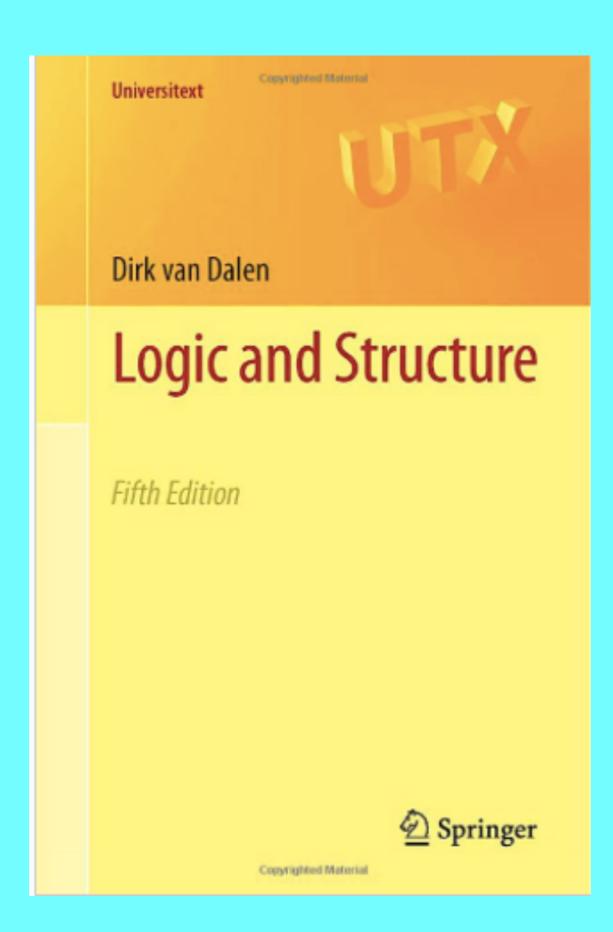
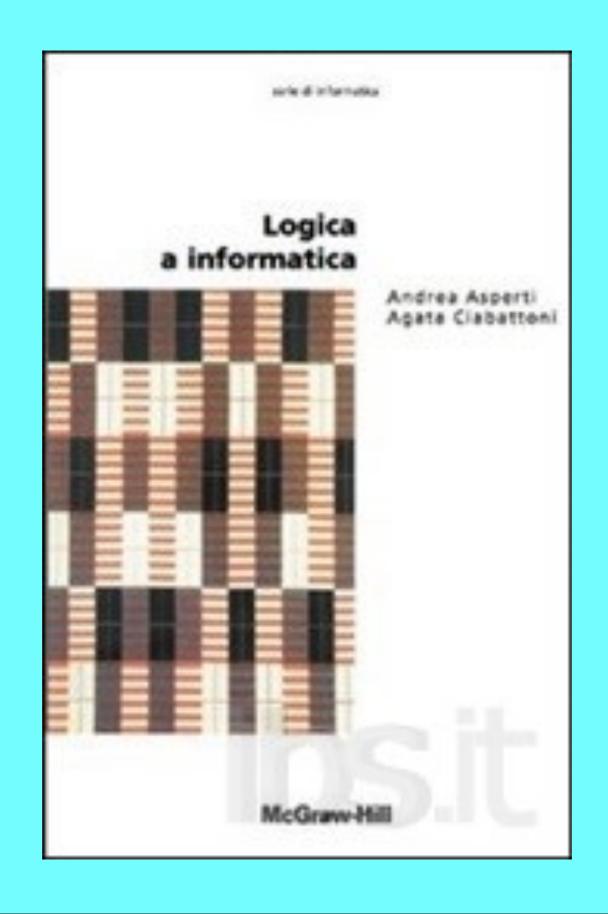
Propositional Logic

Libro di Testo



Lettura aggiuntiva



language of propositional logic

alphabet:

- (i) proposition symbols : p_0 , p_1 , p_2 , . . . ,
- (ii) connectives : \land , \lor , \rightarrow , \neg , \leftrightarrow , \bot ,
- (iii) auxiliary symbols : (,).

$$AT = \{p_0, p_1, p_2, \ldots, \} \cup \{\bot\}$$

```
∧ and
∨ or
→ if ..., then ...
¬ not
↔ iff
⊥ falsity
```

The set PROP of propositions is the smallest set X with the properties

(i)
$$p_i \in X(i \in N)$$
, $\perp \in X$,

(ii)
$$\phi,\psi\in X\Rightarrow (\phi\wedge\psi), (\phi\vee\psi), (\phi\to\psi), (\phi\leftrightarrow\psi)\in X,$$

$$(iii)\varphi\in X\Rightarrow (\neg\varphi)\in X.$$

Suppose $\neg \rightarrow \bot \in PROP$.

Y = PROP – $\{\neg \rightarrow \bot\}$ also satisfies (i), (ii) and (iii).

- **⊥**,p_i ∈**Y**.

- PROP is not the smallest set satisfying (i), (ii) and (iii)!!! **impossible**

The set PROP of propositions is the smallest set X with the properties

- (i) $p_i \in X(i \in N), \perp \in X$,
- (ii) $\phi,\psi\in X\Rightarrow (\phi\wedge\psi), (\phi\vee\psi), (\phi\to\psi),$
- **(**φ↔ψ**)**∈**X**,
- $(iii) \varphi \in X \Rightarrow (\neg \varphi) \in X.$

Theorem

Let h: \mathbb{N} x A \rightarrow A and c \in A.

There exist one and only one function

 $f: \mathbb{N} \to A \text{ t.c.}$

- 1. f(0)=c
- 2. $\forall n \in \mathbb{N}$, f(n+1)=h(n,f(n))

the proof is difficult

 $\Box \in \{\land,\lor,\rightarrow\}$

Theorem 1.1.6 (Definition by Recursion) Let mappings $H_{\square}: A^2 \to A$ and $H_{\neg}: A \to A$ be given and let H_{at} be a mapping from the set of atoms into A, then there exists exactly one mapping $F: PROP \to A$ such that

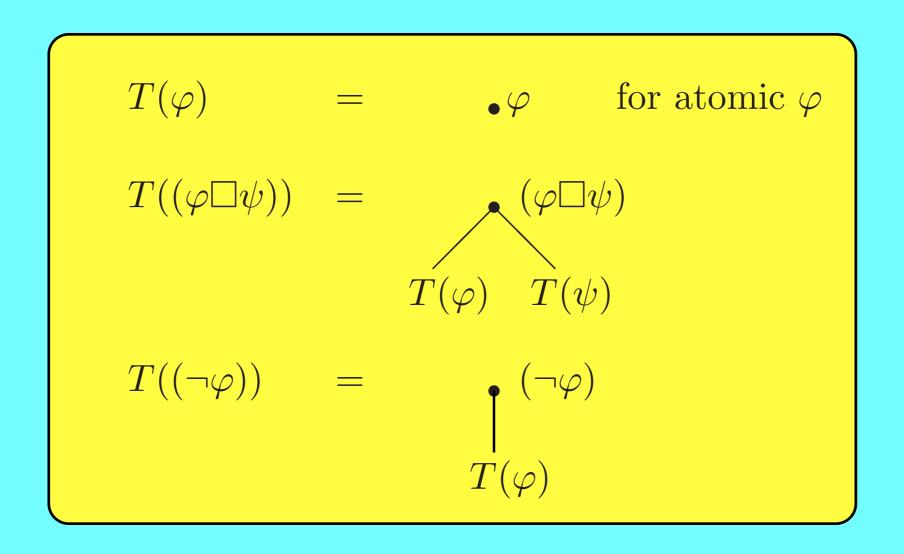
$$\begin{cases} F(\varphi) &= H_{at}(\varphi) \text{ for } \varphi \text{ atomic,} \\ F((\varphi \square \psi)) &= H_{\square}(F(\varphi), F(\psi)), \\ F((\neg \varphi)) &= H_{\neg}(F(\varphi)). \end{cases}$$

