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Intuitionistic Logic

5.1 Constructive Reasoning

In the preceding chapters, we have been guided by the following, seemingly
harmless extrapolation from our experience with finite sets: infinite universes
can be surveyed in their totality. In particular can we in a global manner
determine whether A |= ∃xϕ(x) holds, or not. To adapt Hermann Weyl’s
phrasing: we are used to think of infinite sets not merely as defined by a
property, but as a set whose elements are so to speak spread out in front of
us, so that we can run through them just as an officer in the police office
goes through his file. This view of the mathematical universe is an attractive
but rather unrealistic idealization. If one takes our limitations in the face of
infinite totalities seriously, then one has to read a statement like “there is a
prime number greater than 101010

” in a stricter way than “it is impossible
that the set of primes is exhausted before 101010

”. For we cannot inspect the
set of natural numbers in a glance and detect a prime. We have to exhibit a
prime p greater than 101010

.
Similarly, one might be convinced that a certain problem (e.g. the deter-

mination of the saddle point of a zero-sum game) has a solution on the basis
of an abstract theorem (such as Brouwer’s fixed point theorem). Nonetheless
one cannot always exhibit a solution. What one needs is a constructive method
(proof) that determines the solution.

One more example to illustrate the restrictions of abstract methods. Con-
sider the problem “Are there two irrational numbers a and b such that ab is

rational?” We apply the following smart reasoning: suppose
√

2
√

2
is rational,

then we have solved the problem. Should
√

2
√

2
be irrational then

(√
2
√

2
)√

2

is rational. In both cases there is a solution, so the answer to the problem is:
Yes. However, should somebody ask us to produce such a pair a, b, then we
have to engage in some serious number theory in order to come up with the
right choice between the numbers mentioned above.
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Evidently, statements can be read in an inconstructive way, as we did in
the preceding chapters, and in a constructive way. We will in the present chap-
ter briefly sketch the logic one uses in constructive reasoning. In mathematics
the practice of constructive procedures and reasoning has been advocated by
a number of people, but the founding fathers of constructive mathematics
clearly are L. Kronecker and L.E.J. Brouwer. The latter presented a complete
program for the rebuilding of mathematics on a constructive basis. Brouwer’s
mathematics (and the accompaying logic) is called intuitionistic, and in this
context the traditional nonconstructive mathematics (and logic) is called clas-
sical.

There are a number of philosophical issues connected with intuitionism,
for which we refer the reader to the literature, cf. Dummett, Troelstra-van
Dalen.

Since we can no longer base our interpretations of logic on the fiction
that the mathematical universe is a predetermined totality which can be sur-
veyed as a whole, we have to provide a heuristic interpretation of the logical
connectives in intuitionistic logic. We will base our heuristics on the proof-
interpretation put forward by A. Heyting. A similar semantics was proposed
by A. Kolmogorov; the proof-interpretation is called the Brouwer-Heyting-
Kolmogorov (BHK)-interpretation .

The point of departure is that a statement ϕ is considered to be true
(or to hold) if we have a proof for it. By a proof we mean a mathematical
construction that establishes ϕ, not a deduction in some formal system. For
example, a proof of ‘2 + 3 = 5’ consists of the successive constructions of 2, 3
and 5, followed by a construction that adds 2 and 3, followed by a construction
that compares the outcome of this addition and 5.

The primitive notion is here “a proves ϕ”, where we understand by a proof
a (for our purpose unspecified) construction. We will now indicate how proofs
of composite statements depend on proofs of their parts.

(∧) a proves ϕ ∧ ψ := a is a pair ⟨b, c⟩ such that b proves ϕ and c proves ψ.
(∨) a proves ϕ ∨ ψ := a is a pair ⟨b, c⟩ such that b is a natural number and

if b = 0 then c proves ϕ, if b ̸= 0 then c proves ψ.
(→) a proves ϕ → ψ := a is a construction that converts any proof p of ϕ

into a proof a(p) of ψ.
(⊥) no a proves ⊥.

In order to deal with the quantifiers we assume that some domain D of
objects is given.

(∀) a proves ∀xϕ(x) := a is a construction such that for each b ∈ D a(b)
proves ϕ(b).

(∃) a proves ∃xϕ(x) := a is a pair (b, c) such that b ∈ D and c proves ϕ(b).

The above explanation of the connectives serves as a means of giving the
reader a feeling for what is and what is not correct in intuitionistic logic. It is
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generally considered the intended intuitionistic meaning of the connectives.

Examples.

1. ϕ∧ψ → ϕ is true, for let ⟨a, b⟩ be a proof of ϕ∧ψ, then the construction
c with c(a, b) = a converts a proof of ϕ ∧ ψ into a proof of ϕ. So c proves
(ϕ ∧ ψ → ϕ).

2. (ϕ ∧ ψ → σ) → (ϕ → (ψ → σ)). Let a prove ϕ ∧ ψ → σ, i.e. a converts
each proof ⟨b, c⟩ of ϕ∧ψ into a proof a(b, c) of σ. Now the required proof
p of ϕ → (ψ → σ) is a construction that converts each proof b of ϕ into
a p(b) of ψ → σ. So p(b) is a construction that converts a proof c of ψ
into a proof (p(b))(c) of σ. Recall that we had a proof a(b, c) of σ, so put
(p(b)(c) = a(b, c); let q be given by q(c) = a(b, c), then p is defined by
p(b) = q. Clearly, the above contains the description of a construction
that converts a into a proof p of ϕ → (ψ → σ). (For those familiar with
the λ-notation: p = λb.λc.a(b, c), so λa.λb.λc.a(b, c) is the proof we are
looking for).

