MapReduce Laboratory

In this laboratory students will learn how to use the Hadoop client API by working on a series of exercises:
* The classic Word Count and variations on the theme
* Design Pattern: Pair and Stripes
* Design Pattern: Order Inversion
* Join implementations
Note that the design patterns outlined above have been originally discussed in:
¢ Jimmy Lin, Chris Dyer, “Data-Intensive Text Processing with MapReduce,” Morgan Claypool

1 Run the Virtual Machine
1.1 VM details

¢ Itis preconfigured with all the software needed to get through the assignments.
* It has an Ubuntu 12.04 LTE (64bit) with XFCE Desktop Environment
e It requires = 2GB of memory
e It has a single account:
o username: student
o password: password
o Notice that login is password less and root commands can be run using sudo which is password less
as well.

IMPORTANT: Shut down the VM once finished the session (do not close abruptly the window)

1.2 Run the VM on the laptop

Download the image tarball from

http://tinyurl.com/mr-lab-bigfoot
(or ask to the teacher the USB key) and uncompress it
The image it can be used either VMplayer or Virtualbox

VMplayer:
* Windows/Linux: download the freeware player from here
* Mac OS: unfortunately there is no freeware player, but it can be used VMware Fusion which has a 30-day trial.

Virtualbox:
* The image can be loaded in Virtualbox with no issues. Be sure to select the file HadoopVM.vmdk as a virtual
hard-drive (and not one of the HadoopVM-sXXX.vmdk files).
¢ To install guest additions, once the image is running:
o sudo apt-get install dkms build-essential
download the additions (devices = install guest additions)

o
o sudo su -

o c¢d /media/VIRTUALBOXADDITION_version
o ./VBoxLinuxAddition.run

1.3 Run the VM on the laboratory machines

The VM image is stored in a local directory. This means that:
¢ The student needs to use every time the same physical machine; any modification will affect the VM on that
specific physical machine;
¢ The physical machine and the local directory can be accessed by anyone;

o To protect the access to the VM, once the VM is up and running, the student may add a login screen
(remember to change the password of the user “student”).

o This may not prevent other people from deleting the whole VM from the machine, therefore
remember to save the work somewhere outside the VM (e.g., backup of the modified Java files using
a shared directory, which can be inside the student user space).

The VM is accessible from the user menu. It can be found in Menu - Istruzione 2 Virtual Machine Hadoop

IMPORTANT: Shut down the VM before leaving (do not close abruptly the window)

2 Setup the laboratory sources in Eclipse

First, open the browser and go to the course web page, where you can find the file with the source code that will be used
in this lab session. Download the source code and uncompress it in any of your local directory on the VM.

Then, create a new Java Project in Eclipse:
¢ Inside Eclipse select the menu item File > New > Project ... to open the New Project wizard.
¢ Select Java Project then click Next to start the New Java Project
* Type a name for your new project, such as "mr-lab"
¢ Ensure to use JavaSE-1.6 as JRE, then click on Next
¢ Go on Libraries tab, and click on Add External Jars
* Add the following jars:
o /ust/lib/hadoop/hadoop-common.jar
o /ust/lib/hadoop-0.20-mapreduce/hadoop-core.jar
o /ust/lib/hadoop-hdfs/hadoop-hdfs. jar
o Click on Finish
Now you have a new project.

The next step is to import the source files to complete in the Project.

¢ Inside Eclipse, select the src directory in your project.

* Right-click on the src directory and select Import

* Select General / File System then click Next

¢ In From Directory, select ./mr/src/, which is inside the directory where you cloned the git repository

¢ In the tree on the left, expand src and select (put the tick on) fr, then click Finish.
At this point you should have a java project named mapred-lab already configured. The next step is starting with the
first exercise. Note that there can be errors in the source code you imported. This is normal, since there are uncompleted
source files that will be corrected in the exercises.

3 Utilities
3.1 How to launch a job

In order to launch a job, you need first to export a JAR file. Therefore, from Eclipse:

* Select the menu item File > Export

* Type JAR, select JAR file and click on Next

¢ In the textbox Select the export destination, type the name of the new JAR you want to export, i.e.

'YThome/student/mrlab jar'

* Type Finish.
Once you have exported your jar file, you can run your code using the local version of Hadoop. Open a terminal, and
type:

hadoop jar <jarname.jar> <fully.qualified.class.Name> <Parameters>

For example, for running the WordCount exercise, type:

hadoop jar mrlab.jar fr.eurecom.dsg.mapreduce.WordCount 2 INPUT/text/quote.txt
OUTPUT/wordcount/

Note that you need to specify a non existing output directory, or to delete it before running the job.

3.2 Navigate HDFS

The HDFS client can talk to the namenode to obtain information on the distributed file system, and to make a number of
operations. The basic command is

* hadoop fs [option]

* where option can be

o —ls —R > Displays recursively the content of the file system
o -get <src> <localdst> > Copies files from hdfs to the local file system
o —cat <file> > Displays <file> on the terminal (copies to stdout)

o and many others... see the Hadoop FS shell commands official documentation.

