
HermesBDD:
A Multi-Core and Multi-Platform Binary Decision

Diagram Package

Systems Design Laboratory (2022/2023)

Computer Engineering for Robotics and Smart Industry

Luigi Capogrosso Luca Geretti Tiziano Villa

SDL (Lab) HermesBDD Lecture 02 1 / 30



Outline

1 Introduction

2 Fundamentals

3 Basic Functions

4 Exercises

SDL (Lab) HermesBDD Lecture 02 2 / 30



HermesBDD

HermesBDD is a parallel multi-core and multi-platform library
of Binary Decision Diagrams, written in C++ and fully developed
at the University of Verona

The source code of the library is available here:
https://github.com/luigicapogrosso/HermesBDD

The slides related to this lecture are available here:
https://github.com/luigicapogrosso/SDL

SDL (Lab) HermesBDD Lecture 02 3 / 30

https://github.com/luigicapogrosso/HermesBDD
https://github.com/luigicapogrosso/SDL


Getting HermesBDD

You can freely download the latest version directly from the
GitHub repository, so:
$ git clone
https://github.com/luigicapogrosso/HermesBDD.git

HermesBDD has the following dependencies:
▶ CMake, for compiling
▶ Sphinx, for documentation generation

For further information about CMake and Sphinx, check the
following 1 and 2 documentation pages, respectively

For this lecture, Sphinx is not required. You can read the
documentation online at:
https://luigicapogrosso.github.io/HermesBDD/

SDL (Lab) HermesBDD Lecture 02 4 / 30

https://luigicapogrosso.github.io/HermesBDD/


Building HermesBDD

The library is tested for compilation using GCC (minimum
required: 10.2), Clang (minimum required: 11.0), and MSVC
(minimum required: 19.20)

To build the library from sources in a clean way, it is preferable that
you set up a build subdirectory, say:
$ mkdir build && cd build

Then, you can prepare the environment, choosing a Release build
for maximum performance:
$ cmake .. -DCMAKE_BUILD_TYPE=Release

At this point, if no error arises, you can build with:
$ cmake --build .

SDL (Lab) HermesBDD Lecture 02 5 / 30



Building HermesBDD (cont’d)

In particular, the package provides the following options that can be set
for the compilation step:

NO_CACHE: Do not use cache
▶ Possible values: OFF (default) or ON

NO_THREAD: Do not use threads
▶ Possible values: OFF (default) or ON

NO_DYNMEM: Do not use dynamic memory allocation
▶ Possible values: OFF (default) or ON

COVERAGE: Enable coverage reporting (only for testing)
▶ Possible values: OFF (default) or ON

SDL (Lab) HermesBDD Lecture 02 6 / 30



Fundamentals

1 Introduction

2 Fundamentals

3 Basic Functions

4 Exercises

SDL (Lab) HermesBDD Lecture 02 7 / 30



Why

There are many BDD libraries available and new ones are added. For
an early survey see [1]

[1] Janssen, Geert. “A consumer report on BDD packages.” 16th Symposium on
Integrated Circuits and Systems Design, 2003

SDL (Lab) HermesBDD Lecture 02 8 / 30



Goal

In particular, the goal of HermesBDD is to provide a BDD library
that is:

▶ Highly parallel (multi-core)
▶ Multi-platform (Linux, Windows, and macOS)
▶ Completely written in C++, with no need to rely on external

libraries
▶ Written according to engineering principles such as Code

Coverage and Continuous Integration for reliability and easy
maintenance over time

▶ For teaching and learning purposes
▶ Designed for ease of use

HermesBDD is not yet feature-complete, and there are still many
interesting things left for you to do. So, this project welcomes
contributions and suggestions

SDL (Lab) HermesBDD Lecture 02 9 / 30



Goal (cont’d)

So, why did we develop HermesBDD?

HermesBDD has a well-documented source code

Also, you can compile it on your laptop in a few seconds, and it
is easy to understand by disabling all advanced optimization
techniques that are implemented in it

If you are a beginner in BDD development, perhaps HermesBBD
is the right library to start with

SDL (Lab) HermesBDD Lecture 02 10 / 30



Package Structure

The packages in this project are primarily organized based on the
functionalities developed, including:

SDL (Lab) HermesBDD Lecture 02 11 / 30



Package Structure (cont’d)

include/: Contains the header files of the library

src/: Contains the source code of the library

profile/: Contains the code to profile the package

tests/: Contains the following tests: HermesBDD, ITE, and
n-Queens

utils/: Contains all source code for the library utilities

.codeconv.yml: The Yaml file for all Codecov settings

.gitignore: A file for untracked files that Git should ignore

CMakeLists.txt: The CMake configuration file

LICENSE: The MIT license file

README.md: The README file

SDL (Lab) HermesBDD Lecture 02 12 / 30



Outline

1 Introduction

2 Fundamentals

3 Basic Functions

4 Exercises

SDL (Lab) HermesBDD Lecture 02 13 / 30



Memory Management

HermesBDD implements two different memory management
mechanisms:

Static Allocation: A contiguous slice of memory is reserved at
the start of the process. This remains unchanged throughout the
execution of the process. If the running program needs more
memory, the process is killed by the OS

Dynamic Allocation: At the beginning of the process a portion of
memory is allocated to store N nodes. In case this space is not
enough, a new space of size N ∗ 2 will be allocated. Then, in case
this space is no longer needed, the memory will be deallocated

SDL (Lab) HermesBDD Lecture 02 14 / 30



Memory Management (cont’d)

