INTUITIONISM

Consider the problem "Are there two irrational numbers a and b such that a^b is rational?" We apply the following smart reasoning: suppose $\sqrt{2}^{\sqrt{2}}$ is rational, then we have solved the problem. Should $\sqrt{2}^{\sqrt{2}}$ be irrational then $\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}$ is rational. In both cases there is a solution, so the answer to the problem is: Yes. However, should somebody ask us to produce such a pair a, b, then we have to engage in some serious number theory in order to come up with the right choice between the numbers mentioned above.

- (\wedge) a proves $\varphi \wedge \psi := a$ is a pair $\langle b, c \rangle$ such that b proves φ and c proves ψ .
- (\vee) a proves $\varphi \vee \psi := a$ is a pair $\langle b, c \rangle$ such that b is a natural number and if b = 0 then c proves φ , if $b \neq 0$ then c proves ψ .
- (\rightarrow) a proves $\varphi \rightarrow \psi := a$ is a construction that converts any proof p of φ into a proof a(p) of ψ .
- (\perp) no a proves \perp .

In order to deal with the quantifiers we assume that some domain D of objects is given.

- (\forall) $a \text{ proves } \forall x \varphi(x) := a \text{ is a construction such that for each } b \in D \ a(b) \text{ proves } \varphi(\overline{b}).$
- (\exists) a proves $\exists x \varphi(x) := a$ is a pair (b, c) such that $b \in D$ and c proves $\varphi(\overline{b})$.

1. $\varphi \wedge \psi \rightarrow \varphi$ is true, for let $\langle a, b \rangle$ be a proof of $\varphi \wedge \psi$, then the construction c with c(a, b) = a converts a proof of $\varphi \wedge \psi$ into a proof of φ . So c proves $(\varphi \wedge \psi \rightarrow \varphi)$.

let c the first projection of a pair, namely c(a,b)=a (c may be defined as λ(x,y).x)

2. $(\varphi \land \psi \to \sigma) \to (\varphi \to (\psi \to \sigma))$. Let a prove $\varphi \land \psi \to \sigma$, i.e. a converts each proof $\langle b,c \rangle$ of $\varphi \land \psi$ into a proof a(b,c) of σ . Now the required proof p of $\varphi \to (\psi \to \sigma)$ is a construction that converts each proof b of φ into a p(b) of $\psi \to \sigma$. So p(b) is a construction that converts a proof c of c into a proof c

$$\bot {\to} \delta$$

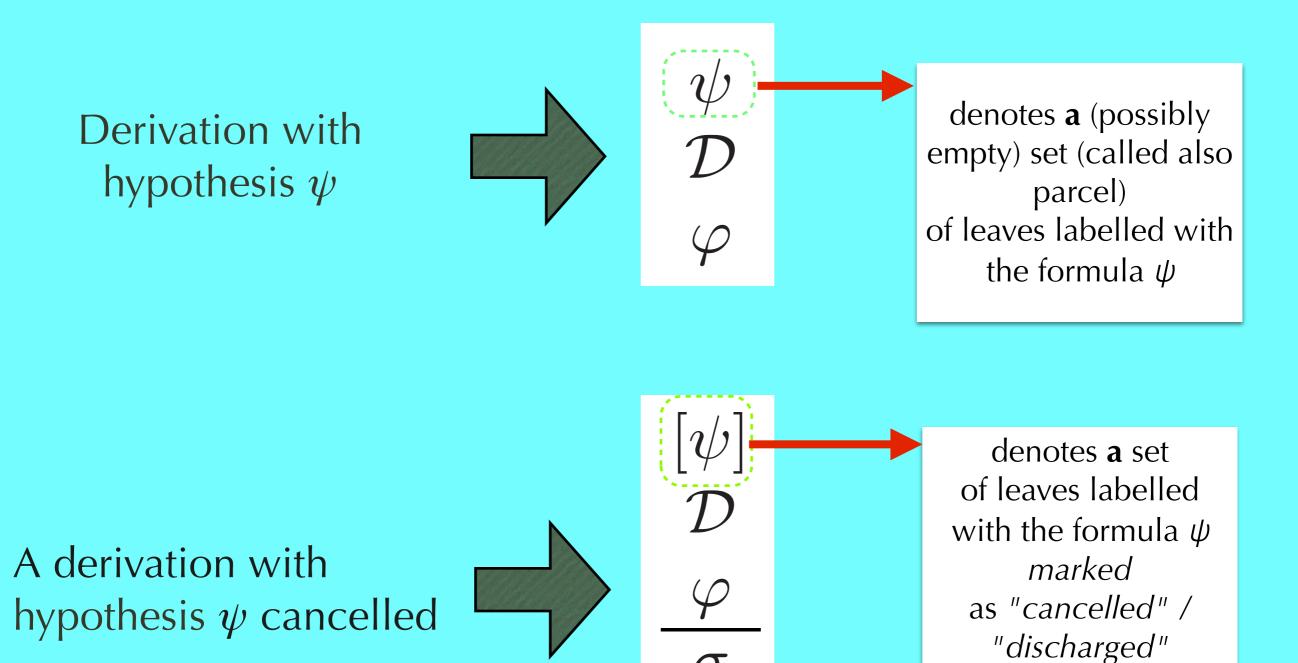
is intuitionistically acceptable

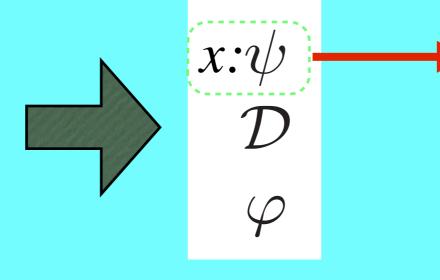
$$\begin{array}{c} \bot {\to} \delta \\ \text{is equivalent to the rule} \\ \frac{\bot}{\varphi} \end{array}$$

the principle $\delta \lor \neg \delta$ is equivalent to the rule

$$\begin{array}{c} [\neg \varphi] \\ \mathcal{D} \\ \bot \\ \varphi
\end{array}$$