Theorem 1.1.3 (Induction Principle)

exercise

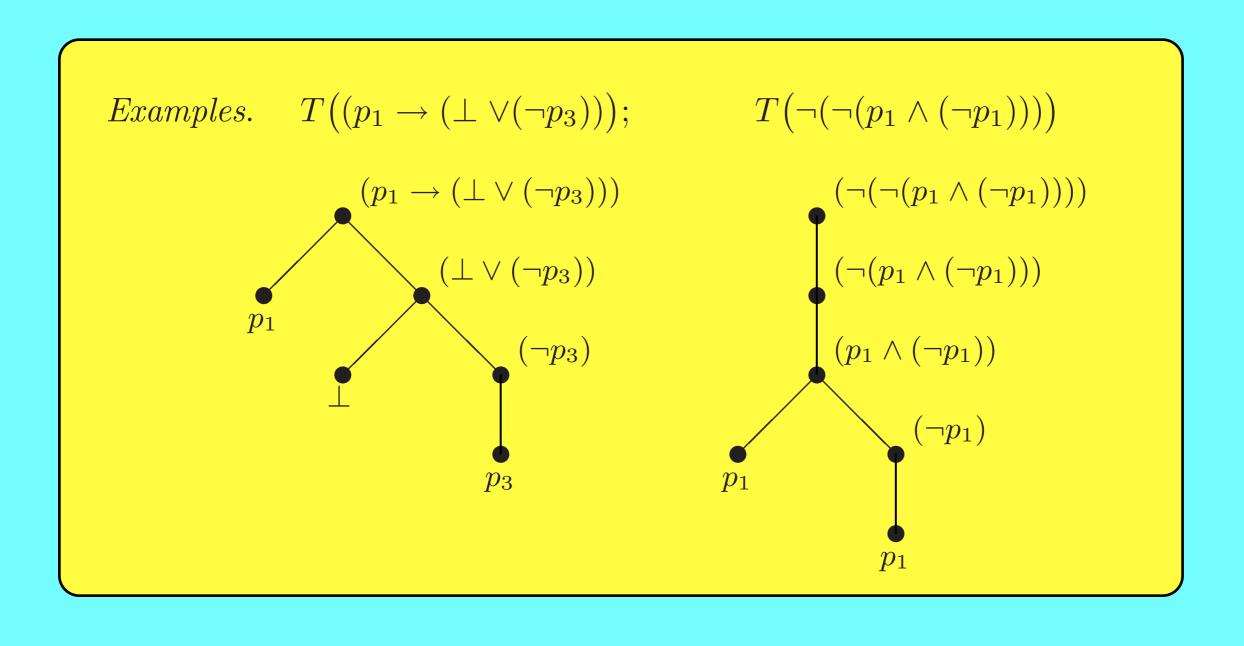
Let A be a property, then $A(\phi)$ holds for all $\phi \in PROP$ if

- (i) $A(p_i)$, for all i,and $A(\perp)$,
- (ii) $A(\varphi), A(\psi) \Rightarrow A((\varphi \rightarrow \psi)),$
- (iii) $A(\varphi)$, $A(\psi) \Rightarrow A((\varphi \land \psi))$,
- (iv) $A(\varphi)$, $A(\psi) \Rightarrow A((\varphi \lor \psi))$,
- $(v) A(\varphi) \Rightarrow A((\neg \varphi)).$



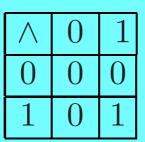
Examples. $T((p_1 \to (\bot \lor (\neg p_3))); T(\neg (\neg (p_1 \land (\neg p_1))))$

?



SEMANTICS

truth table



Definition 1

```
A mapping v : PROP \rightarrow \{0, 1\} is a valuation if v(\phi \land \psi) = min(v(\phi), v(\psi)), v(\phi \lor \psi) = max(v(\phi), v(\psi)), v(\phi \rightarrow \psi) = 0 \Leftrightarrow v(\phi) = 1 \text{ and } v(\psi) = 0, v(\phi \leftrightarrow \psi) = 1 \Leftrightarrow v(\phi) = v(\psi), v(\neg \phi) = 1 - v(\phi) v(\bot) = 0.
```

Definition 2

```
A mapping v : PROP \rightarrow \{0, 1\} is a valuation if v(\phi \land \psi) = 1 \Leftrightarrow v(\phi) = 1 and v(\psi) = 1 v(\phi \lor \psi) = 1 \Leftrightarrow v(\phi) = 1 \text{ or } v(\psi) = 1 v(\phi \rightarrow \psi) = 1 \Leftrightarrow v(\phi) = 0 \text{ or } v(\psi) = 1, v(\phi \leftrightarrow \psi) = 1 \Leftrightarrow v(\phi) = v(\psi), v(\neg \phi) = 1 \Leftrightarrow v(\phi) = 0 v(\bot) = 0.
```

the two definitions are equivalent

Theorem

v: $AT \rightarrow \{0, 1\}$ s.t. $v(\bot) = 0$ (assignment for atoms) \Rightarrow there exists a unique valuation $[\cdot]_v: PROP \rightarrow \{0, 1\}$

such that $[\phi]_v = v(\phi)$ for each $\phi \in \mathbf{AT}$

Lemma If v, w are two assignments for atoms s.t. for all p_i occurring in φ , $v(p_i) = w(p_i)$, then $[\varphi]_v = [\varphi]_w$.

Definition

- \rightarrow ϕ is a **tautology** if $[\phi]_v = 1$ for all valuations v,
- \Rightarrow $\models \varphi$ stands for ' φ is a tautology',
- \rightarrow let Γ be a set of propositions,

 $\Gamma \models \varphi$ iff for all $v: ([\psi]_v = 1 \text{ for all } \psi \in \Gamma) \Rightarrow [\varphi]_v = 1.$

SUBSTITUTION

$$\varphi[\psi/p] = \begin{cases} \psi \text{ if } \varphi = p \\ \varphi \text{ if } \varphi = /= p \text{ if } \varphi \text{ atomic} \end{cases}$$

$$(\varphi_1 \square \varphi_2)[\psi/p] = (\varphi_1[\psi/p] \square \varphi_2[\psi/p])$$
$$(\neg \varphi)[\psi/p] = (\neg \varphi[\psi/p])$$

Substitution Theorem

- ightharpoonup If $\models \varphi_1 \leftrightarrow \varphi_2$, then $\models \psi[\varphi_1/p] \leftrightarrow \psi[\varphi_2/p]$, where p is an atom.
- $\rightarrow \models (\varphi_1 \leftrightarrow \varphi_2) \rightarrow (\psi[\varphi_1/p] \leftrightarrow \psi[\varphi_2/p])$

tautologies

 $(φ \lor ψ) \lor σ \leftrightarrow φ \lor (ψ \lor σ) \qquad (φ \land ψ) \land σ \leftrightarrow φ \land (ψ \land σ)$ associativity

Φ∨ψ↔ψ∨φ
commutativity

 $\neg(\varphi \lor \psi) \leftrightarrow \neg \varphi \land \neg \psi \qquad \neg(\varphi \land \psi) \leftrightarrow \neg \varphi \lor \neg \psi$

De Morgan's laws

ightharpoonup $\phi \lor \phi \leftrightarrow \phi$ $\phi \land \phi \leftrightarrow \phi$

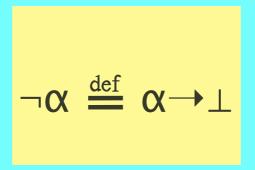
idempotency

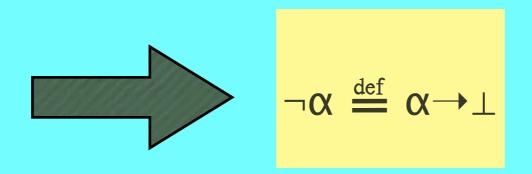
→ ¬¬φ ↔ φ double negation law

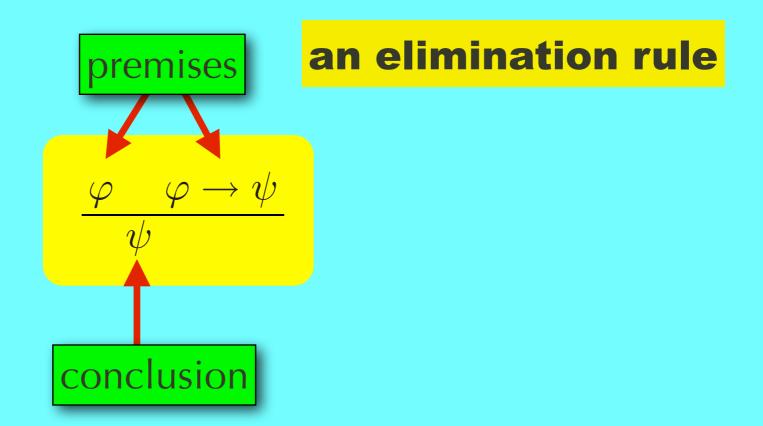
De Morgan's law: $[\neg(\phi\lor\psi)]=1\Leftrightarrow [\phi\lor\psi]=0\Leftrightarrow [\phi]=[\psi]=0\Leftrightarrow [\neg\phi]=[\neg\psi]=1\Leftrightarrow [\neg\phi\land\neg\psi]=1$. So $[\neg(\phi\lor\psi)]=[\neg\phi\land\neg\psi]$ for all valuations, i.e $\models \neg(\phi\lor\psi)\leftrightarrow\neg\phi\land\neg\psi$.