3. ¬∃xϕ(x) → ∀x¬ϕ(x).
We will now argue a bit more informal. Suppose we have a construction a
that reduces a proof of ∃xϕ(x) to a proof of ⊥. We want a construction
p that produces for each d ∈ D a proof of ϕ(d) →⊥, i.e. a construction
that converts a proof of ϕ(d) into a proof of ⊥. So let b be a proof of
ϕ(d), then ⟨d, b⟩ is a proof of ∃xϕ(x), and a(d, b) is a proof of ⊥. Hence
p with (p(d))(b) = a(d, b) is a proof of ∀x¬ϕ(x). This provides us with a
construction that converts a into p.

The reader may try to justify some statements for himself, but he should
not worry if the details turn out to be too complicated. A convenient handling
of these problems requires a bit more machinery than we have at hand (e.g.
λ-notation). Note, by the way, that the whole procedure is not unproblematic
since we assume a number of closure properties of the class of constructions.

Now that we have given a rough heuristics of the meaning of the logical
connectives in intuitionistic logic, let us move on to a formalization. As it
happens, the system of natural deduction is almost right. The only rule that
lacks constructive content is that of Reduction ad Absurdum. As we have seen
(p. 38), an application of RAA yields ⊢ ¬¬ϕ → ϕ, but for ¬¬ϕ → ϕ to hold
informally we need a construction that transforms a proof of ¬¬ϕ into a proof
of ϕ. Now a proves ¬¬ϕ if a transforms each proof b of ¬ϕ into a proof of
⊥, i.e. there cannot be a proof b of ¬ϕ. b itself should be a construction that
transforms each proof c of ϕ into a proof of ⊥. So we know that there cannot
be a construction that turns a proof of ϕ into a proof of ⊥, but that is a long
way from the required proof of ϕ! (cf. ex. 1)
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let  c the first projection of a pair, namely !
c(a,b)=a (c may be defined as λ(x,y).x)



⊥→δ 
is intuitionistically acceptable

δ⋁¬δ 
is not intuitionistically acceptable

the principle δ⋁¬δ 
is equivalent to the rule 

!
!
!
!
!
!
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(RAA). Induction hypothesis: for each Γ containing all hypotheses of

¬ϕ
D
⊥

, we have Γ |= ⊥. Let Γ ′ contain all hypotheses of

[¬ϕ]
D
⊥
ϕ

and suppose

Γ ′ ̸|= ϕ, then there exists a valuation such that [[ψ]] = 1 for all ψ ∈ Γ ′

and [[ϕ]] = 0, i.e. [[¬ϕ]] = 1. But Γ ′′ = Γ ′ ∪ {¬ϕ} contains all hypotheses
of the first derivation and [[ψ]] = 1 for all ψ ∈ Γ ′′. This is impossible since
Γ ′′ |=⊥. Hence Γ ′ |= ϕ. !

This lemma may not seem very impressive, but it enables us to show that
some propositions are not theorems, simply by showing that they are not tau-
tologies. Without this lemma that would have been a very awkward task. We
would have to show that there is no derivation (without hypotheses) of the
given proposition. In general this requires insight in the nature of derivations,
something which is beyond us at the moment.
Examples . ̸⊢ p0, ̸⊢ (ϕ → ψ) → ϕ ∧ ψ.

In the first example take the constant 0 valuation. [[p0]] = 0, so ̸|= p0 and
hence ̸⊢ p0. In the second example we are faced with a meta proposition (a
schema); strictly speaking it cannot be derivable (only real propositions can
be). By ⊢ (ϕ → ψ) → ϕ ∧ ψ we mean that all propositions of that form (ob-
tained by substituting real propositions for ϕ and ψ, if you like) are derivable.
To refute it we need only one instance which is not derivable. Take ϕ = ψ = p0.
In order to prove the converse of Lemma 1.5.1 we need a few new notions.
The first one has an impressive history; it is the notion of freedom from con-
tradiction or consistency. It was made the cornerstone of the foundations of
mathematics by Hilbert.

Definition 1.5.2 A set Γ of propositions is consistent if Γ ̸⊢⊥.

In words: one cannot derive a contradiction from Γ . The consistency of Γ
can be expressed in various other forms:

Lemma 1.5.3 The following three conditions are equivalent:
(i) Γ is consistent,
(ii) For no ϕ, Γ ⊢ ϕ and Γ ⊢ ¬ϕ,
(iii) There is at least one ϕ such that Γ ̸⊢ ϕ

Proof. Let us call Γ inconsistent if Γ ⊢⊥, then we can just as well prove the
equivalence of

(iv) Γ is inconsistent,
(v) There is a ϕ such that Γ ⊢ ϕ and Γ ⊢ ¬ϕ,
(vi) Γ ⊢ ϕ for all ϕ.
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One can just as well present derivations as (linear) strings of propositions: we
will stick, however, to the tree form, the idea being that what comes naturally
in tree form should not be put in a linear straight-jacket.

We now shave to define the notion of derivation in general. We will use an
inductive definition to produce trees.

Notation

if D
ϕ

, D′

ϕ′ are derivations with conclusions ϕ, ϕ′, then
D
ϕ
ψ

,
D D′

ϕ ϕ′

ψ
are derivations obtained by applying a derivation rule to ϕ (and ϕ and ϕ′).

The cancellation of a hypothesis is indicated as follows: if
ψ
D
ϕ

is a derivation

with hypothesis ψ, then

[ψ]
D
ϕ
σ

is a derivation with ψ cancelled.

With respect to the cancellation of hypotheses, we note that one does
not necessarily cancel all occurrences of such a proposition ψ. This clearly
is justified, as one feels that adding hypotheses does not make a proposition
underivable (irrelevant information may always be added). It is a matter of
prudence, however, to cancel as much as possible. Why carry more hypotheses
than necessary?