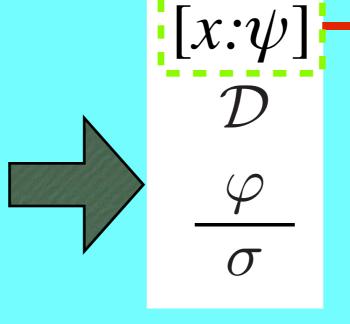
A natural deduction system for intuitionism is obtained by dropping RAA and maintaining $\frac{\bot}{\varphi}$





denotes a (possibly empty) set of leaves labelled with the formula ψ . Each formula in the set is labelled with x

A derivation with hypothesis ψ cancelled



denotes a set of leaves labelled with the formula ψ marked as "cancelled" / "discharged". Each discharged formula is labelled with \mathcal{X}

$$(1) \vdash \neg \varphi \leftrightarrow \neg \neg \neg \varphi$$

$$(2) \vdash (\varphi \land \neg \psi) \rightarrow \neg (\varphi \rightarrow \psi)$$

$$(3) \vdash (\varphi \rightarrow \psi) \rightarrow (\neg \neg \varphi \rightarrow \neg \neg \psi)$$

$$(4) \vdash \neg \neg (\varphi \rightarrow \psi) \leftrightarrow (\neg \neg \varphi \rightarrow \neg \neg \psi)$$

$$(5) \vdash \neg \neg (\varphi \land \psi) \leftrightarrow (\neg \neg \varphi \land \neg \neg \psi)$$

$$(6) \vdash \neg \neg \forall x \varphi(x) \rightarrow \forall x \neg \neg \varphi(x)$$

$$\frac{[\varphi \land \neg \psi]^2}{\varphi} \qquad \qquad [\varphi \to \psi]^1 \qquad [\varphi \land \neg \psi]^2 \\
\frac{\psi}{\varphi} \qquad \qquad \frac{\bot}{\neg \psi} \\
\frac{\bot}{\neg (\varphi \to \psi)} 1 \\
\frac{\neg (\varphi \to \psi)}{(\varphi \land \neg \psi) \to \neg (\varphi \to \psi)} 2$$

$$\frac{[\varphi]^{1} \quad [\varphi \to \psi]^{4}}{\psi} \qquad \frac{[\neg \psi]^{2}}{\frac{\bot}{\neg \varphi}} 1$$

$$\frac{\bot}{\neg \varphi} \qquad \frac{1}{\neg \varphi} \qquad \frac{\bot}{\neg \varphi} \qquad \frac{1}{\neg \varphi} \qquad \frac{\bot}{\neg \varphi} \qquad \frac{1}{\neg \varphi} \qquad \frac{1}{\neg \varphi} \qquad \frac{\bot}{\neg \varphi} \qquad \frac{\bot$$

Theorem

If φ does not contain \vee or \exists and all atoms but \bot in φ are negated, then

$$\vdash \varphi \leftrightarrow \neg \neg \varphi$$
.

Definition 5.2.7 The mapping \circ : $FORM \to FORM$ is defined by

(i) $\bot \circ := \bot$ and $\varphi \circ := \neg \neg \varphi$ for atomic φ dinstinct from \bot (ii) $(\varphi \land \psi) \circ := \varphi \circ \land \psi \circ$ (iii) $(\varphi \lor \psi) \circ := \neg (\neg \varphi \circ \land \neg \psi \circ)$ (iv) $(\varphi \to \psi) \circ := \varphi \circ \to \psi \circ$ (v) $(\forall x \varphi(x)) \circ := \forall x \varphi \circ (x)$ (vi) $(\exists x \varphi(x)) \circ := \neg \forall x \neg \varphi \circ (x)$

Theorem 5.2.8 $\Gamma \vdash_c \varphi \Leftrightarrow \Gamma^{\circ} \vdash_i \varphi^{\circ}$.

An Kripke model for propositional intuitionistic logic is a triple

$$\mathscr{H} = \langle K, \leq, V, \Vdash \rangle$$

s.t.

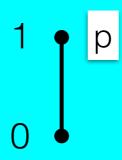
- K is a set of "worlds"
- ≤ is a partial order on K
- ◆ V: K→ 2^{PROP} s.t. p∈V(k) and k ≤ k' then p∈V(k')
- $\bullet \Vdash \subseteq K \times FORM$ is called forcing relation satisfying the following conditions:
 - $k \Vdash p \Leftrightarrow p \in V(k)$ for $p \in PROP$
 - k | φ ∧ ψ ⇔ k | φ AND k | ψ
 - k⊩ φ∨ψ ⇔ k⊩ φ OR k⊩ ψ
 - k⊮⊥
 - $k \Vdash \varphi \rightarrow \psi \Leftrightarrow \text{ for each } k'. \ k \leq k' \Rightarrow \text{ if } k' \Vdash \varphi \text{ then } k' \Vdash \psi$
 - $k \Vdash \neg \varphi \Leftrightarrow \text{ for each } k'. \ k \leq k' \Rightarrow \text{ if } k' \not\Vdash \varphi$

We say that $\mathscr{H} \Vdash \varphi$ iff for each k in \mathscr{H} we have $k \Vdash \varphi$

We say that $\Vdash \varphi$ iff for each \mathscr{H} we have $\mathscr{H} \Vdash \varphi$

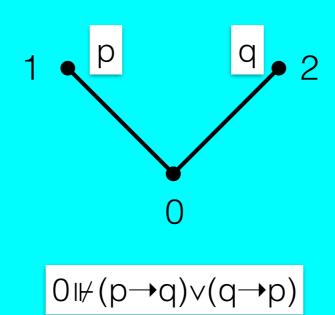
We say that $\Gamma \Vdash \varphi$ iff for each \mathscr{H} and for each k in \mathscr{H} we have $k \Vdash \Gamma \Rightarrow k \Vdash \varphi$

THEOREM Γ⊢Φ iff Γ⊩Φ



0⊮р∨¬р

⊬(ф**→**σ)∨(σ**→**ф)



NORMALIZATION

$$\frac{[\sigma \land \varphi]^{2}}{\varphi} \land E \qquad \qquad \frac{[\sigma \land \varphi]^{2}}{\varphi} \land E$$

$$\frac{\varphi}{\varphi} \qquad \qquad [\varphi \to \psi]^{1} \to E \qquad \frac{\sigma}{\psi \to \sigma} \to I$$

$$\frac{\varphi}{\varphi} \qquad \qquad \frac{\varphi}{\varphi} \qquad \qquad \frac{\varphi}{\varphi} \to I$$

