
Multiple choice questions

Read carefully the text of each question and mark the box with the best answer.

1. The maximum floating point number xmax and the machine precision eps of the floating
point system F(10, 2,−1, 1) are

� xmax = 9.9 eps = 0.05
� xmax = 9.0 eps = 0.10
⊠ xmax = 9.9 eps = 0.05
� xmax = 9.0 eps = 0.10

Answer. The floating point system has β = 10, t = 2, L = −1, U = 1. Thus, the maximum
number and the machine precision are

xmax = βU ·
(

1 − β−t
)

= 101 ·
(

1 − 10−2
)

= 9.9

eps =
β1−t

2
=

101−2

2
= 0.05

2. Consider the fixed point iterations given by xk+1 = xk/2 + 1. Let α be the unique fixed
point. Starting at x0 = 1, the absolute value of the error e2 = α−x2 of the second iteration
x2 is

⊠ 0.25 � 0.50 � 1.0 � 1.5

Answer. The iteration function is φ(x) = x
2 + 1; its fixed points are solutions of x = φ(x).

We get x = 2 and so φ has the unique fixed point α = 2. Starting from x0 = 1, the first two
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iterations are

x1 = φ(x0) =
x0

2
+ 1 =

1

2
+ 1 =

3

2
.

x2 = φ(x1) =
x1

2
+ 1 =

3/2

2
+ 1 =

7

4
.

So, we have

| e2 | = | α − x2 | = | 2 − 7

4
| =

1

4
.

3. The order of convergence of the fixed point method xk+1 = 2 − 2xk + x2
k when x0 = 0.5 is

� 1 ⊠ 2 � 3 � 4

Answer. The iteration function is φ(x) = 2 − 2x + x2. The corresponding fixed points are
solutions of x = φ(x). We have

x = φ(x) ⇔ x = 2 − 2x + x2 ⇔ x2 − 3x + 2 = 0

which has two solutions x1 = 1 and x2 = 2. Thus, the function φ has two fixed points:
α1 = 1 and α2 = 2. So, first of all, we have to find toward which one of the two go the
fixed point iterations when we start at x0 = 0.5. To this aim, it is useful the geometric
interpretation.

From the figure, since x0 = 0.5. we see that the iterations go toward α = 1. So, to find the
order we have to look derivatives of φ in α1 = 1. We have

φ′(x) = 2x − 2 ⇒ φ′(1) = 0
φ′′(x) = 2 ⇒ φ′′(1) 6= 0

Thus, the order of the method is p = 2 since the first non zero derivative (evaluated in
α1 = 1) of φ has order p = 2.

4. The order of convergence of the Newton method for the solution of the non linear equation
ex = 2 − x is

� 0.5 � 1 ⊠ 2 � more then 2

Answer. The equation has only one root since graphs y = ex and y = 2 − x intersects just
once. Moreover, the root is positive.
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Setting f(x) = ex + x − 2, we have f ′(x) = ex + 1 and f ′′(x) = ex. Thus, we have

• f ′(ξ) = eξ + 1 > 0. So, we have f ′(ξ) 6= 0: this means that the root is simple (or, it
has multiplicity 1) and so the order p of the method satisfies p ≥ 2;

• f ′′(ξ) > 0. So, we have f ′′(ξ) 6= 0: as a consequence, the order ix exactly p = 2.

So, the Newton method for approximating the root ξ

xk+1 = xk − f(xk)

f ′(xk)
= xk − exk + 1

exk

= xk − 1 − e−xk

has order of convergence p = 2 providing the starting point x0 is sufficiently near the root
ξ. We can see this behavior taking x0 = 1.0; we have, for the errors

k 0 1 2 3 4

|ek| 5.5 · 10−1 9.5 · 10−2 2.8 · 10−3 2.3 · 10−6 1.6 · 10−12

5. The order of convergence of the Newton method is always less or equal to 2

� True ⊠ False

Answer. It’s false. For example, if f(x) = 0 has the root ξ with f ′(ξ) 6= 0 (and so p ≥ 2)
and f ′′(ξ) = 0 the order is p ≥ 3. Consider f(x) = x3 + x which has the unique root ξ = 0.
Starting from x0 = 1, the behavior of the errors are