Furthermore one may apply (→ I) if there is no hypothesis available for

cancellation e.g.
ϕ

→ I
ψ → ϕ

is a correct derivation, using just (→ I). To sum

it up: given a derivation tree of ψ (or ⊥), we obtain a derivation tree of ϕ → ψ
(or ϕ) at the bottom of the tree and striking out some (or all) occurrences, if
any, of ϕ (or ¬ϕ) on top of a tree.

A few words on the practical use of natural deduction: if you want to give a
derivation for a proposition it is advisable to devise some kind of strategy, just

A derivation with  
hypothesis ψ cancelled

denotes a set  
of leaves labelled 

with the formula ψ 
marked  

as "cancelled" / 
"discharged"
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One can just as well present derivations as (linear) strings of propositions: we
will stick, however, to the tree form, the idea being that what comes naturally
in tree form should not be put in a linear straight-jacket.

We now shave to define the notion of derivation in general. We will use an
inductive definition to produce trees.

Notation

if D
ϕ

, D′

ϕ′ are derivations with conclusions ϕ, ϕ′, then
D
ϕ
ψ

,
D D′

ϕ ϕ′

ψ
are derivations obtained by applying a derivation rule to ϕ (and ϕ and ϕ′).

The cancellation of a hypothesis is indicated as follows: if
ψ
D
ϕ

is a derivation

with hypothesis ψ, then

[ψ]
D
ϕ
σ

is a derivation with ψ cancelled.

With respect to the cancellation of hypotheses, we note that one does
not necessarily cancel all occurrences of such a proposition ψ. This clearly
is justified, as one feels that adding hypotheses does not make a proposition
underivable (irrelevant information may always be added). It is a matter of
prudence, however, to cancel as much as possible. Why carry more hypotheses
than necessary?

Furthermore one may apply (→ I) if there is no hypothesis available for

cancellation e.g.
ϕ

→ I
ψ → ϕ

is a correct derivation, using just (→ I). To sum

it up: given a derivation tree of ψ (or ⊥), we obtain a derivation tree of ϕ → ψ
(or ϕ) at the bottom of the tree and striking out some (or all) occurrences, if
any, of ϕ (or ¬ϕ) on top of a tree.

A few words on the practical use of natural deduction: if you want to give a
derivation for a proposition it is advisable to devise some kind of strategy, just

x:

[x:ψ]
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some cases there is only an implication one way; we will show later that these
implications cannot, in general, be reversed.

From a constructive point of view RAA is used to derive strong conclusions
from weak premises. E.g. in ¬(ϕ∧ψ) ⊢ ¬ϕ∨¬ψ the premise is weak (something
has no proof) and the conclusion is strong, it asks for an effective decision.
One cannot expect to get such results in intuitionistic logic. Instead there is
a collection of weak results, usually involving negations and double negations.

Lemma 5.2.2 (1) ⊢ ¬ϕ ↔ ¬¬¬ϕ
(2) ⊢ (ϕ ∧ ¬ψ) → ¬(ϕ → ψ)
(3) ⊢ (ϕ → ψ) → (¬¬ϕ → ¬¬ψ)
(4) ⊢ ¬¬(ϕ → ψ) ↔ (¬¬ϕ → ¬¬ψ)
(5) ⊢ ¬¬(ϕ ∧ ψ) ↔ (¬¬ϕ ∧ ¬¬ψ)
(6) ⊢ ¬¬∀xϕ(x) → ∀x¬¬ϕ(x)

In order to abbreviate derivations we will use the notation
Γ

ϕ
in a deriva-

tion when there is a derivation for Γ ⊢ ϕ (Γ has 0, 1 or 2 elements).

Proof. (1) ¬ϕ → ¬¬¬ϕ follows from Lemma 5.2.1 (7). For the converse we
again use 5.2.1(7)

[ϕ]1
=======
ϕ → ¬¬ϕ

¬¬ϕ [¬¬¬ϕ]2

⊥
1

¬ϕ
2

¬¬¬ϕ → ¬ϕ

[ϕ ∧ ¬ψ]2

ϕ [ϕ → ψ]1

ψ

[ϕ ∧ ¬ψ]2

¬ψ

⊥
1

¬(ϕ → ψ)
2

(ϕ ∧ ¬ψ) → ¬(ϕ → ψ)

[¬¬ϕ]3

[ϕ]1 [ϕ → ψ]4

ψ [¬ψ]2

⊥
1

¬ϕ

⊥
2

¬¬ψ
3

¬¬ϕ → ¬¬ψ
4

(ϕ → ψ) → (¬¬ϕ → ¬¬ψ)



5.2 Intuitionistic Propositional and Predicate Logic 157

some cases there is only an implication one way; we will show later that these
implications cannot, in general, be reversed.

From a constructive point of view RAA is used to derive strong conclusions
from weak premises. E.g. in ¬(ϕ∧ψ) ⊢ ¬ϕ∨¬ψ the premise is weak (something
has no proof) and the conclusion is strong, it asks for an effective decision.
One cannot expect to get such results in intuitionistic logic. Instead there is
a collection of weak results, usually involving negations and double negations.

Lemma 5.2.2 (1) ⊢ ¬ϕ ↔ ¬¬¬ϕ
(2) ⊢ (ϕ ∧ ¬ψ) → ¬(ϕ → ψ)
(3) ⊢ (ϕ → ψ) → (¬¬ϕ → ¬¬ψ)
(4) ⊢ ¬¬(ϕ → ψ) ↔ (¬¬ϕ → ¬¬ψ)
(5) ⊢ ¬¬(ϕ ∧ ψ) ↔ (¬¬ϕ ∧ ¬¬ψ)
(6) ⊢ ¬¬∀xϕ(x) → ∀x¬¬ϕ(x)

In order to abbreviate derivations we will use the notation
Γ

ϕ
in a deriva-

tion when there is a derivation for Γ ⊢ ϕ (Γ has 0, 1 or 2 elements).