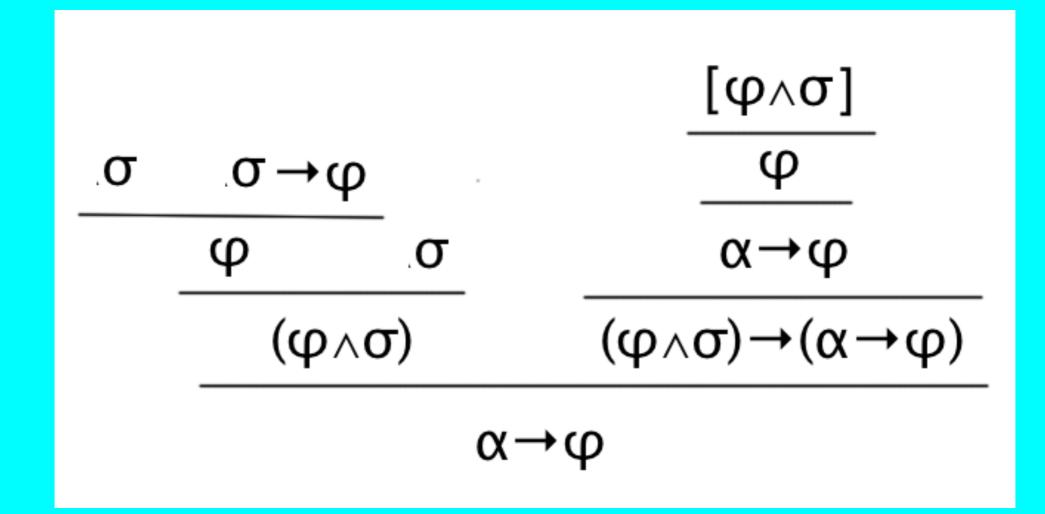
$$\frac{\varphi}{\varphi} \to I$$

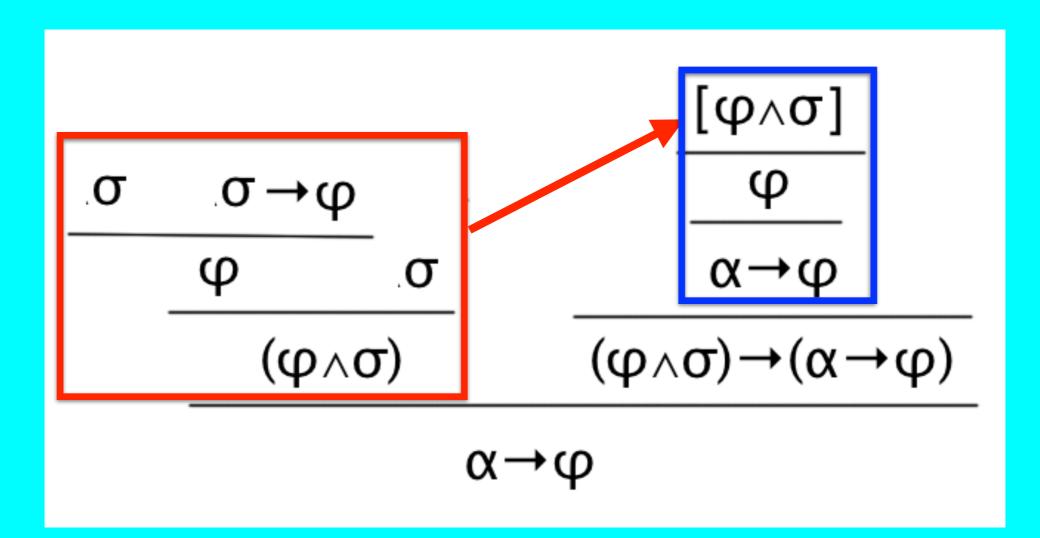
$$\frac{[\sigma \land \varphi]^2}{\varphi} \land E \qquad \qquad [\varphi \rightarrow \psi]^1 \rightarrow E \qquad \frac{\sigma}{\psi \rightarrow \sigma} \rightarrow I \\
\frac{\psi}{\varphi \rightarrow \sigma} \rightarrow I_1 \\
\frac{(\varphi \rightarrow \psi) \rightarrow \sigma}{(\varphi \rightarrow \psi) \rightarrow \sigma} \rightarrow I_2$$

$$\frac{[\sigma \land \varphi]^{1}}{\sigma} \land E$$

$$\frac{\sigma}{(\varphi \to \psi) \to \sigma} \to I$$

$$\frac{(\varphi \to \psi) \to \sigma}{(\sigma \land \varphi) \to ((\varphi \to \psi) \to \sigma)} \to I_{1}$$





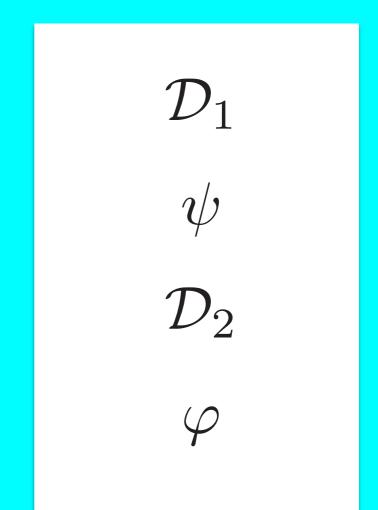
$$\begin{array}{ccc}
\sigma & \sigma \rightarrow \varphi \\
\varphi & \sigma
\end{array}$$

$$\begin{array}{c}
(\varphi \land \sigma) \\
\varphi \\
\alpha \rightarrow \varphi
\end{array}$$