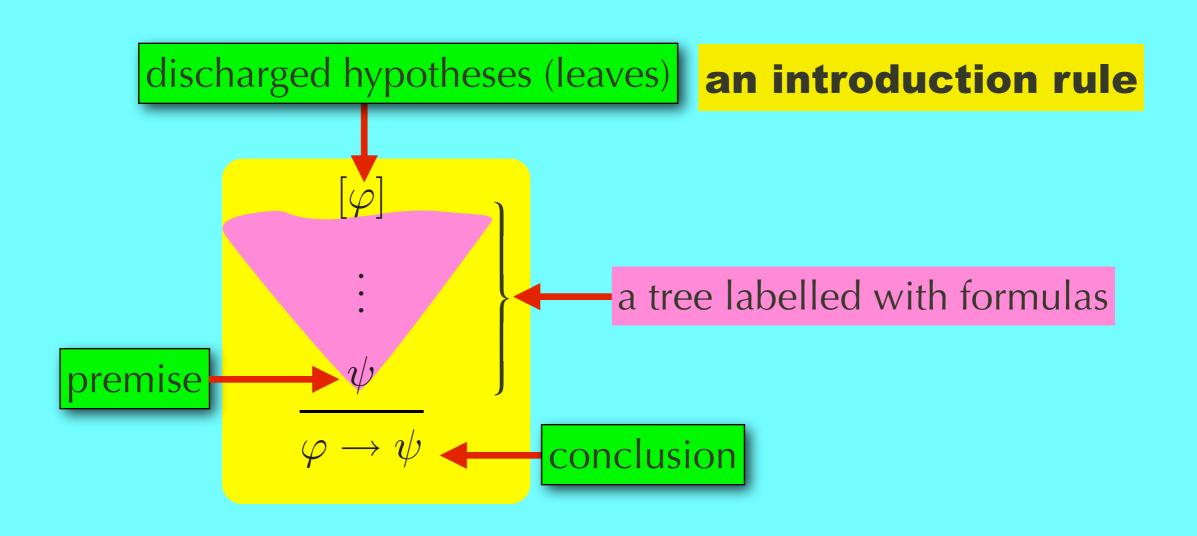
 \approx \subseteq PROPxPROP : $\varphi \approx \psi$ iff $\models \varphi \leftrightarrow \psi$. exercise \approx is an equivalence relation on PROP

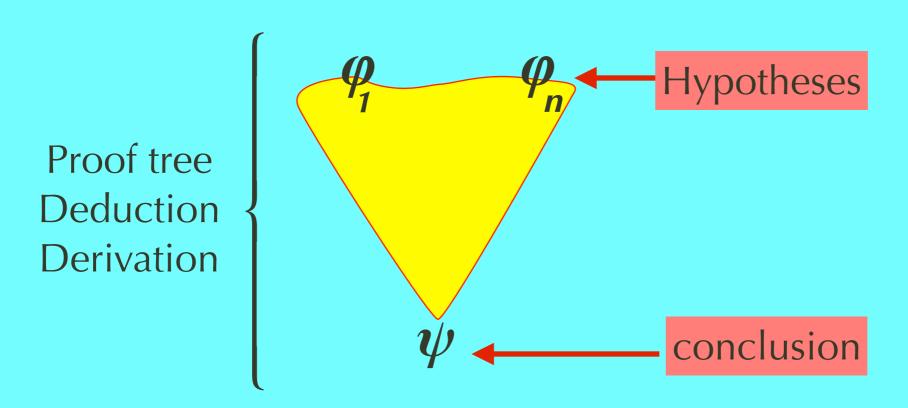
Natural Deduction

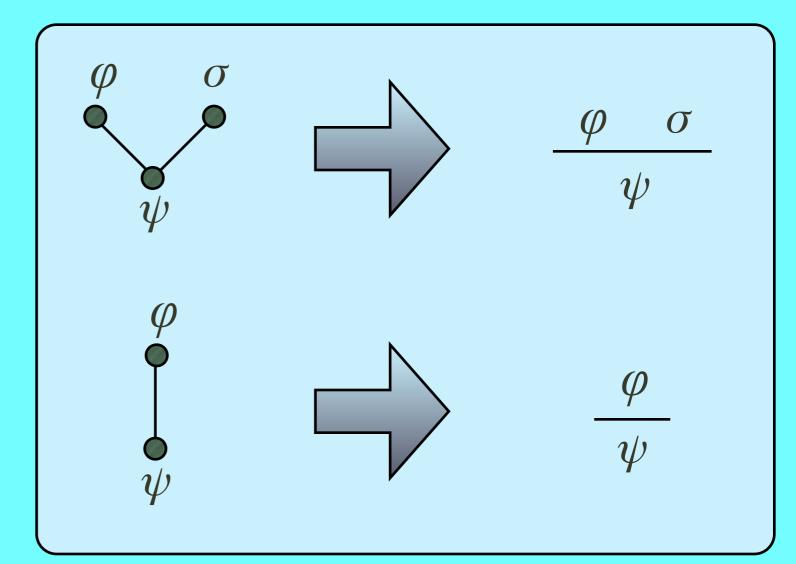








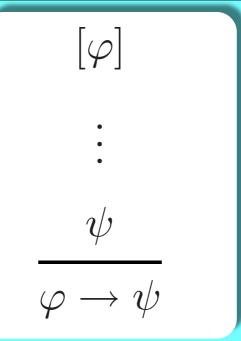




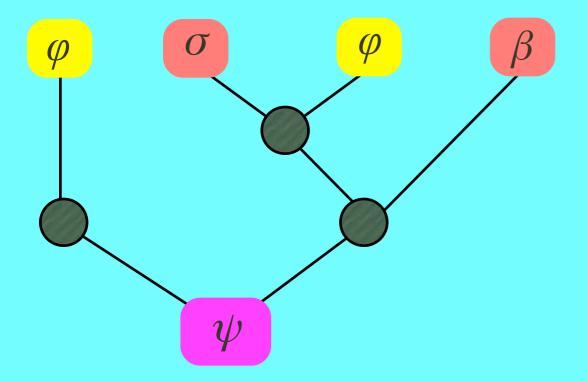
The Elimination Rule for Implication

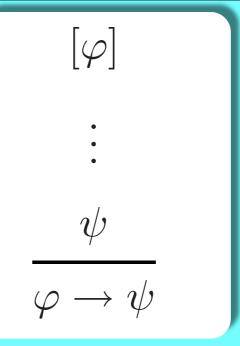
$$\frac{\varphi \quad \varphi \rightarrow \psi}{\psi}$$

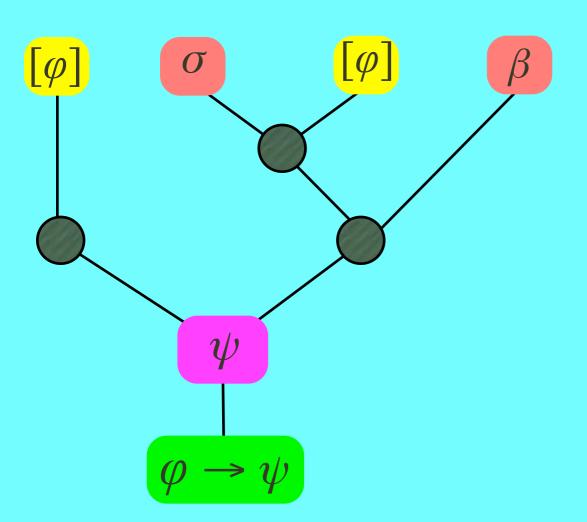
The Introduction Rule for Implication



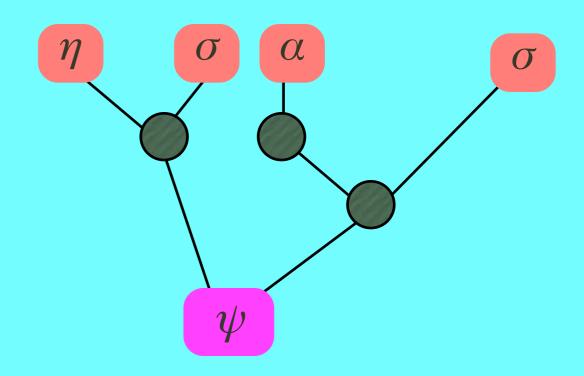
$$\begin{array}{c} [\varphi] \\ \vdots \\ \hline \psi \\ \hline \varphi \to \psi \end{array}$$