Proof. (1) ¬ϕ → ¬¬¬ϕ follows from Lemma 5.2.1 (7). For the converse we
again use 5.2.1(7)

[ϕ]1
=======
ϕ → ¬¬ϕ

¬¬ϕ [¬¬¬ϕ]2

⊥
1

¬ϕ
2

¬¬¬ϕ → ¬ϕ

[ϕ ∧ ¬ψ]2

ϕ [ϕ → ψ]1

ψ

[ϕ ∧ ¬ψ]2

¬ψ

⊥
1

¬(ϕ → ψ)
2

(ϕ ∧ ¬ψ) → ¬(ϕ → ψ)

[¬¬ϕ]3

[ϕ]1 [ϕ → ψ]4

ψ [¬ψ]2

⊥
1

¬ϕ

⊥
2

¬¬ψ
3

¬¬ϕ → ¬¬ψ
4

(ϕ → ψ) → (¬¬ϕ → ¬¬ψ)



5.2 Intuitionistic Propositional and Predicate Logic 157

some cases there is only an implication one way; we will show later that these
implications cannot, in general, be reversed.

From a constructive point of view RAA is used to derive strong conclusions
from weak premises. E.g. in ¬(ϕ∧ψ) ⊢ ¬ϕ∨¬ψ the premise is weak (something
has no proof) and the conclusion is strong, it asks for an effective decision.
One cannot expect to get such results in intuitionistic logic. Instead there is
a collection of weak results, usually involving negations and double negations.

Lemma 5.2.2 (1) ⊢ ¬ϕ ↔ ¬¬¬ϕ
(2) ⊢ (ϕ ∧ ¬ψ) → ¬(ϕ → ψ)
(3) ⊢ (ϕ → ψ) → (¬¬ϕ → ¬¬ψ)
(4) ⊢ ¬¬(ϕ → ψ) ↔ (¬¬ϕ → ¬¬ψ)
(5) ⊢ ¬¬(ϕ ∧ ψ) ↔ (¬¬ϕ ∧ ¬¬ψ)
(6) ⊢ ¬¬∀xϕ(x) → ∀x¬¬ϕ(x)

In order to abbreviate derivations we will use the notation
Γ

ϕ
in a deriva-

tion when there is a derivation for Γ ⊢ ϕ (Γ has 0, 1 or 2 elements).

Proof. (1) ¬ϕ → ¬¬¬ϕ follows from Lemma 5.2.1 (7). For the converse we
again use 5.2.1(7)

[ϕ]1
=======
ϕ → ¬¬ϕ

¬¬ϕ [¬¬¬ϕ]2

⊥
1

¬ϕ
2

¬¬¬ϕ → ¬ϕ

[ϕ ∧ ¬ψ]2

ϕ [ϕ → ψ]1

ψ

[ϕ ∧ ¬ψ]2

¬ψ

⊥
1

¬(ϕ → ψ)
2

(ϕ ∧ ¬ψ) → ¬(ϕ → ψ)

[¬¬ϕ]3

[ϕ]1 [ϕ → ψ]4

ψ [¬ψ]2

⊥
1

¬ϕ

⊥
2

¬¬ψ
3

¬¬ϕ → ¬¬ψ
4

(ϕ → ψ) → (¬¬ϕ → ¬¬ψ)



5.2 Intuitionistic Propositional and Predicate Logic 157

some cases there is only an implication one way; we will show later that these
implications cannot, in general, be reversed.

From a constructive point of view RAA is used to derive strong conclusions
from weak premises. E.g. in ¬(ϕ∧ψ) ⊢ ¬ϕ∨¬ψ the premise is weak (something
has no proof) and the conclusion is strong, it asks for an effective decision.
One cannot expect to get such results in intuitionistic logic. Instead there is
a collection of weak results, usually involving negations and double negations.

Lemma 5.2.2 (1) ⊢ ¬ϕ ↔ ¬¬¬ϕ
(2) ⊢ (ϕ ∧ ¬ψ) → ¬(ϕ → ψ)
(3) ⊢ (ϕ → ψ) → (¬¬ϕ → ¬¬ψ)
(4) ⊢ ¬¬(ϕ → ψ) ↔ (¬¬ϕ → ¬¬ψ)
(5) ⊢ ¬¬(ϕ ∧ ψ) ↔ (¬¬ϕ ∧ ¬¬ψ)
(6) ⊢ ¬¬∀xϕ(x) → ∀x¬¬ϕ(x)

In order to abbreviate derivations we will use the notation
Γ

ϕ
in a deriva-

tion when there is a derivation for Γ ⊢ ϕ (Γ has 0, 1 or 2 elements).

Proof. (1) ¬ϕ → ¬¬¬ϕ follows from Lemma 5.2.1 (7). For the converse we
again use 5.2.1(7)

[ϕ]1
=======
ϕ → ¬¬ϕ

¬¬ϕ [¬¬¬ϕ]2

⊥
1

¬ϕ
2

¬¬¬ϕ → ¬ϕ

[ϕ ∧ ¬ψ]2

ϕ [ϕ → ψ]1

ψ

[ϕ ∧ ¬ψ]2

¬ψ

⊥
1

¬(ϕ → ψ)
2

(ϕ ∧ ¬ψ) → ¬(ϕ → ψ)

[¬¬ϕ]3

[ϕ]1 [ϕ → ψ]4

ψ [¬ψ]2

⊥
1

¬ϕ

⊥
2

¬¬ψ
3

¬¬ϕ → ¬¬ψ
4

(ϕ → ψ) → (¬¬ϕ → ¬¬ψ)



Theorem  
If φ does not contain ∨ or ∃ and all atoms but ⊥ in φ are negated, 
then 

 ⊢ φ ↔ ¬¬φ. 