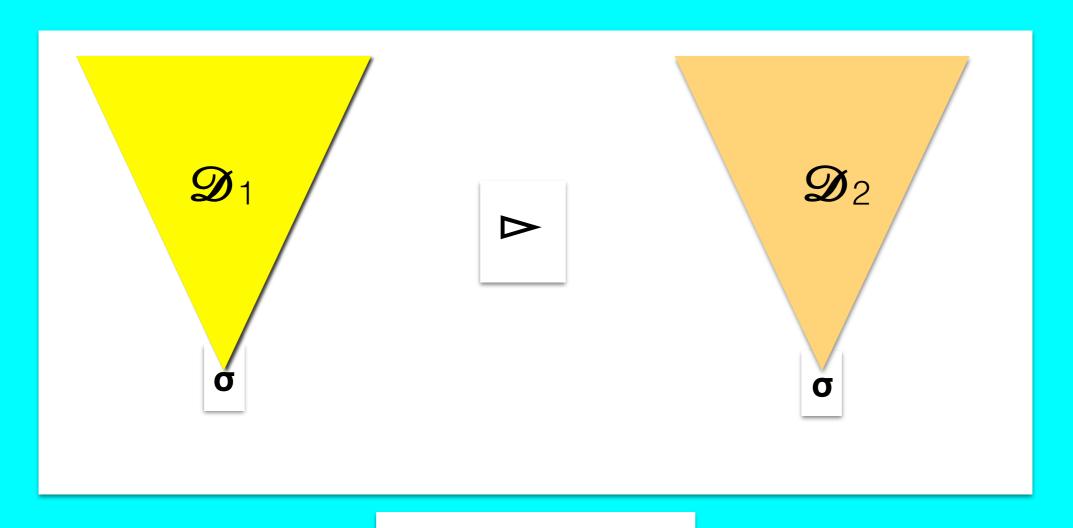
$$\begin{array}{c|c}
\sigma & \sigma \rightarrow \varphi \\
\hline
\phi & \sigma \\
\hline
(\phi \land \sigma) \\
\hline
\phi \\
\hline
\alpha \rightarrow \varphi
\end{array}$$

conversions

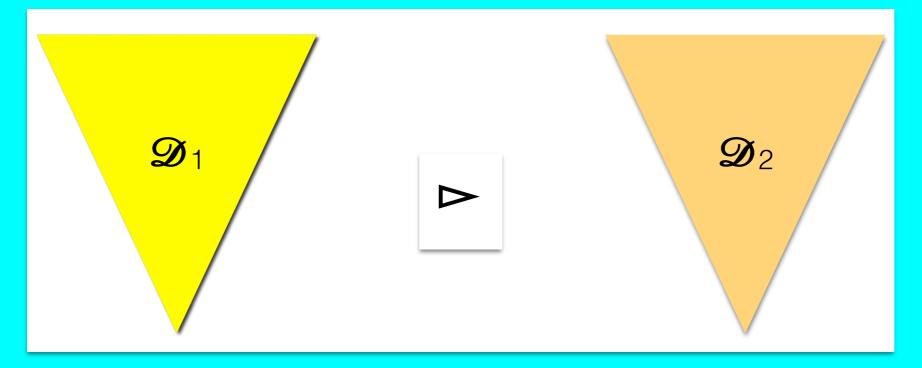
$$\begin{array}{ccc}
[\psi] \\
\mathcal{D}_2 \\
\mathcal{D}_1 & \varphi \\
\hline
\psi & \overline{\psi \to \varphi} \to I \\
\hline
\varphi
\end{array}$$

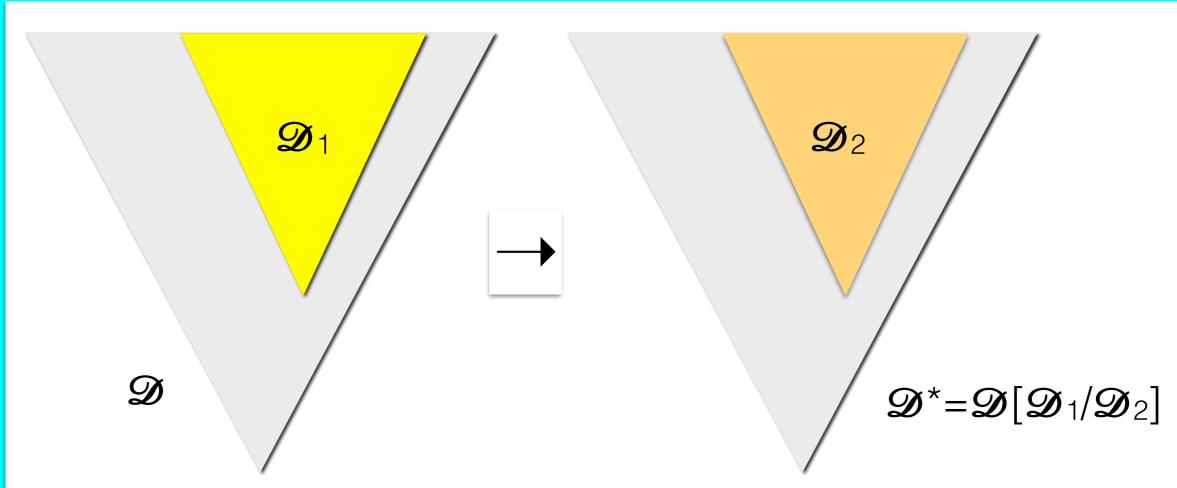


Redex/cut: sequence →I, →E



hp**∅**₁ ⊆hp**∅**₂





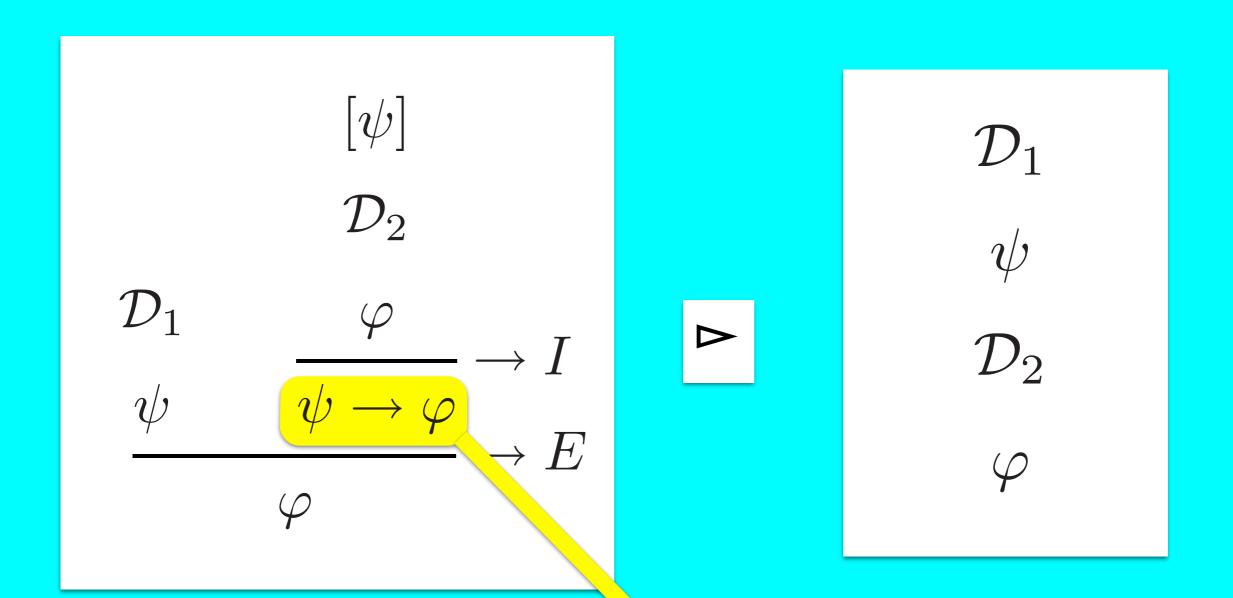
 $\mathscr{D} \rightarrow \mathscr{D}^*$ (\mathscr{D} 1-step reduces to \mathscr{D}^*): \mathscr{D}^* is obtained by applying a conversion to a subderivation of \mathscr{D}