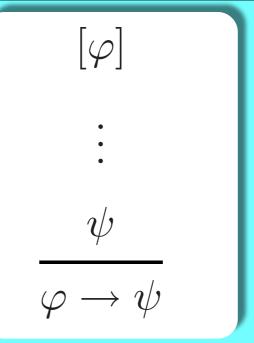


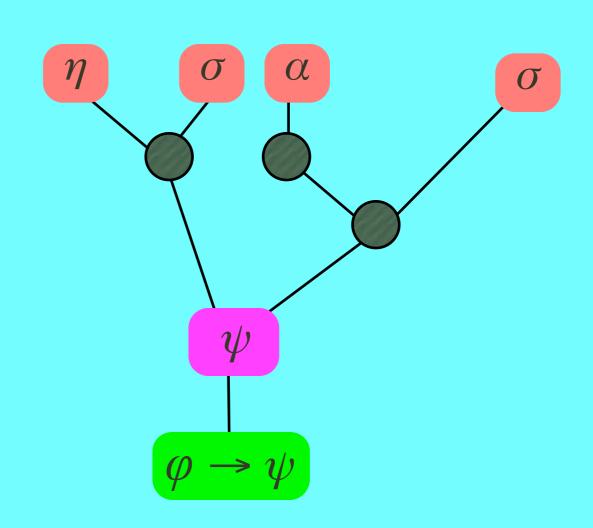


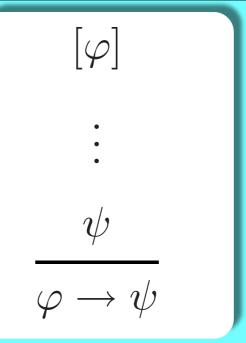


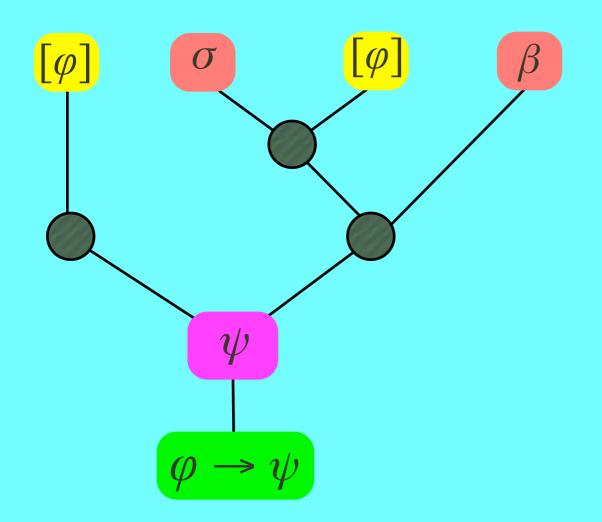
$$\begin{array}{c} [\varphi] \\ \vdots \\ \hline \psi \\ \hline \varphi \to \psi \end{array}$$

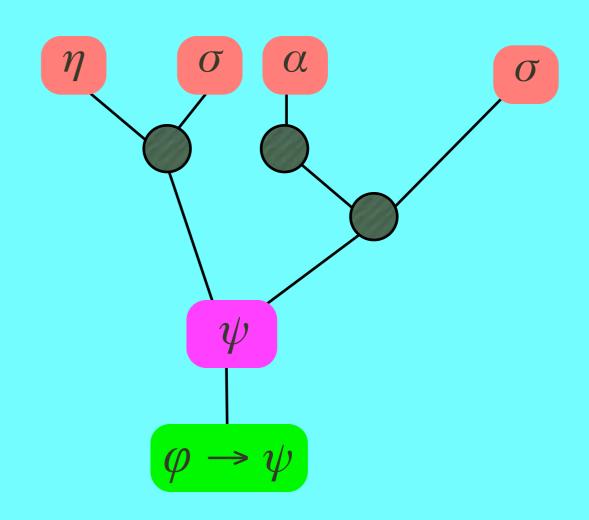












Introduction rules Elimination rules

$$(\land I) \quad \frac{\varphi \quad \psi}{\varphi \land \psi} \land I$$

$$[\varphi]$$

$$(\rightarrow I) \quad \vdots$$

$$\frac{\psi}{\varphi \rightarrow \psi} \rightarrow I$$

$$(\wedge I) \quad \frac{\varphi \quad \psi}{\varphi \wedge \psi} \wedge I$$

$$[\varphi]$$

$$(\to I) \quad \vdots$$

$$\frac{\psi}{\varphi \to \psi} \to I$$

$$(\to E) \quad \frac{\varphi \wedge \psi}{\varphi} \wedge E_1 \quad \frac{\varphi \wedge \psi}{\psi} \wedge E_2$$

(3 ore) fine lezione 5 marzo 2014

$$\frac{\varphi \wedge \psi}{\psi} \wedge E$$

$$\frac{\varphi \wedge \psi}{\psi} \wedge E \qquad \frac{\varphi \wedge \psi}{\varphi} \wedge E$$

$$\frac{[\varphi \wedge \psi]^{1}}{\psi} \wedge E \qquad \frac{[\varphi \wedge \psi]^{1}}{\varphi} \wedge E$$

$$\frac{\psi}{\varphi} \wedge \varphi \qquad AI$$

$$\frac{\psi \wedge \varphi}{\varphi \wedge \psi \wedge \varphi} \rightarrow I_{1}$$

$$\frac{\varphi \quad \varphi \rightarrow \bot}{\bot} \rightarrow E$$

$$\frac{\varphi \qquad [\varphi \to \bot]^1}{\bot} \to E$$

$$\frac{\bot}{(\varphi \to \bot) \to \bot} \to I_1$$

$$\frac{[\varphi]^2 \quad [\varphi \to \bot]^1}{\bot} \to E$$

$$\frac{\bot}{(\varphi \to \bot) \to \bot} \to I_1$$

$$\frac{(\varphi \to \bot) \to \bot}{\varphi \to ((\varphi \to \bot) \to \bot)} \to I_2$$

$$\frac{\varphi \wedge \psi}{\psi} \wedge E$$

$$\frac{\varphi \wedge \psi}{\psi} \wedge E \qquad \frac{\varphi \wedge \psi}{\varphi} \wedge E \qquad \frac{\varphi \rightarrow (\psi \rightarrow \sigma)}{\psi \rightarrow \sigma} \rightarrow E$$

$$\frac{\varphi \wedge \psi}{\psi} \wedge E \qquad \frac{\varphi \wedge \psi}{\varphi} \wedge E \qquad \frac{\varphi \rightarrow (\psi \rightarrow \sigma)}{\psi \rightarrow \sigma} \rightarrow E$$

 σ

$$\frac{[\varphi \wedge \psi]^{1}}{\psi} \wedge E \qquad \frac{\varphi \wedge \psi}{\varphi} \wedge E \qquad \varphi \rightarrow (\psi \rightarrow \sigma) \qquad \to E$$

$$\frac{\psi}{\sigma} \qquad \frac{\psi \rightarrow \sigma}{\sigma} \rightarrow E$$

 $\frac{1}{\varphi \wedge \psi \rightarrow \sigma} \rightarrow I_1$

$$\frac{[\varphi \wedge \psi]^{1}}{\psi} \wedge E \qquad \frac{[\varphi \wedge \psi]^{1}}{\varphi} \wedge E \qquad [\varphi \rightarrow (\psi \rightarrow \sigma)]^{2}}{\psi \rightarrow \sigma} \rightarrow E$$

$$\frac{\varphi}{\psi \rightarrow \sigma} \rightarrow I_{1}$$

$$\frac{[\varphi \wedge \psi]^{1}}{\psi \rightarrow \sigma} \rightarrow I_{1}$$

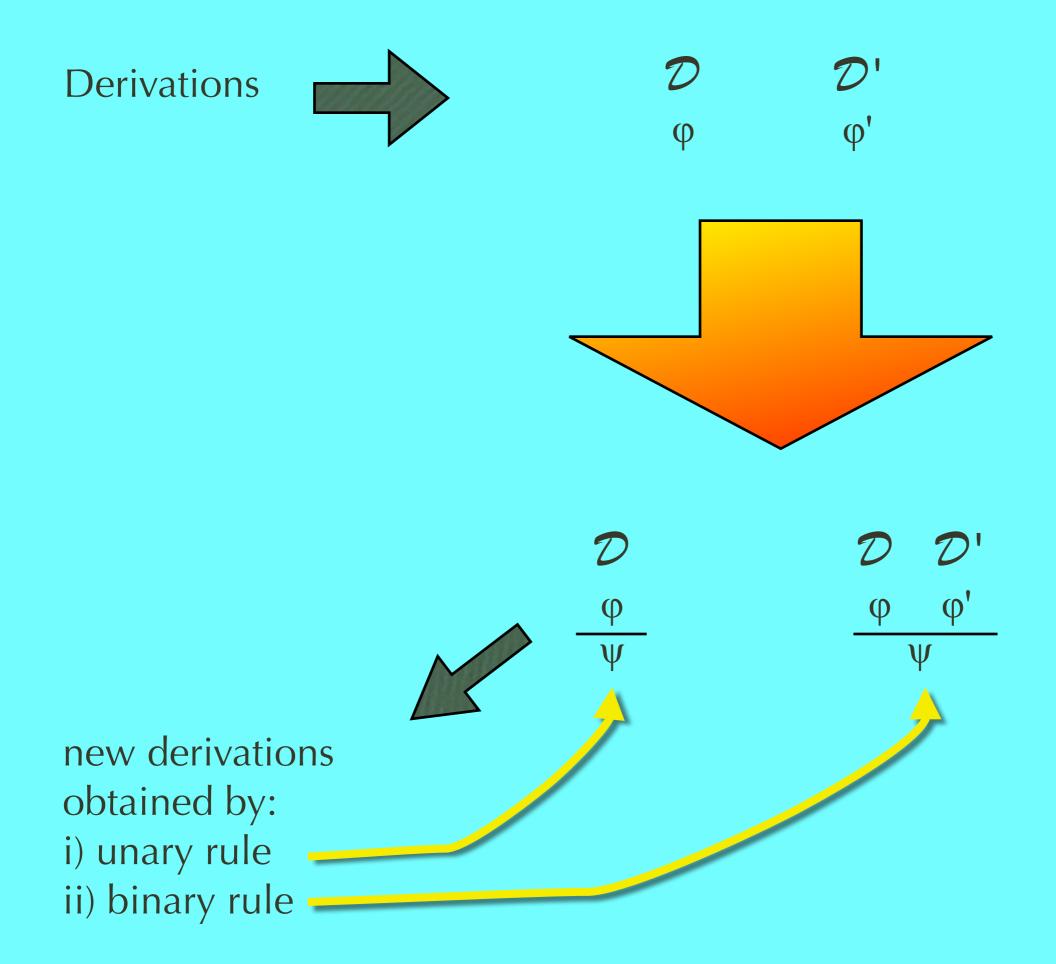
 $(\varphi \to (\psi \to \sigma)) \to (\varphi \land \psi \to \sigma)$