160 5 Intuitionistic Logic

By definition intuitionistic predicate (propositional) logic is a subsystem
of the corresponding classical systems. Gödel and Gentzen have shown, how-
ever, that by interpreting the classical disjunction and existence quantifier in
a weak sense, we can embed classical logic into intuitionistic logic. For this
purpose we introduce a suitable translation:

Definition 5.2.7 The mapping ◦ : FORM → FORM is defined by
(i) ⊥◦ := ⊥ and ϕ◦ := ¬¬ϕ for atomic ϕ dinstinct from ⊥ .
(ii) (ϕ ∧ ψ)◦ := ϕ◦ ∧ ψ◦

(iii) (ϕ ∨ ψ)◦ := ¬(¬ϕ◦ ∧ ¬ψ◦)
(iv) (ϕ → ψ)◦ := ϕ◦ → ψ◦

(v) (∀xϕ(x))◦ := ∀xϕ◦(x)
(vi) (∃xϕ(x))◦ := ¬∀x¬ϕ◦(x)

This mapping is called the Gödel translation.
We define Γ ◦ = {ϕ◦|ϕ ∈ Γ}. The relation between classical derivability (⊢c)
and intuitionistic derivability (⊢i is given by

Theorem 5.2.8 Γ ⊢c ϕ ⇔ Γ ◦ ⊢i ϕ◦.

Proof. It follows from the preceding chapters that ⊢c ϕ ↔ ϕ◦, therefore ⇐ is
an immediate consequence of Γ ⊢i ϕ ⇒ Γ ⊢c ϕ.

For ⇒, we use induction on the derivation D of ϕ from Γ .

1. ϕ ∈ Γ , then also ϕ◦ ∈ Γ ◦ and hence Γ ◦ ⊢i ϕ◦.

2. The last rule of D is a propositional introduction or elimination rule. We
consider two cases:

→ I [ϕ]

D

ψ

ϕ → ψ

Induction hypothesis Γ ◦, ϕ◦ ⊢i ψ◦.
By → I Γ ◦ ⊢i ϕ◦ → ψ◦, and so by definition
Γ ◦ ⊢i (ϕ → ψ)◦.

∨E

D

ϕ ∨ ψ

[ϕ]

D1

σ

[ψ]

D2

σ

σ

Induction hypothesis: Γ ◦ ⊢i (ϕ ∨ ψ)◦,
Γ ◦, ϕ◦ ⊢i σ◦Γ ◦, ψ◦ ⊢i σ◦

(where Γ contains all uncancelled
hypotheses involved).

Γ ◦ ⊢i ¬(¬ϕ◦ ∧ ¬ψ◦), Γ ◦ ⊢i ϕ◦ → σ◦, Γ ◦ ⊢i ψ◦ → σ◦.
The result follows from the derivation below:
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An Kripke model for propositional intuitionistic logic is a triple 
 ℋ =⟨K, ≤, V, ⊩ ⟩ 
s.t.  

K is a set of “worlds” 
≤ is a partial order on K 
V: K➝2PROP  s.t. p∈V(k) and k ≤ k’ then p∈V(k’) 
⊩ ⊆ K x FORM is called forcing relation satisfying the following conditions: 

k⊩p ⇔ p∈V(k) for p∈PROP 
k⊩ φ∧ψ ⇔ k⊩ φ AND k⊩ ψ 
k⊩ φ∨ψ ⇔ k⊩ φ OR k⊩ ψ 
k⊮⊥ 
k⊩ φ→ψ ⇔ for each k’. k ≤ k’ ⇒ if k’ ⊩ φ then k’ ⊩ψ 
k⊩ ¬φ ⇔ for each k’. k ≤ k’ ⇒ if k’ ⊮ φ

We say that ℋ ⊩φ iff  for each k in ℋ we have k⊩ φ  

We say that ⊩φ iff  for each ℋ we have ℋ ⊩ φ  

THEOREM!
Γ⊢φ iff Γ⊩φ

We say that Γ⊩φ iff  for each ℋ and for each k in ℋ we have k ⊩Γ⇒ k ⊩ φ  



⊬φ∨¬φ

p

0

1

0⊮p∨¬p



⊬(φ➝σ)∨(σ➝φ)



⊬(φ➝σ)∨(σ➝φ)

0

21 p q

0⊮(p➝q)∨(q➝p)



NORMALIZATION



6

Normalisation

6.1 Cuts

Anyone with a reasonable experience in making natural deduction derivations
will have observed that one somehow gets fairly efficient derivations. The worst
that can happen is a number of steps that end up with what was already
derived or given, but then one can obviously shorten the derivation. Here is
an example:

[σ ∧ ϕ]2
∧E

ϕ [ϕ → ψ]1
→ E

ψ

[σ ∧ ϕ]2
∧E

σ
→ I

ψ → σ
→ E

σ
→ I1

(ϕ → ψ) → σ
→ I2

(σ ∧ ϕ) → ((ϕ → ψ) → σ)

σ occurs twice, the first time it is a premise for a → I, and the second
time the result of a → E. We can shorten the derivation as follows:

[σ ∧ ϕ]1
∧E

σ
→ I

(ϕ → ψ) → σ
→ I1

(σ ∧ ϕ) → ((ϕ → ψ) → σ)

It is apparently not a good idea to introduce something and to eliminate it
right away. This indeed is the key-idea for simplifying derivations: avoid elim-
inations after introductions. If a derivation contains an introduction followed
by an elimination, then one can, as a rule, easily shorten the derivation, the
question is, can one get rid of all those unfortunate steps? The answer is ‘yes’,
but the proof is not trivial.
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conversions

6.1 Cuts 189

The adoption of the new rule is not necessary, but rather convenient.

We will first look at predicate calculus with ∧,→,⊥, ∀.

