University of Verona Master's Program in Mathematics a.y. 2014/15

Partial test in Optimization Verona, 28th November 2014

__ ID n._

Full name: _

Solve one between Exercises 1 and Exercise 2, and solve obligatorily Exercise 3.

Exercise 1. Let Ω be an open bounded subset of \mathbb{R}^2 . Consider the problem:

$$\inf_{u \in H_0^1(\Omega)} \int_{\Omega} \left(3|\partial_{x_1} u(x_1, x_2)|^2 + |\partial_{x_2} u(x_1, x_2)|^2 + \partial_{x_1} u(x_1, x_2) \cdot \partial_{x_2} u(x_1, x_2) + \left((4x_2 + 1) u(x_1, x_2) - x_1 \right)^2 \right) dx_1 dx_2.$$

- (1) Prove that the problem admits a unique solution.
- (2) Formulate the problem in the form $\mathscr{F}(u) = F(u) + G \circ \Lambda(u)$, where $F: X \to]-\infty, +\infty]$, $G: Y \to]-\infty, +\infty]$, and $\Lambda: X \to Y$, carefully precising the functional spaces X, Y and discuting the regularity of F, G, Λ .
- (3) Write the dual problem and the extremality relations. Establish if the dual problem admits an unique solution.
- (4) Using the previous results, write down a partial differential equation satisfied by the minimum.

Exercise 2. Let Ω be an open bounded subset of \mathbb{R}^d , $q \in H^1(\Omega; \mathbb{R}^d)$ be fixed. Set:

$$\mathscr{C} := \{ v \in H^1_0(\Omega; \mathbb{R}) : \| \nabla v - \nabla q \|_{L^2(\Omega; \mathbb{R}^d)} \le 1 \}.$$

Consider the problem problema

$$\inf_{u \in \mathscr{C}} \int_{\Omega} \frac{|u(x)|^2}{2} \, dx.$$

- (1) Prove that the problem admits a unique solution.
- (2) Formulate the problem in the whole space in the form 𝔅(u) = F(u) + G Λ(u), where F: X →]-∞, +∞], G: Y →]-∞, +∞], and Λ: X → Y, carefully precising the functional spaces X, Y and discuting the regularity of F, G, Λ.
- (3) Write the dual problem and the extremality relations. Establish if the dual problem admits an unique solution.

Exercise 3.

(1) Let $f_i : \mathbb{R} \to \mathbb{R}$ be continuous functions, i = 1, ..., N. Define $F : \mathbb{R} \rightrightarrows \mathbb{R}$ by setting

$$F(x) = \left[\min\{f_i(x) : i = 1, \dots, N\}, \max\{f_i(x) : i = 1, \dots, N\} \right].$$

Establish if F is a continuous set-valued map by exhibiting a proof in the affirmative case or a counterexample in the negative case.

- (2) Let $p : \mathbb{R}^d \to \mathbb{R}$ be a function satisfying $p(x+y) \leq p(x) + p(y)$ and $p(\lambda x) = \lambda p(x)$ for every $x \in \mathbb{R}^d$ and $\lambda \geq 0$. Prove that there exists a closed convex set $C \subseteq \mathbb{R}^d$ such that $p(x) = \sigma_C(x)$.
- (3) Prove that the distance function from a closed convex subset of a normed space is a convex function.
- (4) Given $A = \{(x, y) \in \mathbb{R}^2 : |x + y| < 2 \text{ and } |x y| < 2\}$ compute its polar A^0 .
- (5) Define $f : \mathbb{R}^2 \to \mathbb{R}$ by setting $f(x, y) = e^{\sqrt{x^2 + y^2}}$. Compute its convex conjugate f^* .