k 0 1 2 3 4 5

|ek| 1.0 0.5 0.14 5.5 · 10−3 3.3 · 10−7 7.7 · 10−20

6. The Hilbert matrices are an example of well conditioned matrices

� True ⊠ False

Answer. It’s false. The Hilbert matrices, as well as the Vandermonde matrices, are examples
of ill conditioned matrices. For example, the Hilbert matrix H5 of order n = 5 has a condition
number K2(H5) ≈ 5·105. An example of well conditioned matrix is the identity matrix which
has a condition number equal to 1, the less possible value.

7. Let

A =

(

10 0
0 0.01

)

The condition number K2(A) of the matrix A is

� 0.01 � 10 � 100 ⊠ 1000
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Answer. The matrix A is a diagonal matrix with positive entries in the main diagonal. So, is
a positive definite matrix, since all the eigenvalues are positive. For a positive definite matrix,
we know that K2(A) = λmax/λmin. In our case, we have λmax = 10 and λmin = 0.01. So,
K2(A) = 10/0.01 = 1000.

8. The LU factorization of the matrix A gives |U | = 4. The determinant of A−2 is

� 16 ⊠
1

16
�

1

4
� 4

Answer. We have, using the Binet formula and the relation | A−1 | = 1/| A |,

| A−2 | = | ( A−1 )2 | = | A−1 |2 =

(

1

| A |

)2

=
1

| A |2 =
1

| U |2 =
1

42
=

1

16

since, from the LU factorization of A = LU , we have

• L is a lower triangular matrix with ones on the main diagonal. So, its determinant,
which is the product of all the elements in the main diagonal, is | L | = 1.

• U is an upper triangular matrix. The determinant of U is again the product of the
elements in the main diagonal but now this values are not known a priori (they depends
on the matrix A)

So, again, from Binet, we have

| A | = | L U | = | L | · | U | = 1 · | U | = | U |

9. The L matrix of the LU -factorization of the matrix A given by

A =





1 0 1
2 1 0
3 2 4





is

⊠





1 0 0
2 1 0
3 2 1



 �





1 0 0
−2 1 0
−3 −2 1





�





1 0 0
−2 1 0
3 −2 1



 �





1 0 0
2 1 0
−3 2 1





Answer. Using the Gauss algorithm we find

A =





1 0 1
2 1 0
3 2 4





(−2)
(−3)
−→





1 0 1
0 1 −2
0 2 1





(−2)
−→





1 0 1
0 1 −2
0 0 5





So, recalling that L is a lower triangular matrix and has as entries the multiplicators (the
elements above the arrows) changed in sign, and ones in the main diagonal, we get

L =





1 0 0
2 1 0
3 2 1




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10. Given the splitting A = D − E − F where E is strictly lower triangular, F is strictly upper
triangular and D is diagonal, the iteration matrix for the Jacobi method is

⊠ D−1(E + F ) � D(E + F )

� − D−1(E + F ) � − D(E + F )

Answer. From the theory, providing that the entries of the diagonal of D are all non singular,
we know that the iteration matrix of the Jacobi method is BJ = D−1(E + F ). Indeed, just
write

Ax = b ⇔ (D − E − F )x = b ⇔ Dx = (E + F )x + b ⇔
Providing that D is invertible, we get

x = D−1(E + F )x + D−1b and so we get xk+1 = D−1(E + F )xk + D−1b

where BJ = D−1(E + F ) is the iteration matrix. Exactly in the same way we can find the
iteration matrix of the Gauss-Seidel method: just start from (D − E)x = Fx + b.