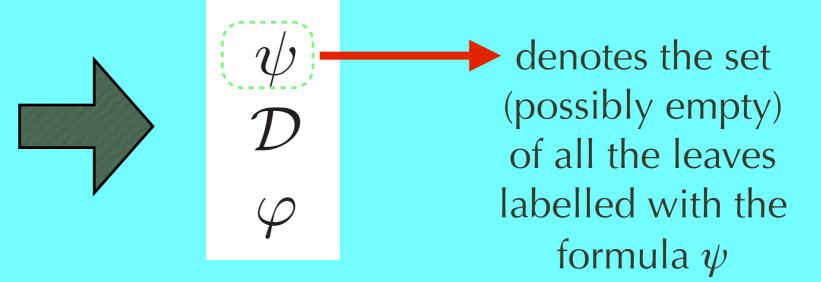
$$\neg \alpha \stackrel{\text{def}}{=} \alpha \rightarrow \bot$$

$$\frac{[\varphi]^2 \quad [\neg \varphi]^1}{\bot} \to E$$

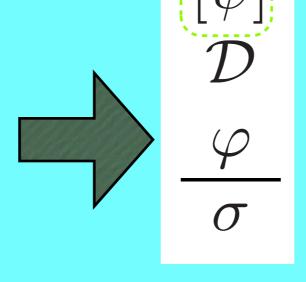
$$\frac{\bot}{\neg \neg \varphi} \to I_1$$

$$\frac{\neg \neg \varphi}{\varphi \to \neg \neg \varphi} \to I_2$$





A derivation with hypothesis ψ cancelled



denotes the set
of all the leaves labelled with
the formula ψ
marked
as "cancelled" / "discharged"

The set of derivations is the *smallest set X* such that

(1) The one element tree φ belongs to X for all $\varphi \in PROP$.

$$(2\wedge) \ If \frac{\mathcal{D}}{\varphi}, \frac{\mathcal{D}'}{\varphi'} \in X, \ then \qquad \frac{\varphi}{\varphi} \frac{\varphi'}{\varphi \wedge \varphi'} \in X.$$

$$If \frac{\mathcal{D}}{\varphi \wedge \psi} \in X, \ then \qquad \frac{\mathcal{D}}{\varphi} \frac{\mathcal{D}}{\psi}, \frac{\varphi \wedge \psi}{\psi} \in X.$$

$$(2\rightarrow) \ \text{If} \ \mathcal{D} \in X, \ \text{then} \qquad \frac{\varphi}{\varphi \to \psi} \in X.$$

$$\psi \qquad \frac{\psi}{\varphi \to \psi}$$

$$If \ \mathcal{D}, \ \mathcal{D}', \ \varphi \to \psi \in X, \ \text{then} \quad \frac{\varphi}{\varphi} \qquad \frac{\varphi \to \psi}{\psi} \in X.$$

$$\Gamma \vdash \varphi$$

there is a derivation with conclusion φ and with all (uncancelled) hypotheses in Γ

$$\vdash \varphi \stackrel{\text{def}}{=} \varnothing \vdash \varphi$$

there is a derivation with conclusion φ and with all hypotheses cancelled

$$\Gamma \vdash \phi$$
 if $\phi \in \Gamma$

$$\Gamma \vdash \varphi, \Gamma' \vdash \psi \Rightarrow \Gamma \cup \Gamma' \vdash \varphi \land \psi$$

$$\Gamma \vdash \phi \land \psi \Rightarrow \Gamma \vdash \phi \text{ and } \Gamma \vdash \psi$$

$$\Gamma \cup \phi \vdash \psi \Rightarrow \Gamma \vdash \phi \rightarrow \psi$$

$$\Gamma \vdash \varphi, \Gamma' \vdash \varphi \rightarrow \psi \Rightarrow \Gamma \cup \Gamma' \vdash \psi$$

$$\Gamma \vdash \bot \Rightarrow \Gamma \vdash \varphi$$

$$\Gamma \cup \{\neg \phi\} \vdash \bot \Rightarrow \Gamma \vdash \phi$$

$$(1) \vdash \varphi \rightarrow (\psi \rightarrow \varphi)$$

$$(2) \vdash \varphi \rightarrow (\neg \varphi \rightarrow \psi)$$

$$(3) \vdash (\varphi \rightarrow \psi) \rightarrow [(\psi \rightarrow \sigma) \rightarrow (\varphi \rightarrow \sigma)]$$

$$(4) \vdash (\varphi \rightarrow \psi) \leftrightarrow (\neg \psi \rightarrow \neg \varphi)$$

$$(5) \vdash \neg \neg \varphi \leftrightarrow \varphi$$

$$(6) \vdash [\varphi \rightarrow (\psi \rightarrow \sigma)] \leftrightarrow [\varphi \land \psi \rightarrow \sigma]$$

$$(7) \vdash \bot \leftrightarrow (\phi \land \neg \phi)$$

1.
$$\frac{[\varphi]^1}{\psi \to \varphi} \to I$$

$$\frac{\varphi}{\varphi \to (\psi \to \varphi)} \to I_1$$

$$\frac{[\varphi]^2 \quad [\neg \varphi]^1}{\bot} \to E$$

$$\frac{\bot}{\psi} \bot$$

$$\frac{-}{\psi} \to I_1$$

$$\frac{\neg \varphi \to \psi}{\varphi \to (\neg \varphi \to \psi)} \to I_2$$

 $\frac{[\varphi]^{1} \quad [\varphi \to \psi]^{3}}{\psi} \to E$ $\frac{\varphi}{\varphi \to \varphi} \to I_{1}$ $\frac{\varphi \to \varphi}{(\psi \to \varphi) \to (\varphi \to \varphi)} \to I_{2}$ $\frac{(\psi \to \varphi) \to (\psi \to \varphi) \to (\varphi \to \varphi)}{(\varphi \to \psi) \to ((\psi \to \varphi) \to (\varphi \to \varphi))} \to I_{3}$

3.

Soundness

$$\Gamma \vdash \varphi \Rightarrow \Gamma \models \varphi$$
.

Towards Soundness

Notation:

$$\Gamma$$
, $\Gamma' \stackrel{\text{def}}{=} \Gamma_{\cup} \Gamma'$
 Γ , $\Phi \stackrel{\text{def}}{=} \Gamma$, $\{\Phi\}$

$$\rightarrow$$
 $\Gamma \models \varphi \& \Gamma \subseteq \Gamma' \Rightarrow \Gamma' \models \varphi$

$$\Rightarrow \varphi \models \varphi$$

$$\rightarrow$$
 Γ , $\varphi \models \varphi$

$$ightharpoondow$$
 $\Gamma \models \varphi \& \Gamma' \models \varphi' \Rightarrow \Gamma, \Gamma' \models \varphi \land \varphi'$

$$\rightarrow \Gamma \models \phi \land \phi' \Rightarrow \Gamma \models \phi \& \Gamma \models \phi'$$

$$\rightarrow$$
 \perp \models φ

$$ightharpoonup$$
 Γ , $\neg \varphi \vDash \bot \Rightarrow \Gamma \vDash \varphi$

$$ightharpoonup \Gamma \models \bot \Rightarrow \Gamma - \{\neg \varphi\} \models \varphi$$

$$ightharpoonup$$
 $\Gamma \vDash \bot \Rightarrow \Gamma \vDash \varphi$

$$\rightarrow$$
 $\Gamma \models \phi \rightarrow \sigma \& \Gamma' \models \phi \Rightarrow \Gamma, \Gamma' \models \sigma$

$$\rightarrow$$
 Γ , $\varphi \models \sigma \Rightarrow \Gamma \models \varphi \rightarrow \sigma$

$$ightharpoonup \Gamma \models \sigma \Rightarrow \Gamma - \{\phi\} \models \phi \rightarrow \sigma$$

$$\rightarrow$$
 $\Gamma \models \sigma \& \Gamma', \sigma \models \varphi \Rightarrow \Gamma, \Gamma' \models \varphi$