 $\mathscr{D} \twoheadrightarrow \mathscr{D}^*$ (\mathscr{D} reduces to \mathscr{D}^*): $\exists \mathscr{D}_1 ... \mathscr{D}_n$ s.t. $\mathscr{D} = \mathscr{D}_1, \mathscr{D}^* = \mathscr{D}_n, \mathscr{D}_1 \rightarrow ... \rightarrow \mathscr{D}_n$ \Rightarrow is the reflexive and transitive closure of \rightarrow

 \mathscr{D} is in normal form (irreducible) if $\mathscr{D} \rightarrow \mathscr{D}^*$ implies that $\mathscr{D} = \mathscr{D}^*$

 \mathcal{D} is in normal form (irreducible) if there is no \mathcal{D}^* s.t. $\mathcal{D} \rightarrow \mathcal{D}^*$

Theorem (weak normalisation) for each \mathscr{D} there is \mathscr{D}^* s.t. $\mathscr{D} \rightarrow \mathscr{D}^*$ and \mathscr{D}^* is in normal form



cut formula

conversion with cut formula $\psi \rightarrow \phi$

 $d(\phi)$ = size of ϕ

 ϕ is maximal in a derivation \mathscr{D} if:

- 1. φ is a cut formula
- 2. $d(\phi)=\max\{d(\delta): \delta \text{ is a cut formula in } \mathcal{D}\}$

Theorem (weak normalisation) for each \mathscr{D} there is \mathscr{D}^* s.t. $\mathscr{D} \rightarrow \mathscr{D}^*$ and \mathscr{D}^* is in normal form

 $d=max\{d(\delta): \delta \text{ is a cut formula in } \mathcal{D}\}$

 $n=\#\{\delta:\delta \text{ is an occurrence of a maximal cut}\}$

Let call $R(\mathcal{D})$ the pair (d,n) of \mathcal{D} .

Let us assume the lexicographic well order < for pairs of natural numbers:

(d,n) < (d',n') iff d < d' or d=d' and n < n'.

The proof is by induction on $R(\mathcal{D})$.

Base: if $R(\mathcal{D})=(0,0)$ then \mathcal{D} is in normal form;

Induction step: let us suppose that $R(\mathcal{D})=(d,n)$.

Make a reduction with a maximal cut formula $\delta: \mathcal{D} \to \mathcal{D}^*$, with $R(\mathcal{D}^*) = (d^*, n^*)$

Now observe that $(d^*,n^*)<(d,n)$ (if n>1 then $d^*=d$ and $n^*=n-1$, if n=1, then $d^*<d$)

By induction hypothesis 𝒯*→𝒯°

Since $\mathcal{D} \rightarrow \mathcal{D}^*$ and $\mathcal{D}^* \rightarrow \mathcal{D}^\circ$ we have the thesis.

SUBFORMULA PROPERTY

Theorem Let \mathscr{D} be a normal deduction in the \rightarrow fragment. Then

- i) every formula in \mathscr{D} is a subformula of a conclusion or a hypothesis of \mathscr{D} ;
- ii) if \mathcal{D} ends in an elimination, it has a *principal branch*,
- i.e. a sequence of formulae $A_0, A_1, ..., A_n$ such that:
- A₀ is an (undischarged) hypothesis;
- An is the conclusion;
- A_i is the principal premise of an elimination of which the conclusion is A_{i+1} (for i=0,...,n-1). In particular A_n is a subformula of A_0

Proof 1. If \mathscr{D} consists of a hypothesis, there is nothing to do.

2. If \mathscr{D} ends in an introduction, $[\psi]$

 \mathcal{D}_1

 $\frac{\varphi}{\psi \to \varphi}$

then it suffices to apply the induction hypothesis to \mathcal{D}_1 .

3. If ${\mathscr D}$ ends in an elimination, $\frac{\psi \qquad \psi \to \varphi}{\varphi}$

it is not possible that the proof above the principal premise ends in an introduction, so it ends in an elimination and has a principal branch, which can be extended to a principal branch of \mathcal{D}

lemma

if p is a propositional symbol then ⊬p

Proof

Each deduction \mathscr{D} with conclusion p should terminate with an elimination rule.

Therefore there is an undischarged hypothesis β s.t. p is a sub formula of p, and it is not true that \mathscr{D} is a derivation without undischarged hypotheses of p.

Corollary

the natural deduction system based on → is consistent

COMPUTATIONS

finite computation

$$\mathcal{D}_0 \rightarrow \mathcal{D}_1 \rightarrow ... \rightarrow \mathcal{D}_k$$
 with \mathcal{D}_k in normal form

infinite computation
$$\mathfrak{D}_0 \rightarrow \mathfrak{D}_1 \rightarrow \ldots \rightarrow \mathfrak{D}_k \rightarrow \ldots$$

A "computation"/"reduction sequence" of ℒ of length κ≤ω is a sequence of deductions $(\mathcal{D}_i)_{i < \kappa}$ such that $\mathcal{D}_0 = \mathcal{D}$ and $\mathcal{D}_{i-1} \rightarrow \mathcal{D}_i$ for all i<к.