11. Starting from x0 = (0, 0)T , the norm of the residual r1 = b−Ax1 after the first Gauss-Seidel
iteration for the linear system Ax = b given by

A =

(

2 1
−1 3

)

, b =

(

3
2

)

is

�

√
130

6
⊠

7

6
0

[

−7

6
, 0

]T

Answer. Setting x = [x1 x2]
T , the linear system is

{

2x1 + x2 = 3
−x1 + 3x2 = 2

⇒







x1 = 3−x2

2

x2 = 2+x1

3

Denoting with a superscript the index of the iteration, the Gauss-Seidel iterations are

x
(k+1)
1 =

3 − x
(k)
2

2

x
(k+1)
2 =

2 + x
(k+1)
1

3

So, starting from x0 = [0 0]T (that is, x
(0)
1 = 0 and x

(0)
2 = 0) we get for x1 = [x

(1)
1 x

(1)
2 ]T

x
(1)
1 =

3 − x
(0)
2

2
=

3 − 0

2
=

3

2

x
(1)
2 =

2 + x
(1)
1

3
=

2 + 3/2

3
=

7

6

The corresponding residual vector r1 is

r1 = b− Ax
(1)
1 =

(

3
2

)

−
(

2 1
−1 3

)

·
(

3/2
7/6

)

=

(

3
2

)

−
(

25/6
2

)

=

(

−7/6
0

)

Finally, the infinity norm of the residual r1 is (we obtain the same result using other norms)

‖ r1 ‖∞ = max

{∣

∣

∣

∣

−7

6

∣

∣

∣

∣

, | 0 |
}

=
7

6
.
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12. The Lagrange polynomials depends only on the nodes of the points (xi, yi), i = 0, . . . , n

⊠ True � False

Answer. It is true: if xi, i = 0, . . . , n are the nodes, then the Lagrange polynomials are

li(x) =

n
∏

k=0,k 6=i

(x − xk)

n
∏

k=0,k 6=i

(xi − xk)
, i = 0, 1, . . . , n

13. The sum of all the Lagrange polynomials depends on the values of the function f in the
interpolating points

� True ⊠ False

Answer. It is false: from the theory, it is known that the sum of all the Lagrange polynomials
is (the constant function) 1. To prove, just take f(x) = 1, a polynomial of degree zero. Thus,

f(x) = 1 =
n

∑

i=0

f(xi)li(x) =
n

∑

i=0

1 · li(x) =
n

∑

i=0

li(x)

14. If we want to approximate a function in an interval [a, b] using equally spaced nodes, a higher
degree interpolating polynomial always works better then a lower degree one

� True ⊠ False

Answer. It is false: just remember the Runge example where the error (at the endpoints of
the interval) increases with the degree of the interpolating polynomial.

15. The regression line for the set of points

xi −1 0 1 2
yi 0 2 3 3

is
⊠ y = x + 1.5 � y = 1.5x + 1

� y = x + 1 y = 1.5x + 1.5

Answer. Coefficients a0 and a1 of the regression line y = a0 + a1x are solution of the linear
system





m + 1
∑m

k=0 xk

∑m
k=0 xk

∑m
k=0 x2

k





(

a0

a1

)

=





∑m
k=0 yk

∑m
k=0 xkyk





where m + 1 is the number of points. In this case m + 1 = 4 and so, using the data in the
table, we have





4 2

2 6





(

a0

a1

)

=





8

9



 ⇔
{

4a0 + 2a1 = 8
2a0 + 6a1 = 9

We find a0 = 3/2 and a1 = 1. We can see the regression line in the next figure.
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16. The quadrature formula
∫ 1

0

√
xf(x) ≈

3
∑

i=0

αif(xi)

has the maximum degree of precision. Then the number

d =

∣

∣

∣

∣

∣

∫ 1

0

( √
x + x

√
x

)

dx −
3

∑

i=0

αixi

∣

∣

∣

∣

∣

is equal to
� 0 � 1/3 ⊠ 2/3 � 1

Answer. The maximum degree of precisionof the quadrature formula is s = 2 · 3 + 1 = 7.
Since the integral in the quadrature formula is of the type

∫ 1

0

ω(x) f(x)dx

with ω(x) =
√

x, the fist step to do is to rewrite the integral inside the expression of d in
this way. We may note that

√
x + x

√
x =

√
x (1 + x) ⇒ f(x) = 1 + x

So, f is a polynomial of degree n = 1 < 7 = s. Thus, the quadrature formula gives the exact
result for this function f , i.e.,

∫ 1

0

( √
x + x

√
x

)

dx =

3
∑

i=0

αi (1 + xi )