 Γ , $\varphi \models \sigma \Rightarrow \Gamma \models \varphi \rightarrow \sigma$

$$\Gamma, \phi \vDash \sigma$$

$$\forall V. \{([\Gamma]_{V}=1\& [\phi]_{V}=1) \Rightarrow [\sigma]_{V}=1\}$$

$$\Rightarrow$$

$$\forall V. \{\text{NOT}([\Gamma]_{V}=1\& [\phi]_{V}=1) \text{ OR } [\sigma]_{V}=1\}$$

$$\Rightarrow$$

$$\forall V. \{([\Gamma]_{V} \neq 1 \text{ OR } [\phi]_{V}=0) \text{ OR } [\sigma]_{V}=1\}$$

$$\Rightarrow$$

$$\forall V. \{[\Gamma]_{V} \neq 1 \text{ OR } ([\phi]_{V}=0 \text{ OR } [\sigma]_{V}=1)\}$$

$$\Rightarrow$$

$$\forall V. \{[\Gamma]_{V} \neq 1 \text{ OR } ([\phi \Rightarrow \sigma]_{V}=1)\}$$

$$\Rightarrow$$

$$\forall V. \{[\Gamma]_{V} \neq 1 \text{ OR } ([\phi \Rightarrow \sigma]_{V}=1)\}$$

$$\Rightarrow$$

$$\forall V. \{[\Gamma]_{V} = 1 \Rightarrow [\phi \Rightarrow \sigma]_{V}=1\}$$

$$\Rightarrow$$

$$\Gamma \vDash \phi \Rightarrow \sigma$$

Soundness

$$\Gamma \vdash \varphi \Rightarrow \Gamma \models \varphi$$
.

Notation: hpD is the set of uncancelled hypoteses of D

We prove, by induction on the lenght of derivations, that

for each derivation $\overset{\mathcal{D}}{\varphi}$ and Γ , with $\mathsf{hp}\mathcal{D} \subseteq \Gamma$

we have $\Gamma \vDash \varphi$

Basis:
$$\mathcal{D} = \varphi$$

$$\mathcal{D} = \varphi \Rightarrow \varphi \in \Gamma \Rightarrow \Gamma \models \varphi$$

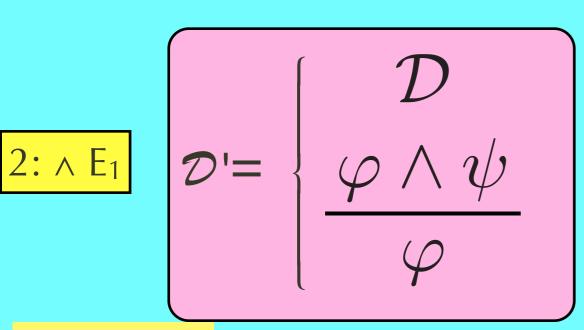
Inductive cases

$$\mathcal{D}' = \left\{ \begin{array}{c} \mathcal{D} & \mathcal{D}' \\ \varphi & \varphi' \\ \hline \varphi \wedge \varphi' \end{array} \right.$$

hp⊘"⊆ Γ"

Inductive Hypothesis (IH)

$$\Rightarrow$$
 $hpD \models \varphi \& hpD' \models \varphi'$
 \Rightarrow
 $hpD \cup hpD' \models \varphi \land \varphi'$
 \Rightarrow
 $\Gamma'' \models \varphi \land \varphi'$



Inductive Hypothesis (IH)

$$\Rightarrow$$
 $\mathbf{hp}\mathcal{D} \models \varphi \land \psi$
 \Rightarrow
 $\mathbf{hp}\mathcal{D} \models \varphi$
 \Rightarrow
 $\Gamma' \models \varphi$

$$\mathcal{D}'=\left\{egin{array}{c} [arphi] \ \mathcal{D} \ \ \psi \ \hline arphi
ightarrow\psi \end{array}
ight.$$

hp⊅'⊆ Γ'

Inductive Hypothesis (IH)

$$\Rightarrow$$
 $hpD \models \psi$
 \Rightarrow
 $hpD - \{\varphi\} \models \varphi \rightarrow \psi$
 $\Rightarrow (since hpD' = hpD - \{\varphi\})$
 $\Gamma' \models \varphi \rightarrow \psi$

$$egin{aligned} \mathcal{D}' = \left\{ egin{aligned} \mathcal{D}' & \mathcal{D}' \ arphi & arphi
ightarrow \psi \ \hline \psi & \end{matrix} \end{aligned}
ight.$$

hp⊅"⊆ Γ"

Inductive Hypothesis (IH)

$$\Rightarrow$$
 $hpD \models \varphi \& hpD' \models \varphi \rightarrow \psi$
 \Rightarrow
 $hpD \cup hpD' \models \psi$
 \Rightarrow
 $\Gamma'' \models \varphi \land \varphi'$

4: RAA

$$\mathcal{D}' = \begin{cases} [\neg \varphi] \\ \mathcal{D} \\ \bot \\ \varphi \end{cases}$$

Inductive Hypothesis (IH) \Rightarrow $hp\mathcal{D} \models \bot$ \Rightarrow $hp\mathcal{D} - {\neg \varphi} \models \varphi$ $\Rightarrow (since \ hp\mathcal{D}' = hp\mathcal{D} - {\neg \varphi})$ $\Gamma' \models \varphi$

An application of **soundness**

$$\Gamma \not\models \varphi \Rightarrow \Gamma \not\vdash \varphi$$

$$\vdash (\phi \lor \sigma) \rightarrow \phi$$

- 1. let $\varphi = p_0$ and $\sigma = p_1$
- 2. let $v(p_0)=0$ and

$$v(p_1)=1$$

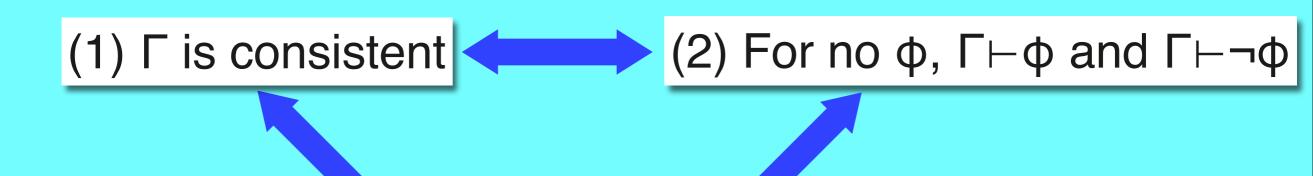
- 3. $v((p_0 \lor p_1) \rightarrow p_0) = 0$
- $4. \not\models (p_0 \lor p_1) \rightarrow p_0$
- $5. \not\vdash (p_0 \lor p_1) \rightarrow p_0$

Completeness

$$\Gamma \models \varphi \Rightarrow \Gamma \vdash \varphi$$

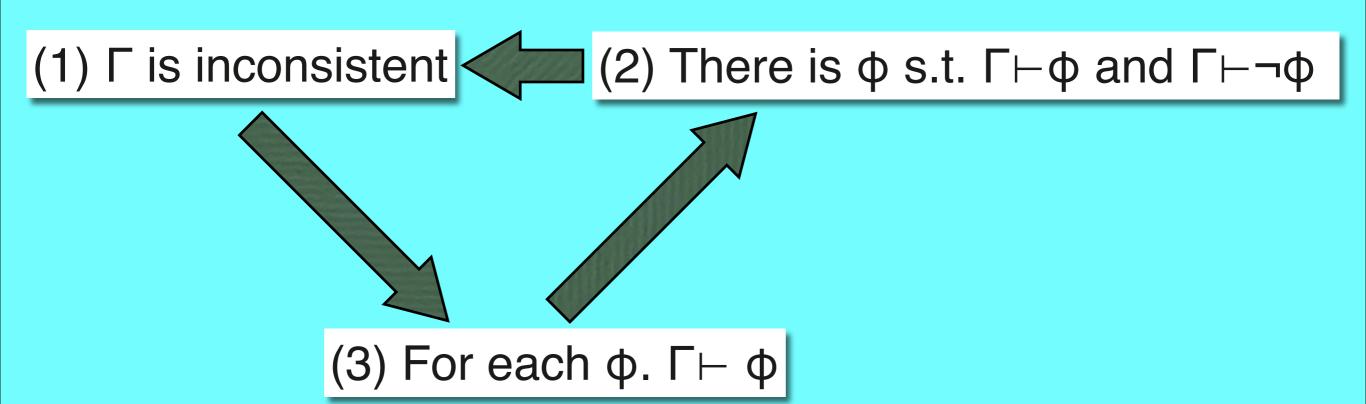
A set Γ of propositions is consistent if $\Gamma \not\vdash \bot$.

A set Γ of propositions is **inconsistent** if $\Gamma \vdash \bot$.