Theorem (strong normalisation)

for each \mathcal{D} , alle the computations of \mathcal{D} are finite

Theorem (confluence)

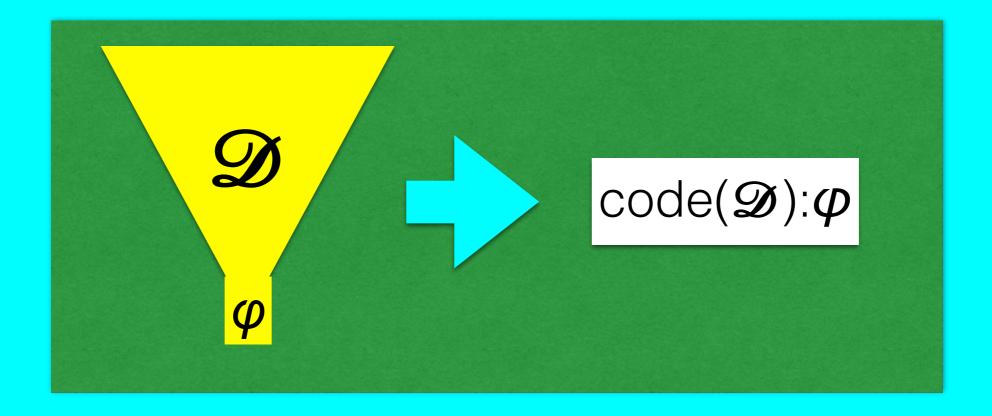
If $\mathscr{D} \rightarrow \mathscr{D}'$ and $\mathscr{D} \rightarrow \mathscr{D}''$ then there exist \mathscr{D}^* s.t.

Theorem (existence and unicity of normal form)

If $\mathscr{D} \rightarrow \mathscr{D}'$ and $\mathscr{D} \rightarrow \mathscr{D}''$ and \mathscr{D}' and \mathscr{D}'' are in normal form

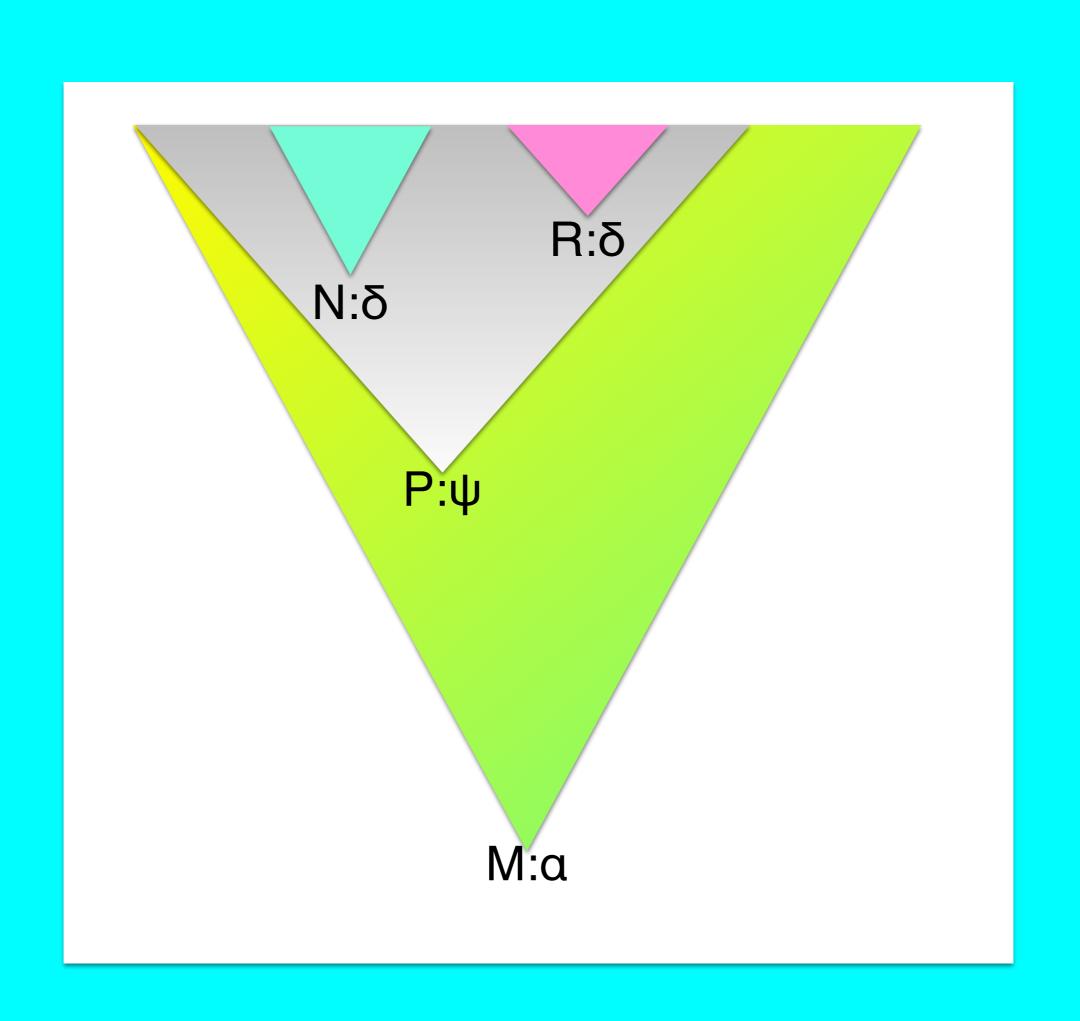
For each \mathscr{D} there is \mathscr{D} 's.t. $\mathscr{D} \rightarrow \mathscr{D}$ ' and \mathscr{D} ' is in normal form

coding the derivation



we inductively associate a code to each derivation, by means of a suitable decoration of formulas:

i.e. we assign to each occurrence of a formula δ in a deduction tree the code of the derivation with the occurrence δ as conclusion (root)