Looking again to d, we have

d =

∣

∣

∣

∣

∣

∫ 1

0

( √
x + x

√
x

)

dx −
3

∑

i=0

αixi

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ 1

0

( √
x + x

√
x

)

dx −
3

∑

i=0

αi ( 1 + xi − 1)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

{

∫ 1

0

( √
x + x

√
x

)

dx −
3

∑

i=0

αi( 1 + xi )

}

−
3

∑

i=0

αi

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

3
∑

i=0

αi

∣

∣

∣

∣

∣
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Let’s compute the sum of the weights. Taking in the quadrature formula f(x) = 1 (a
polynomial of degree n = 0 < s and so the formula is correct) we have

2

3
=

[

x3/2

3/2

]1

0

=

∫ 1

0

√
xdx =

3
∑

i=0

αi

So, we have d = 2/3.

17. Given a positive n, the sum of all Cotes numbers C
(n)
i , i = 0, . . . , n is

⊠ 1 � n �
√

n �
n

2

Answer. From the theory, we know that the sum of all the Cotes numbers is 1. Recall that
we have given the following definition of Cotes numbers

C
(n)
i =

1

n

n
∫

0

∏n
r=0,r 6=i(s − r)

∏n
r=0,r 6=i(i − r)

ds, i = 0, . . . , n

18. The error for the computation of

∫ 100

0

(

x3 + 13254x
)

dx

using the Cavalieri-Simpson formula is

� 10−3
� 10−2

� 10−1
⊠ 0

Answer. The error E in the Cavalieri-Simpson is related to f (4)(x) throughout the equation

E = − (b − a)5

2880
f (4)(ξ)

where, in our case, a = 0, b = 100, ξ ∈ [0, 100] and f(x) = x3 + 13254x. Since f (4)(x) = 0
for all x, it is f (4)(ξ) = 0 and so the error is zero.

19. The second derivative of f does not change much in the integration interval. Then, using
the composite trapezoidal rule we expect that the ratio of the errors E2m/Em is

� 4 � 1/4 ⊠ near 1/4

Answer. From the theory, we know that

E2m

Em
=

− (b−a)3

12(2m)3 f ′′(ξ2m)

− (b−a)3

12m3 f ′′(ξm)
=

f ′′(ξ2m)

4 · f ′′(ξm)
≈ 1

4
.

since, if f ′′(x) does not change much in the integration interval, it is f ′′(ξm) ≈ f ′′(ξ2m).

20. The Cavalieri-Simpson approximation of the integral

∫ 1

0

√
x dx

is

⊠
2
√

2 + 1

6
�

2

3
�

1

6
� 1
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Answer. We have

x0 = a = 0, x1 =
a + b

2
=

1

2
, x2 = b = 1

and so the Cavalieri-Simpson rule gives for the integral I

ICS =
b − a

2

[

1

3
f(x0) +

4

3
f(x1) +

1

3
f(x2)

]

=
1 − 0

2

[

1

3

√
0 +

4

3

√

1

2
+

1

3

√
1

]

=

√
2

3
+

1

6
=

2
√

2 + 1

6

So, we have ICS = 0.638 which may be comapred with the correct value I = 2/3 = 0.667.

21. The divided difference f [x0, x1, x2] of the following table

x0 = −1 2
x1 = 0 3
x2 = 1 6

is
⊠ 1 � 3 � − 1 � 36

Answer. Completing the table, we find

x0 = −1 2
x1 = 0 3 f [x0, x1]
x2 = 1 6 f [x1, x2] f [x0, x1, x2]

or
x0 = −1 2

x1 = 0 3 1
x2 = 1 6 3 1

since we have

f [x0, x1] =
f(x1) − f(x0)

x1 − x0
=

3 − 2

0 − (−1)
= 1

f [x1, x2] =
f(x2) − f(x1)

x2 − x1
=

6 − 3

1 − 0
= 3

f [x0, x1, x2] =
f [x1, x2] − f [x0, x1]

x2 − x0
=

3 − 1

1 − (−1)
= 1

22. Let p(x) be the Newton expression of the interpolating polynomial for the points (xi, yi),
i = 0, . . . , n. If we add a new point (xn+1, yn+1) with x0 < xn+1 < x1 we have to recompute
all the divided difference table

� True ⊠ False

Answer. It is false: the difference divided does not depends on the order of points. So, we
can add the point (xn+1, yn+1) at the previous table (the one we have already constructed
with points (xi, yi), i = 0, . . . , n) and compute just the last row of the new table.