SDL (Lab) HermesBDD Lecture 02 15 / 30



Memory Management in HermesBDD

The concepts explained above are coded in
HermesBDD/src/memory_manager.cpp

▶ In particular, at line 90 we can see the static allocation of the
memory: nodes.init(mem_size)

▶ On the other hand, at line 93, we can see the dynamic allocation of
the memory: nodes.init()

The value of mem_size is 2 GB. Unfortunately, this can currently
only be changed in hard-coded mode. A solution for more efficient
handling of this parameter will be implemented soon

SDL (Lab) HermesBDD Lecture 02 16 / 30



The ITE Procedure

Just like:
▶ A If-Then-Else in a

programming
language

▶ A MUX in hardware

As is shown in the
algorithm on the left,
the ITE procedure
evaluates the
ITE(f ,g,h) operator
recursively

ITE(f ,g,h):
▶ If (f ) then (g) else (h)
▶ fg + f ′h

SDL (Lab) HermesBDD Lecture 02 17 / 30



The Parallel ITE Procedure

We parallelize this function whenever there are two recursive
calls, and the final result is computed using a hash table

To this end, we use the C++ function async(), which is a
higher-level wrapper for threads and futures, followed by the
matching function get() to retrieve the results

With this implementation, the only synchronization between
workers is that the results of suboperations are stored in a
shared memoization table. This table is shared globally

SDL (Lab) HermesBDD Lecture 02 18 / 30



The Parallel ITE Procedure (cont’d)

In particular, Fig. on the left
shows the pseudocode of
the parallel ITE algorithm

Therefore, what we did
w.r.t the classical sequential
implementation of the ITE
algorithm was to redefine
the rows from 21 to 25

SDL (Lab) HermesBDD Lecture 02 19 / 30



Parallel ITE in HermesBDD

The ITE routine is declared in HermesBDD/src/node.hh
▶ In particular, at line 85 we can see ITE(A, B, C)

And it is implemented in HermesBDD/src/node.cpp
▶ Line 204 for the ITE(A, B, C)

Exercise: Look at the code. Is everything clear? What does the
section of code from line 255 to line 310 represent?

SDL (Lab) HermesBDD Lecture 02 20 / 30



Our Results

HermesBDD results on the impact of memory allocation in terms of
time and memory space, on an average of 50 samples of the
n-Queens problem on a 32-core machine

SDL (Lab) HermesBDD Lecture 02 21 / 30



Our Results (cont’d)

This plot shows our non-parallel baselines (left) and parallel speedup
(right) on the n-Queens problems with the 6 × 6, 7 × 7 and 8 × 8
chessboard. Values on the average of 50 samples using the static
memory allocation on a 32-core machine

SDL (Lab) HermesBDD Lecture 02 22 / 30



Our Results (cont’d)

HermesBDD w.r.t. CUDD, Sylvan, and BuDDy execution time and
memory space required. Results were obtained on average from 50
samples of the n-Queens problem, using a 32-core machine, and the
static memory allocation

SDL (Lab) HermesBDD Lecture 02 23 / 30



The Caching Mechanism

The biggest performance bottleneck in BDD packages is the
long latency of the main memory

Thus, the main architectural decisions for the new library are
motivated by the desire to be as cache-friendly as possible

So, in order to minimize the execution time, in HermesBDD
we developed a dynamic cache management algorithm based
on a hash table

SDL (Lab) HermesBDD Lecture 02 24 / 30



The Caching Mechanism (cont’d)

SDL (Lab) HermesBDD Lecture 02 25 / 30



Caching Mechanism in HermesBDD

The caching mechanism fot the ITE routine is declared in
HermesBDD/src/node.hh

▶ In particular, at line 94 we can see
ITE_without_cache(A, B, C)

And it is implemented in HermesBDD/src/node.cpp
▶ Line 204 for the ITE_without_cache(A, B, C)

In addition, the cache initialization is located in
HermesBDD/src/memory_manager.cpp, where at line 93 we
can find cache.init(cache_size)

Exercise: Look at the code. Is everything clear? In lines 236 and
244 we find the function cache.findITE() and
cache.insertITE(). Where are they declared? And
implemented? How do they work?

SDL (Lab) HermesBDD Lecture 02 26 / 30



Outline

1 Introduction

2 Fundamentals

3 Basic Functions

4 Exercises

SDL (Lab) HermesBDD Lecture 02 27 / 30



How to create a new program

In this lecture, we are going to do the assigned exercises in the
form of library tests

First, create a new file in the folder test/, e.g., es1.cpp

Then, add this file in the set() variable of the file
HermesBDD/tests/CMakeLists.txt

At this point, compile the library again. The executable of the test
will be in the HermesBDD/build/tests/ folder

SDL (Lab) HermesBDD Lecture 02 28 / 30



Code!

Exercise: look at the example test_hermesbdd. Is everything
clear? Is there any functionality you didn’t understand?

Exercise: write the code to build the BDD for the function f = ¬x1

HINTS
Look inside the HermesBDD/src/bdd.hpp, there might be some
functions that will help you out. . .

SDL (Lab) HermesBDD Lecture 02 29 / 30



Code! (cont’d)

Exercise: write the code to build the BDD for the function
f = x1 ∧ x2

Exercise: write the code to build the BDD for the function
f = x1 ∨ x2

Exercise: write the code to build the BDD for the function
f = x1 ⊕ x2

Exercise: write the code for testing the N-queen problem using a
3 × 3 chessboard

SDL (Lab) HermesBDD Lecture 02 30 / 30


	Introduction
	Fundamentals
	Basic Functions
	Exercises