Derivations will systematically be converted into simpler ones by “elimi-
nation of cuts”; here is an example:

D

σ
→ I

ψ → σ

D′

ψ
→ E

σ

converts to
D

σ

In general, when the tree under consideration is a subtree of a larger deriva-
tion the whole subtree ending with σ is replaced by the second one. The rest
of the derivation remains unaltered. This is one of the features of natural de-
duction derivations: for a formula σ in the derivation only the part above σ is
relevant to σ. Therefore we will only indicate conversions as far as required,
but the reader will do well to keep in mind that we make the replacement
inside a given bigger derivation.

We list the possible conversions:
D1

ϕ1

D2

ϕ2
∧I

ϕ1 ∧ ϕ2
∧E

ϕi

is converted to
Di

ϕi

D1

ψ

[ψ]

D2

ϕ
→ I

ψ → ϕ
→ E

ϕ

is converted to

D1

ψ

D2

ϕ

D

ϕ
∀I

∀xϕ[x/y]
∀E

ϕ[t/y]

is converted to
D[t/y]

ϕ[t/y]
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⊳

Redex/cut: sequence   ➝I ,  ➝E



⊳

σ σ

hp𝓓1 ⊆hp𝓓2

𝓓2𝓓1𝓓1 𝓓2



⊳
𝓓2𝓓1

➝

𝓓2𝓓1

𝓓 𝓓*=𝓓[𝓓1/𝓓2]

𝓓➝𝓓*



𝓓➝𝓓* (𝓓 1-step reduces to 𝓓*): 𝓓* is obtained by applying a 

conversion to a subderivation of 𝓓

𝓓↠𝓓* (𝓓 reduces to 𝓓*): ∃ 𝓓1…𝓓n s.t. 𝓓=𝓓1, 𝓓*=𝓓n, 𝓓1➝…➝𝓓n  
↠ is the reflexive and transitive closure of ➝

𝓓 is in normal form (irreducible) if 𝓓↠𝓓* implies that 𝓓=𝓓* !
𝓓 is in normal form (irreducible) if there is no 𝓓* s.t. 𝓓➝𝓓* 

Theorem (weak normalisation)!
for each 𝓓 there is 𝓓* s.t. 𝓓➝𝓓* and 𝓓* is in normal form
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of the derivation remains unaltered. This is one of the features of natural de-
duction derivations: for a formula σ in the derivation only the part above σ is
relevant to σ. Therefore we will only indicate conversions as far as required,
but the reader will do well to keep in mind that we make the replacement
inside a given bigger derivation.

We list the possible conversions:
D1

ϕ1

D2

ϕ2
∧I

ϕ1 ∧ ϕ2
∧E

ϕi

is converted to
Di

ϕi

D1

ψ

[ψ]

D2

ϕ
→ I

ψ → ϕ
→ E

ϕ

is converted to

D1

ψ

D2

ϕ

D

ϕ
∀I

∀xϕ[x/y]
∀E

ϕ[t/y]

is converted to
D[t/y]

ϕ[t/y]

⊳

conversion with cut formula ψ→φ



d(φ)= size of φ

φ is maximal in a derivation 𝓓 if:!
1. φ is a cut formula!
2. d(φ)=max{d(δ): δ is a cut formula in 𝓓} 



Theorem (weak normalisation)!
for each 𝓓 there is 𝓓* s.t. 𝓓↠𝓓* and 𝓓* is in normal form

d=max{d(δ): δ is a cut formula in 𝓓} !
n=#{δ : δ is an occurrence of a maximal cut}!
Let call R(𝓓) the pair (d,n) of 𝓓.!
Let us assume the lexicographic  well order < for pairs of natural numbers:!
(d,n) < (d’,n’) iff d <d’ or d=d’ and n< n’.!
The proof is by induction on R(𝓓).!
Base: if R(𝓓)=(0,0) then 𝓓 is in normal form;!
Induction step: let us suppose that R(𝓓)=(d,n).!
Make a reduction with a maximal cut formula δ: 𝓓→𝓓*, with R(𝓓*)=(d*,n*)!
Now observe that (d*,n*)<(d,n) (if n>1 then d*=d and n*=n-1, if n=1, then d*<d)!
By induction hypothesis 𝓓*↠𝓓º!
Since 𝓓→𝓓* and 𝓓*↠𝓓º we have the thesis.



SUBFORMULA PROPERTY



Theorem Let 𝓓 be a normal deduction in the → fragment. Then  
i) every formula in 𝓓 is a subformula of a conclusion or a hypothesis of 𝓓;!
ii) if 𝓓 ends in an elimination, it has a principal branch, !
i.e. a sequence of formulae A0,A1,...,An such that:!
• A0 is an (undischarged) hypothesis;!
• An is the conclusion;!
• Ai is the principal premise of an elimination of which the conclusion is Ai+1(for i=0,...,n−1).!
In particular An is a subformula of A0!

Proof 1.!If 𝓓 consists of a hypothesis, there is nothing to do. !
!    2.!If 𝓓 ends in an introduction,!
!
!
!
!
then it suffices to apply the induction hypothesis to 𝓓1. !
! 3.! If 𝓓 ends in an elimination,!
!
it is not possible that the proof above the principal premise ends in an introduction, so it 
ends in an elimination and has a principal branch, which can be extended to a principal 
branch of 𝓓

6.1 Cuts 189

The adoption of the new rule is not necessary, but rather convenient.

We will first look at predicate calculus with ∧,→,⊥, ∀.

Derivations will systematically be converted into simpler ones by “elimi-
nation of cuts”; here is an example:
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ψ
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In general, when the tree under consideration is a subtree of a larger deriva-
tion the whole subtree ending with σ is replaced by the second one. The rest
of the derivation remains unaltered. This is one of the features of natural de-
duction derivations: for a formula σ in the derivation only the part above σ is
relevant to σ. Therefore we will only indicate conversions as far as required,
but the reader will do well to keep in mind that we make the replacement
inside a given bigger derivation.

