»D” then there exist D™ s.t.

D'>D* and D "»>D”

Theorem (existence and unicity of normal form)
It D»D and D»D” and D’ and D’ are in normal form

9!=9H
For each 9 there is @9’ s.t. 9>’ and D’ is in normal form