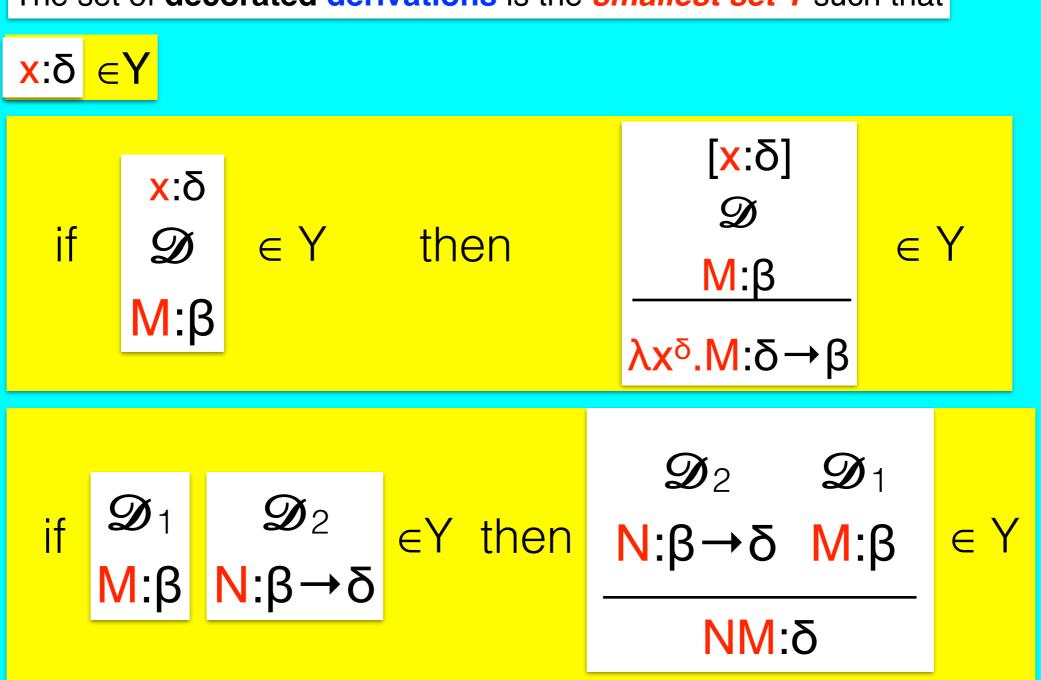
We assume to have a denumerable set $x_0, x_1, ...$ of "variables"

We decorate each assumption ψ with exactly one variable x.

Different occurrences of the same assumption ψ may be decorated with the same variable x.

Occurrences of different formulas must be decoded with different variables.

The set of **decorated derivations** is the **smallest set Y** such that

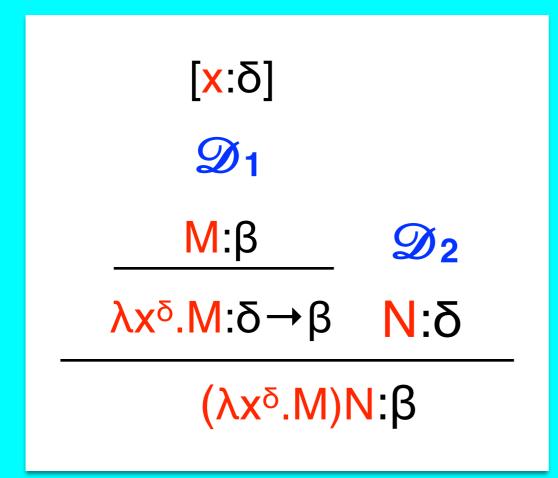


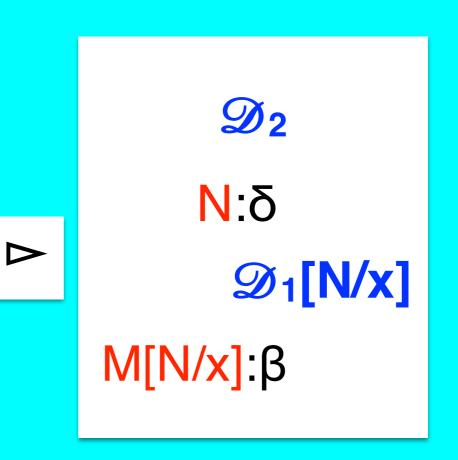
[x:δ] ⋮ M:β λxδ.Μ:δ→β

N:β→δ M:β NM:δ

THE STRINGS USED TO CODE DERIVATIONS ARE CALLED λ-TERMS

REDUCTIONS





 $(\lambda x^{\delta}.M)N:\beta \rightarrow M[N/x]:\beta$

$$(\lambda x^{\delta}.M)N:\beta \rightarrow M[N/x]:\beta$$

$$(\lambda x^{\delta}.M)N:\beta \rightarrow M[N/x]:\beta$$

$$\begin{array}{c} M:\beta \longrightarrow M_1:\beta \\ \hline MN:\beta \longrightarrow M_1N:\beta \end{array} \qquad \begin{array}{c} M:\beta \longrightarrow M_1:\beta \\ \hline NM:\beta \longrightarrow NM_1:\beta \end{array}$$

$$M:\beta \longrightarrow M_1:\beta$$

$$\lambda x^{\delta}.M:\beta \longrightarrow \lambda x^{\delta}.M_1:\beta$$

→ is the reflexive and transitive closure of →

exercise: prove that

$$\Gamma, \beta \vdash \psi \Rightarrow \Gamma \vdash \beta \rightarrow \psi$$

$$\Gamma \vdash \beta \rightarrow \psi \& \Gamma \vdash \beta \Rightarrow \Gamma \vdash \psi$$

we have the following rules for the derivation relation

exercise: prove that

$$\Gamma, \beta \vdash \psi \Rightarrow \Gamma \vdash \beta \rightarrow \psi$$

$$\Gamma \vdash \beta \rightarrow \psi \& \Gamma \vdash \beta \Rightarrow \Gamma \vdash \psi$$

we have the following rules for the derivation relation

$$\Gamma, x: \beta \vdash x: \beta$$

$$\Gamma, \mathbf{x}: \beta \vdash \mathbf{M}: \psi$$

$$\Gamma \vdash \lambda \mathbf{x}^{\beta}. \mathbf{M}: \beta \rightarrow \psi$$

$$\Gamma \vdash M:\beta \rightarrow \psi \qquad \Gamma \vdash N:\beta$$

CURRY-HOWARD ISOMORPHISM

FORMULAS	\Leftrightarrow	TYPES
PROOFS	\Leftrightarrow	PROGRAMS (λ-TERMS)
REDUCTIONS	\Leftrightarrow	COMPUTATIONS

The full propositional system

we can restrict our attention to applications of the \perp -rule for atomic instances

$$\frac{\perp}{p}$$
 p atomic

The proof is done by a trivial induction (exercise) Hint: transform e.g.