We list the possible conversions:
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∧E

ϕi
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ψ
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lemma!
if p is a propositional symbol then ⊬p

Proof!
Each deduction 𝓓 with conclusion p should terminate with an elimination rule.!
Therefore there is an undischarged hypothesis β s.t. p is a sub formula of p, and  it is not true!
that 𝓓 is a derivation without undischarged hypotheses of p.

Corollary!
the natural deduction system based on → is consistent



COMPUTATIONS
𝓓0→𝓓1→…→𝓓k  with 𝓓k in normal form

𝓓0→𝓓1→…→𝓓k→ …

finite computation

infinite computation

A “computation”/“reduction sequence” of 𝓓 of length 𝛋≤ω is a 
sequence of deductions (𝓓i)i<𝛋    such that 𝓓0 = 𝓓 and 𝓓i-1→𝓓i for 
all i<𝛋.!

Theorem (strong normalisation)!
for each 𝓓, alle the computations of 𝓓 are finite



Theorem (confluence)!
If 𝓓↠𝓓’ and 𝓓↠𝓓’’  then there exist 𝓓* s.t.!
𝓓’↠𝓓* and 𝓓’’↠𝓓*

Theorem (existence and unicity of normal form)!
If 𝓓↠𝓓’ and 𝓓↠𝓓’’  and 𝓓’ and 𝓓’’ are in normal form!
𝓓’=𝓓’’!
For each 𝓓 there is 𝓓’ s.t. 𝓓↠𝓓’ and 𝓓’ is in normal form!



coding the derivation



φ

𝓓 code(𝓓):φ

we inductively associate a code to each derivation, by means of a suitable 
decoration of formulas: 
i.e. we assign to each occurrence of a formula δ in a deduction tree the code 
of the derivation with the occurrence δ as conclusion (root)



P:ψ

!
M:α

N:δ
R:δ



We assume to have a denumerable set x0,x1,… of “variables”!
We decorate each assumption ψ with exactly one variable x.!
Different occurrences of the same assumption ψ may be decorated with the 
same variable x.!
Occurrences of different formulas must be decoded with different variables.

 x:δ ∈Y
The set of decorated derivations is the smallest set Y such that

  x:δ!
𝓓 

M:β
if ∈ Y then 

       [x:δ]!
𝓓 

M:β!

λxδ.M:δ→β

∈ Y

𝓓1 

M:β
if ∈Y then ∈ Y𝓓2 

N:β→δ

𝓓2 

N:β→δ
𝓓1 

M:β

NM:δ

 x:δ



       [x:δ]!
!

M:β!

λxδ.M:δ→β

…

N:β→δ M:β
NM:δ

THE STRINGS USED TO CODE DERIVATIONS ARE CALLED!
λ-TERMS



REDUCTIONS

N:δ→β N:δ
(λxδ.M)N:β

       [x:δ]!
!

!
M:β!

λxδ.M:δ→β

…

𝓓2
!
!

!
M[N/x]:β

N:δ
𝓓2

𝓓1[N/x]

𝓓1

⊳

(λxδ.M)N:β  ⊳ M[N/x]:β 



(λxδ.M)N:β  ⊳ M[N/x]:β!
!

(λxδ.M)N:β  → M[N/x]:β

M:β  → M1 :β!
!

MN:β  → M1N:β

M:β  → M1 :β!
!

NM:β  → NM1 :β

M:β  → M1 :β!
!

λxδ.M :β  → λxδ.M1 :β

↠ is the reflexive and transitive closure of →



exercise: prove that

Γ,β⊢β
Γ,β⊢ψ  ⇒ Γ⊢β→ψ
Γ⊢β→ψ & Γ⊢β  ⇒ Γ⊢ψ

we have the following rules for the derivation relation
Γ,β⊢β

Γ,β⊢ψ  !
Γ⊢β→ψ

Γ⊢β→ψ    Γ⊢β  !
          Γ⊢ψ



exercise: prove that

Γ,β⊢β
Γ,β⊢ψ  ⇒ Γ⊢β→ψ
Γ⊢β→ψ & Γ⊢β  ⇒ Γ⊢ψ

we have the following rules for the derivation relation
Γ,β⊢β

Γ,β⊢ψ  !
Γ⊢β→ψ

Γ⊢β→ψ    Γ⊢β  !
          Γ⊢ψ

Γ,x:β⊢x:β

Γ,x:β⊢M:ψ  !
Γ⊢λxβ.M:β→ψ

Γ⊢M:β→ψ    Γ⊢N:β  !
          Γ⊢MN: ψ



CURRY-HOWARD ISOMORPHISM

FORMULAS ⇔ TYPES

PROOFS ⇔ PROGRAMS (λ-TERMS)

REDUCTIONS ⇔ COMPUTATIONS



The full propositional system

we can restrict our attention to applications of the ⊥ −rule for atomic instances!
!
!
!
The proof is done by a trivial induction (exercise)!
Hint: transform e.g.!
!

             𝓓                             𝓓!
                   ⊥                   with                     ⊥!

                 α➝σ                                            σ!

                                                                  α➝σ

42 1 Propositional Logic

(RAA). Induction hypothesis: for each Γ containing all hypotheses of

¬ϕ
D
⊥

, we have Γ |= ⊥. Let Γ ′ contain all hypotheses of

[¬ϕ]
D
⊥
ϕ

and suppose

Γ ′ ̸|= ϕ, then there exists a valuation such that [[ψ]] = 1 for all ψ ∈ Γ ′

and [[ϕ]] = 0, i.e. [[¬ϕ]] = 1. But Γ ′′ = Γ ′ ∪ {¬ϕ} contains all hypotheses
of the first derivation and [[ψ]] = 1 for all ψ ∈ Γ ′′. This is impossible since
Γ ′′ |=⊥. Hence Γ ′ |= ϕ. !