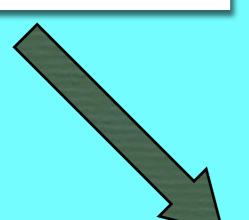


(3) There is at least one φ such that $\Gamma \not\vdash \varphi$

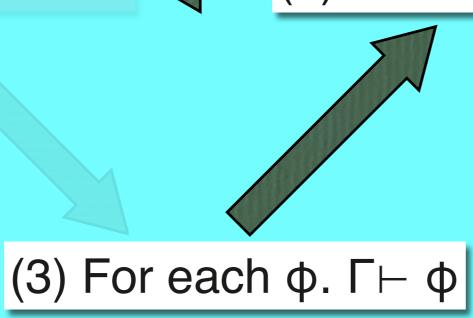
(3) For each φ. Γ⊢ φ



(1) Γ is inconsistent



(3) For each φ . $\Gamma \vdash \varphi$



immediate

(1) Γ is inconsistent (2) There is φ s.t. $\Gamma\vdash\varphi$ and $\Gamma\vdash\neg\varphi$

(3) For each φ . $\Gamma \vdash \varphi$

$$\Gamma \vdash \varphi \Rightarrow \exists \mathcal{D}' \text{ s.t.} \quad \begin{matrix} \mathcal{D}' \\ \varphi \end{matrix} \quad \text{with } \mathbf{hp} \mathcal{D}' \subseteq \Gamma$$

$$\Gamma \vdash \neg \varphi \Rightarrow \exists \mathcal{D}' \text{ s.t.} \quad \begin{matrix} \mathcal{D}' \\ \neg \varphi \end{matrix} \quad \text{with } \mathbf{hp} \mathcal{D}' \subseteq \Gamma$$

$$\Rightarrow \qquad \qquad \Rightarrow \qquad \qquad \Rightarrow$$

$$\mathcal{D}' \quad \mathcal{D}' \\ \varphi \quad \neg \varphi \qquad \Rightarrow \Gamma \vdash \bot$$

Proposition:

If there is a valuation such that $[\psi]_{\vee} = 1$ for all $\psi \in \Gamma$, then Γ is consistent.

Proof:

Suppose $\Gamma \vdash \bot$, then $\Gamma \vDash \bot$, so for any valuation v $[(\psi)]_{v} = 1$ for all $\psi \in \Gamma \Rightarrow [\bot]_{v} = 1$

Since $[\bot]_v = 0$ for all valuations, there is no valuation with $[\psi]_v = 1$ for all $\psi \in \Gamma$. *Contradiction*.

Hence Γ is consistent.

 $\Gamma \cup \{\neg \varphi\} \text{ is inconsistent} \Rightarrow \Gamma \vdash \varphi,$ $\Gamma \cup \{\varphi\} \text{ is inconsistent} \Rightarrow \Gamma \vdash \neg \varphi.$

$$\Gamma \cup \{\phi\} \text{ is inconsistent } \Rightarrow \exists \mathcal{D}' \text{ s.t. } \frac{\mathcal{D}'}{\bot} \text{ with } \mathbf{hp}\mathcal{D}' \subseteq \Gamma \cup \{\phi\}$$

$$\Rightarrow \frac{\mathcal{D}'}{\bot}$$

$$\Rightarrow \frac{\bot}{\neg \varphi} \rightarrow |$$

A set Γ is maximally consistent iff (a) Γ is consistent, (b) $\Gamma \subseteq \Gamma'$ and Γ' consistent $\Rightarrow \Gamma = \Gamma'$.

example: Let v a valuation, $\Gamma = \{\phi : [\phi]_v = 1\}$. Γ is consistent. Let Γ' such that $\Gamma \subseteq \Gamma'$.

Let $\psi \in \Gamma'$ s.t. $\psi \notin \Gamma$ i.e. $[\psi]_{\vee}=0$, then $[\neg \psi]_{\vee}=1$, and so $\neg \psi \in \Gamma$. But since $\Gamma \subseteq \Gamma'$ this implies that Γ' is inconsistent.

Contradiction.

Theorem:

Each consistent set Γ is contained in a maximally consistent set Γ^*

1) enumerate all the formulas

$$\phi_0$$
, ϕ_1 , ϕ_2 ,

2) define the non decreasing sequence:

$$\begin{split} \Gamma_0 = \Gamma \\ \Gamma_{n+1} = \begin{cases} \Gamma_n \, \cup \, \{\varphi_n\} \text{ if } \Gamma_n \, \cup \, \{\varphi_n\} \text{ is consistent,} \\ \Gamma_n \text{ otherwise} \end{cases} \end{split}$$

3) define

$$\Gamma^* = \bigcup_{n \geq 0} \Gamma_n$$
.

(a) Γ_n is consistent for all n (a trivial induction on n)

(b) Γ^* is consistent suppose $\Gamma^* \vdash \bot$ we have $\exists \ \mathcal{D} \ \text{with hp} \mathcal{D} = \{\psi_0, ..., \psi_k\} \subseteq \Gamma^*;$

$$\Gamma^* = \bigcup_{n \geq 0} \Gamma_n \Rightarrow \forall i \leq k \exists n_i : \psi_i \in \Gamma_{n_i}.$$

Let $n=\max\{n_i: i \le k\}$, then $\psi_0,...,\psi_k \in \Gamma_n$ and hence $\Gamma_n \vdash \bot$. But Γ_n is consistent. Contradiction.

(c) Γ^* is maximally consistent

Let $\Gamma^* \subseteq \Delta$ and Δ consistent. If $\psi \in \Delta$, then $\exists m. \ \psi = \varphi_{m}$; $\Gamma_m \subseteq \Gamma^* \subseteq \Delta$ and Δ is consistent, $\Gamma_m \cup \{\varphi_m\}$ is consistent. Therefore $\Gamma_{m+1} = \Gamma_m \cup \{\varphi_m\}$, i.e. $\varphi_m \in \Gamma_{m+1} \subseteq \Gamma^*$. $\Gamma^* = \Delta$.

If Γ is maximally consistent, then Γ is closed under derivability (i.e. $\Gamma \vdash \phi \Rightarrow \phi \in \Gamma$).

Let $\Gamma \vdash \varphi$ and suppose $\varphi \not\in \Gamma$. Then $\Gamma \cup \{\varphi\}$ must be inconsistent. Hence $\Gamma \vdash \neg \varphi$, so Γ is inconsistent. Contradiction.

Let Γ be maximally consistent;

- a) $\forall \varphi$ either $\varphi \in \Gamma$, or $\neg \varphi \in \Gamma$,
- b) $\forall \phi, \psi. \phi \rightarrow \psi \in \Gamma \Leftrightarrow (\phi \in \Gamma \Rightarrow \psi \in \Gamma).$
- (a) We know that not both φ and $\neg \varphi$ can belong to Γ . Consider $\Gamma' = \Gamma \cup \{\varphi\}$. If Γ' is inconsistent, then, $\neg \varphi \in \Gamma$. If Γ' is consistent, then $\varphi \in \Gamma$ by the maximality of Γ .
- (b) b1) Let $\phi \rightarrow \psi \in \Gamma$ and $\phi \in \Gamma$.

Since $\phi, \phi \rightarrow \psi \in \Gamma$ and since Γ is closed under derivability we get $\psi \in \Gamma$ by \rightarrow E.

b2) Let
$$\phi \in \Gamma \Rightarrow \psi \in \Gamma$$
.

If $\varphi \in \Gamma$ then obviously $\Gamma \vdash \psi$, so $\Gamma \vdash \varphi \rightarrow \psi$.

If $\phi \notin \Gamma$, then $\neg \phi \in \Gamma$, and then $\Gamma \vdash \neg \phi$.

Therefore $\Gamma \vdash \phi \rightarrow \psi$.

Corollary

If Γ is maximally consistent, then $\varphi \in \Gamma \Leftrightarrow \neg \varphi \not\in \Gamma$, and $\neg \varphi \in \Gamma \Leftrightarrow \varphi \not\in \Gamma$.

If Γ is consistent, then there exists a valuation such that $[\psi]$ = 1 for all $\psi \in \Gamma$.

Proof.(a)
$$\Gamma$$
 is contained in a maximally consistent Γ^*
(b) Define $v(p_i) = \begin{cases} 1 \text{ if } p_i \in \Gamma^* \\ 0 \text{ else} \end{cases}$

and extend v to the valuation $[\![\,]\!]_v$.

Claim: $[\![\varphi]\!] = 1 \Leftrightarrow \varphi \in \Gamma^*$. Use induction on φ .

- 1. For atomic φ the claim holds by definition.
- 2. $\varphi = \psi \wedge \sigma$. $\llbracket \varphi \rrbracket_v = 1 \Leftrightarrow \llbracket \psi \rrbracket_v = \llbracket \sigma \rrbracket_v = 1 \Leftrightarrow \text{(induction hypothesis)}$ $\psi, \sigma \in \Gamma^* \text{ and so } \varphi \in \Gamma^*$. Conversely $\psi \wedge \sigma \in \Gamma^* \Rightarrow \psi, \sigma \in \Gamma^*$ The rest follows from the induction hypothesis.
- 3. $\varphi = \psi \to \sigma$. $\llbracket \psi \to \sigma \rrbracket_v = 0 \Leftrightarrow \llbracket \psi \rrbracket_v = 1$ and $\llbracket \sigma \rrbracket_v = 0 \Leftrightarrow$ (induction hypothesis) $\psi \in \Gamma^*$ and $\sigma \notin \Gamma^* \Leftrightarrow \psi \to \sigma \notin \Gamma^*$
- (c) Since $\Gamma \subseteq \Gamma^*$ we have $[\![\psi]\!]_v = 1$ for all $\psi \in \Gamma$.