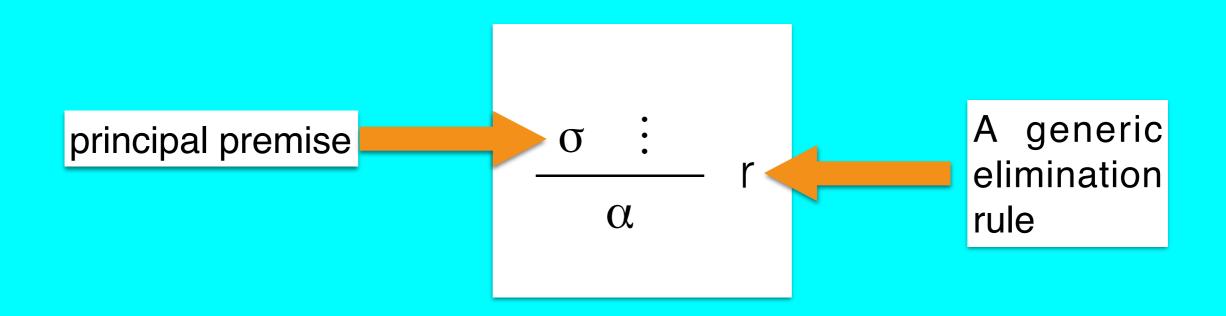
$$\begin{array}{ccc}
\varnothing & & & & & & & & & & \\
\bot & & & & & & & & & \\
\hline
\alpha \rightarrow \sigma & & & & & & & \\
\hline
\alpha \rightarrow \sigma & & & & & & \\
\end{array}$$
with
$$\begin{array}{cccc}
\sigma & & & & \\
\hline
\alpha \rightarrow \sigma & & & \\
\end{array}$$

The conversion for ∧ and ∨

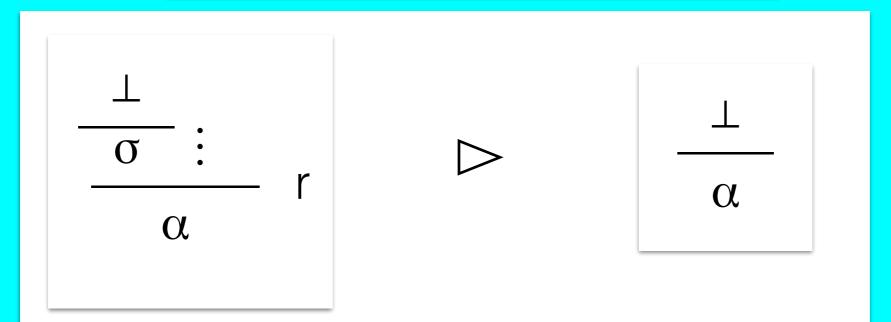
$$\frac{\varphi_1 \qquad \varphi_2}{\varphi_1 \wedge \varphi_2} \wedge I \qquad \triangleright \qquad \qquad \varphi_i \\
\frac{\varphi_1 \wedge \varphi_2}{\varphi_i} \wedge E$$

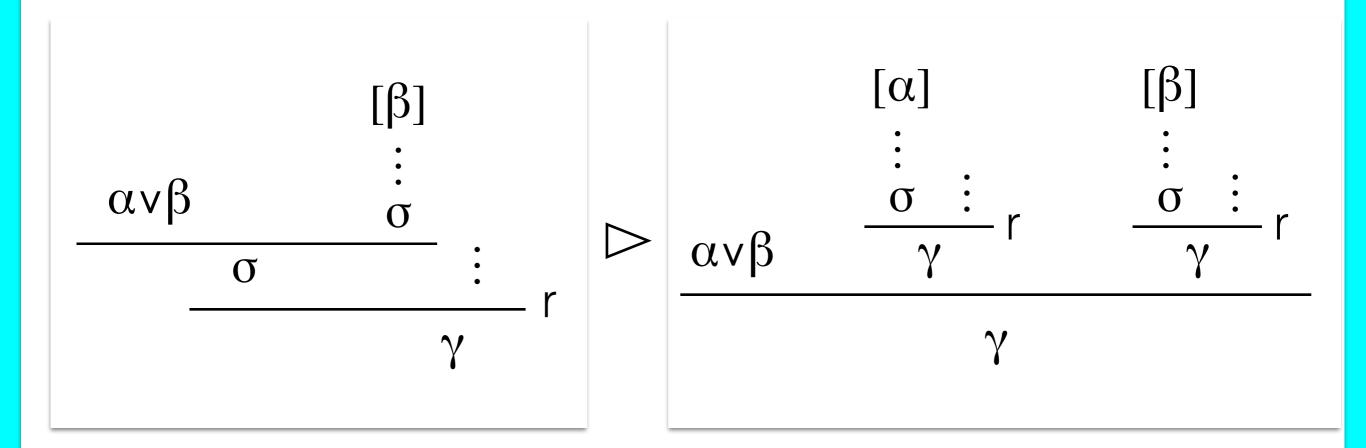
we need more conversions

failure of subformula property



commuting conversions





Theorem (weak normalisation)

for each \mathscr{D} there is \mathscr{D}^* s.t. $\mathscr{D} \rightarrow \mathscr{D}^*$ and \mathscr{D}^* is in normal form

Theorem (confluence)

If $\mathscr{D} \rightarrow \mathscr{D}'$ and $\mathscr{D} \rightarrow \mathscr{D}''$ then there exist \mathscr{D}^* s.t.

Theorem (existence and unicity of normal form)

If $\mathscr{D} \rightarrow \mathscr{D}'$ and $\mathscr{D} \rightarrow \mathscr{D}''$ and \mathscr{D}' and \mathscr{D}'' are in normal form

For each \mathscr{D} there is \mathscr{D} 's.t. $\mathscr{D} \rightarrow \mathscr{D}$ ' and \mathscr{D} ' is in normal form