This lemma may not seem very impressive, but it enables us to show that
some propositions are not theorems, simply by showing that they are not tau-
tologies. Without this lemma that would have been a very awkward task. We
would have to show that there is no derivation (without hypotheses) of the
given proposition. In general this requires insight in the nature of derivations,
something which is beyond us at the moment.
Examples . ̸⊢ p0, ̸⊢ (ϕ → ψ) → ϕ ∧ ψ.

In the first example take the constant 0 valuation. [[p0]] = 0, so ̸|= p0 and
hence ̸⊢ p0. In the second example we are faced with a meta proposition (a
schema); strictly speaking it cannot be derivable (only real propositions can
be). By ⊢ (ϕ → ψ) → ϕ ∧ ψ we mean that all propositions of that form (ob-
tained by substituting real propositions for ϕ and ψ, if you like) are derivable.
To refute it we need only one instance which is not derivable. Take ϕ = ψ = p0.
In order to prove the converse of Lemma 1.5.1 we need a few new notions.
The first one has an impressive history; it is the notion of freedom from con-
tradiction or consistency. It was made the cornerstone of the foundations of
mathematics by Hilbert.

Definition 1.5.2 A set Γ of propositions is consistent if Γ ̸⊢⊥.

In words: one cannot derive a contradiction from Γ . The consistency of Γ
can be expressed in various other forms:

Lemma 1.5.3 The following three conditions are equivalent:
(i) Γ is consistent,
(ii) For no ϕ, Γ ⊢ ϕ and Γ ⊢ ¬ϕ,
(iii) There is at least one ϕ such that Γ ̸⊢ ϕ

Proof. Let us call Γ inconsistent if Γ ⊢⊥, then we can just as well prove the
equivalence of

(iv) Γ is inconsistent,
(v) There is a ϕ such that Γ ⊢ ϕ and Γ ⊢ ¬ϕ,
(vi) Γ ⊢ ϕ for all ϕ.

p p atomic



The conversion for ∧ and ∨

6.1 Cuts 189

The adoption of the new rule is not necessary, but rather convenient.

We will first look at predicate calculus with ∧,→,⊥, ∀.

Derivations will systematically be converted into simpler ones by “elimi-
nation of cuts”; here is an example:

D

σ
→ I

ψ → σ

D′

ψ
→ E

σ

converts to
D

σ

In general, when the tree under consideration is a subtree of a larger deriva-
tion the whole subtree ending with σ is replaced by the second one. The rest
of the derivation remains unaltered. This is one of the features of natural de-
duction derivations: for a formula σ in the derivation only the part above σ is
relevant to σ. Therefore we will only indicate conversions as far as required,
but the reader will do well to keep in mind that we make the replacement
inside a given bigger derivation.

We list the possible conversions:
D1

ϕ1

D2

ϕ2
∧I

ϕ1 ∧ ϕ2
∧E

ϕi

is converted to
Di

ϕi

D1

ψ

[ψ]
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ϕ
→ I
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ϕ
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ψ

D2
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D

ϕ
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198 6 Normalisation

One can draw some immediate corollaries from our results so far.

Corollary 6.2.14 Predicate logic is consistent.

Proof. Suppose ⊢⊥, then there is a normal derivation ending in ⊥ with all
hypotheses cancelled. There is a track through the conclusion; in this track
there are no introduction rules, so the top (hypothesis) is not cancelled. Con-
tradiction. !

Note that 6.2.14 does not come as a surprise, we already knew that predi-
cate logic is consistent on the basis of the Soundness Theorem. The nice point
of the above proof is, that it uses only syntactical arguments.

Corollary 6.2.15 Predicate logic is conservative over propositional logic.

Proof. Let D be a normal derivation of Γ ⊢ ϕ, where Γ and ϕ contain no
quantifiers, then by the subformula property D contains only quantifier-free
formulas, hence D is a derivation in propositional logic. !

6.3 Normalization for Intuitionistic Logic

When we consider the full language, including ∨ and ∃, some of the notions
introduced above have to be reconsidered. We briefly mention them:

– in the ∃E
∃x ϕ(x)

ϕ(u)

D

σ

σ

u is called the proper variable.

– the lemmas on bound variables, proper variables and free variables remain
correct.

– cuts and cut formulas are more complicated, they will be dealt with below.

As before we assume that our derivations satisfy the conditions on free
and bound variables and on proper variables.

Intuitionistic logic adds certain complications to the technique developed
above. We can still define all conversions:

∨ − conversion

D

ϕi
∨I

ϕ1 ∨ ϕ2

[ϕ1]

D1

σ

[ϕ2]

D2

σ
∨E

σ

converts to

Di

ϕi

D1

σ
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we need more conversions

α∧α
[α]

α

α∨α
[α] [α][α]

α∧α
α∧α

failure of subformula property



σ

…

α
_______ r

A generic 
elimination 
rule

principal premise



commuting conversions

σ

…
γ

_______________ 
r

σα∨β

[β]…

σ

[α]…

α∨β
σ

[β]…

…

rγ

…

rγ

γ

σ

…

α
_______ r

⊥
——

α
⊥

——



Theorem (weak normalisation)!
for each 𝓓 there is 𝓓* s.t. 𝓓↠𝓓* and 𝓓* is in normal form

Theorem (confluence)!
If 𝓓↠𝓓’ and 𝓓↠𝓓’’  then there exist 𝓓* s.t.!
𝓓’↠𝓓* and 𝓓’’↠𝓓*

Theorem (existence and unicity of normal form)!
If 𝓓↠𝓓’ and 𝓓↠𝓓’’  and 𝓓’ and 𝓓’’ are in normal form!
𝓓’=𝓓’’!
For each 𝓓 there is 𝓓’ s.t. 𝓓↠𝓓’ and 𝓓’ is in normal form!