Corollary

 Γ \vdash φ \Leftrightarrow there is a valuation such that $[\psi]$ = 1 for all ψ ∈ Γ and $[\varphi]$ =0.

 $\Gamma \not\vdash \varphi \Leftrightarrow \Gamma \cup \{\neg \varphi\}$ consistent \Leftrightarrow there is a valuation such that $[\psi] = 1$ for all $\psi \in \Gamma \cup \{\neg \varphi\}$, namely, $[\psi] = 1$ for all $\psi \in \Gamma \cup \{\neg \varphi\}$, namely, $[\psi] = 1$ for all $\psi \in \Gamma$ and $[\varphi] = 0$

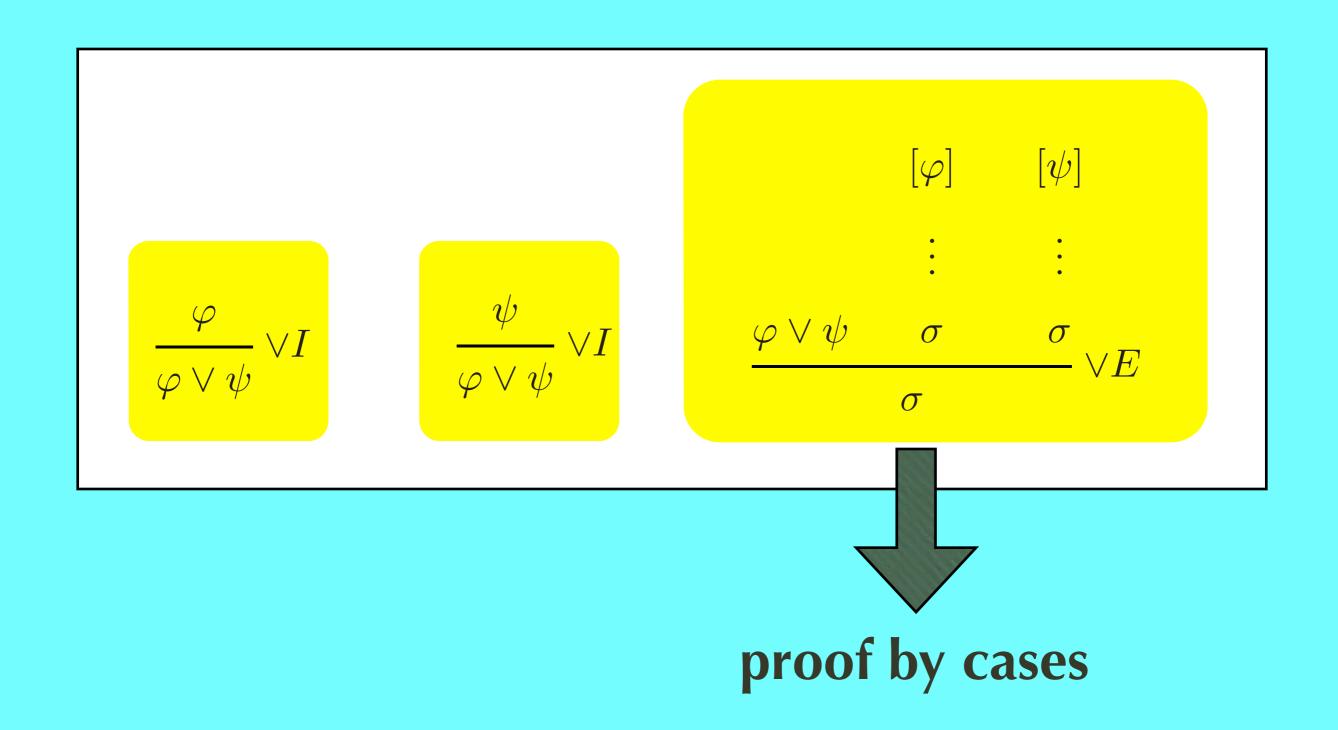
Theorem (Completeness Theorem)

$$\Gamma \models \varphi \Longrightarrow \Gamma \vdash \varphi$$

Proof. $\Gamma \vdash \varphi \Rightarrow \Gamma \vDash \varphi$

$$\Gamma \models \varphi \iff \Gamma \vdash \varphi$$

The connective **V**



 $\vdash (\varphi \land \psi) \lor \sigma \leftrightarrow (\varphi \lor \sigma) \land (\psi \lor \sigma).$

$$\vdash (\varphi \land \psi) \lor \sigma \leftrightarrow (\varphi \lor \sigma) \land (\psi \lor \sigma).$$

$$\frac{[\varphi \wedge \psi]^{1}}{\varphi} \qquad [\sigma]^{1} \qquad [\varphi \wedge \psi]^{2} \qquad [\sigma]^{2} \qquad [\sigma]^{2} \qquad [\sigma]^{2} \qquad [\varphi \wedge \psi) \vee \sigma \qquad [\varphi \vee \sigma] \qquad [\varphi \vee \varphi] \qquad [\varphi \vee$$

$$\vdash (\varphi \land \psi) \lor \sigma \leftrightarrow (\varphi \lor \sigma) \land (\psi \lor \sigma).$$

$$\frac{[\varphi]^2 \quad [\psi]^1}{\varphi \wedge \psi} \qquad \frac{[\sigma]^1}{[\varphi]^2} \qquad \frac{[\varphi]^2 \quad [\psi]^1}{[\varphi]^2} \qquad \frac{[\varphi]^2 \quad [\varphi]^1}{[\varphi]^2} \qquad \frac{[\varphi]^2 \quad [\varphi]^2}{[\varphi]^2} \qquad \frac{[\varphi]^2}{[\varphi]^2} \qquad \frac{[\varphi]^$$

 $\vdash \varphi \lor \neg \varphi$

$$\vdash \varphi \lor \neg \varphi$$

$$\frac{\frac{[\varphi]^{1}}{\varphi \vee \neg \varphi} \vee I}{\frac{\bot}{\varphi \vee \neg \varphi} \vee I} \xrightarrow{[\neg(\varphi \vee \neg \varphi)]^{2}} \rightarrow E$$

$$\frac{\frac{\bot}{\neg \varphi} \rightarrow I_{1}}{\varphi \vee \neg \varphi} \vee I \xrightarrow{[\neg(\varphi \vee \neg \varphi)]^{2}} \rightarrow E$$

$$\frac{\bot}{\varphi \vee \neg \varphi} \operatorname{RAA}_{2}$$

$$\vdash (\varphi \to \psi) \lor (\psi \to \varphi)$$

$$\vdash (\varphi \rightarrow \psi) \lor (\psi \rightarrow \varphi)$$

$$\frac{\frac{[\varphi]^{1}}{\psi \to \varphi} \to I_{1}}{\frac{(\varphi \to \psi) \vee (\psi \to \varphi)}{} \vee I \qquad [\neg((\varphi \to \psi) \vee (\psi \to \varphi))]^{2}} \to E$$

$$\frac{\frac{\bot}{\psi} \bot}{\frac{(\varphi \to \psi) \vee (\psi \to \varphi)}{} \vee I \qquad [\neg((\varphi \to \psi) \vee (\psi \to \varphi))]^{2}} \to E$$

$$\frac{\bot}{(\varphi \to \psi) \vee (\psi \to \varphi)} \vee I \qquad [\neg((\varphi \to \psi) \vee (\psi \to \varphi))]^{2}} \to E$$

$$\frac{\bot}{(\varphi \to \psi) \vee (\psi \to \varphi)} \operatorname{RAA}_{2}$$

$$\vdash \neg(\varphi \land \psi) \to \neg\varphi \lor \neg\psi$$

$$\vdash \neg(\varphi \land \psi) \rightarrow \neg\varphi \lor \neg\psi$$

$$\frac{[\neg \varphi]}{[\neg (\neg \varphi \lor \neg \psi)]} \frac{[\neg \varphi]}{\neg \varphi \lor \neg \psi} \frac{[\neg (\neg \varphi \lor \neg \psi)]}{[\neg (\neg \varphi \lor \neg \psi)]} \frac{\neg \varphi \lor \neg \psi}{\neg \varphi \lor \neg \psi}$$

$$\frac{\bot}{\neg \varphi \lor \neg \psi}$$

$$\frac{\bot}{\neg \varphi \lor \neg \psi}$$

$$\frac{\neg (\varphi \land \psi) \to \neg \varphi \lor \neg \psi}{\neg (\varphi \land \psi) \to \neg \varphi \lor \neg \psi}$$

$$\vdash \varphi \lor \psi \leftrightarrow \neg(\neg \varphi \land \neg \psi).$$

exercise