23. The composite trapezoidal formula gives the results of the following table

A0 A1 A2

1 0.875 0.844

The best approximation for the integral is then

� 0.844 ⊠ 0.833 � 0.906 � 0.875

Answer. We can apply the Romberg method to obtain
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m

1 A0

2 A1 B1

4 A2 B2 C2

where

B1 =
4A1 − A0

3
=

4 · 0.875 − 1

3
= 0.833

B2 =
4A2 − A1

3
=

4 · 0.844 − 0.875

3
= 0.8340.833

C2 =
16B2 − B1

15
=

16 · 0.834− 0.833

15
= 0.834

So, the best approximation for the integral is 0.834.

24. Which is the value of n at the end of the Matlab code

1. toll = 1E2;

2. n = 5;

3. while( 10^n > toll & n >= 2 )

4. n = n - 2;

5. end

� 0 ⊠ 1 � 2 � 3

25. Consider the following Matlab code

1. S = 5;

2. for k=1:3

3. if k>=3

4. S = S*k;

5. else

6. S = S-k;

7. end

5. end

At the end of the loop, the variable S is equal to

� 1 � 4 ⊠ 6 � 9

26. After the execution of the following Matlab code, the variable r is equal to

1. A = diag( diag( [1 2; 3 4] ) );

2. r = eig( A );

⊠ [1 4]T � [1 2]T � 4 � 1
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27. After the execution of the following Matlab code, the variable v is equal to

1. v = [ sum( 3:4:14 ) length( 1:4 ) ];

2. v = v.^2;

⊠ [441 16] � 7056 � 4 � [21 4]

28. Given the Matlab code

1. v = [ 1 2 3; 4 5 6; 6 7 8 ];

2. v = v(2,[2 3]);

gives
⊠ [5 6] � [4 5 6] � [5 8]T � [2 5]T

29. To plot a function with the command plot(x,y), the vector x and y must have the same
size

⊠ True
� False
� It depends on the function

30. The command clear all makes the command Window clear but does not clear the variables
in the Workspace

� True ⊠ False
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Open questions

Write clearly all the answers in the exam’s booklet.

1. Prove that the condition number K(A) fulfills K(A) ≥ 1 for each matrix A. Give an example
of well conditioned matrix and one of an ill conditioned matrix.

Answer. From the theory, we have

1 = ‖In‖ =
∥

∥A · A−1
∥

∥ ≤ ‖A‖ ·
∥

∥A−1
∥

∥ = K(A).

where In is the identity matrix of order n. The Hilbert matrices are ill conditioned whereas
the identity matrix is well conditioned.

2. Consider the iterative method xk+1 = Bxk + f to solve the linear system Ax = b. Prove
the relationship ek = Bek−1, k = 1, 2, . . . where ek = x − xk is the error at the k-th
step. Give necessary and sufficient conditions on the iteration matrix B in order to have a
convergent sequence for each starting point x0. Write the iteration matrix for the Jacobi
method. Answer.

3. Given the set of points ( xi, yi ), i = 0, . . . , 3 in the following table

xi −2 0 1 2
yi 1 1 2 3

write the Newton expression of the interpolation polynomial. Compute the minimum value
of the function S(m, q)

S(m, q) =
3

∑

k=0

[ yi − mxi − q ]2

and give the values of m and q for which this minimum is reached.

4. Show the composite trapezoidal rule using m intervals . Recalling that the error for the
trapezoidal rule is

E = − h3

12
f ′′(ξ)

where h is the amplitude of the integration interval and ξ is a suitable point inside the
integration interval, find the expression for the error in the composite trapezoidal formula.

5. Write a Matlab code for the computation of the sum of elements of the vector x using just
a for loop.
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