Alternatively, one can use the web interface to interact with the namenode (see next section).

3.3 Web interfaces: Monitor job progress

Hadoop publishes some web interfaces that display JobTracker and HDFS statuses. You can access them using the
following links:

e Jobtracker Web Interface: http://127.0.0.1:50030/

¢ NameNode Web Interface: http://127.0.0.1:50070/

4 Exercises

Note, exercises are organized in ascending order of difficulty.

4.1 Exercise 1 — Word Count

Count the occurrences of each word in a text file. This is the simplest example of MapReduce job: in the following we
illustrate three possible implementations.
¢ Basic: the map method emits 1 for each word. The reduce aggregates the ones it receives from mappers for
each key it is responsible for and save on disk (HDFS) the result
¢ In-Memory Combiner: instead of emitting 1 for each encountered word, the map method (partially)
aggregates the ones and emit the result for each word
¢ Combiner: the same as In-Memory Combiner but using the MapReduce Combiner class

Instructions

For the basic version the student has to modify the file WordCount java in the package fr.eurecom.dsg.mapreduce. The
user must operate on each TODO filling the gaps with code, following the description associated to each TODO. The
package java.util contains a class StringTokenizer that can be used to tokenize the text.

For the In-Memory Combiner and the Combiner the student has to modify WordCountIMC .java and
WordCountCombiner java in the same package referenced above. The student has to operate on each TODO using the
same code of the basic word count example except for the TODOs marked with a star *. Those must be completed with
using the appropriate design pattern.

When an exercise is completed you can export it into a jar file that will then be used to execute it.

Example of usage

The final version should get in input three arguments: the number of reducers, the input file and the output path.
Example of execution are:

hadoop jar <compiled jar> fr.eurecom.dsg.mapreduce.WordCount 3 <input file>
<output path> hadoop jar <compiled jar> fr.eurecom.dsg.mapreduce.WordCountIMC 3
<input file> <output_path> hadoop jar <compiled jar>
fr.eurecom.dsg.mapreduce.WordCountCombiner 3 <input file> <output_ path>

To test your code use the file /user/student/INPUT/text/quote.txt, saved in the local HDFS fs.
To run the final version of your job, you can use a bigger file, /user/student/INPUT/text/gutenberg-

partial.txt, which contains an extract of the English books from Project Gutenberg (http://www.gutenberg.org/),
which provides a collection of full texts of public domain books.

4.2 Exercise 2 — Term co-occurrences

In the following exercise, we need to build the term co-occurrence matrix for a text collection. A co-occurrence matrix
is a n X n matrix, where n is the number of unique words in the text. For each couple of words, we count the number of
times they co-occurred in the text in the same line.

4.2.1 Pairs Design Pattern

The basic (and maybe most intuitive) implementation of this exercise is the Pair. The basic idea is to emit, for each
couple of words in the same line, the couple itself (or pair) and the value 1. For example, in the line wl w2 w3 wl,
we emit (wl,w2):1, (wl,w3):1, (w2,wl):1, (w2,w3):1, (w2,wl):1l, (w3,wl):1,
(w3,w2):1, (w3,wl):1l.

In this exercise, we need to use a composite key to emit an occurrence of a pair of words. The student will understand
how to create a custom Hadoop data type to be used as key type.

A Pair is a tuple composed by two elements that can be used to ship two objects within a parent object. For this exercise
the student has to implement a TextPair, that is a Pair that contains two words.

Instructions

There are two files for this exercise:
* TextPair java: data structure to be implemented by the student. Besides the implementation of the data
structure itself, the student has to implement the serialization Hadoop API (write and read Fields).
® Pair java: the implementation of a pair example using TextPair java as datatype.

Example of usage

The final version should get in input three arguments: the number of reducers, the input file and the output path.
Example of execution are:

hadoop jar <compiled jar> fr.eurecom.dsg.mapreduce.Pair 1 <input file>
<output_path>

To test your code use the file /user/student/INPUT/text/quote.txt, saved in the local HDFS fs.

To run the final version of your job, you can use a bigger file, /user/student/INPUT/text/gutenberg-
partial.txt.

4.2.2 Stripes Design Pattern

This approach is similar to the previous one: for each line, co-occurring pairs are generated. However, now, instead of
emitting every pair as soon as it is generated, intermediate results are stored in an associative array. We use an
associative array, and, for each word, we emit the word itself as key and a Stripe, that is the map of co-occurring words
with the number of associated occurrence.

For example, in the line wl w2 w3 wl, we emit:

wl:{w2:1, w3:1}, w2:{wl:2,w3:1}, w3:{wl:2, w2:1}, wl:{w2:1, w3:1}
Note that, instead, we could emit also:
wl:{w2:2, w3:2}, w2:{wl:2,w3:1}, w3:{wl:2, w2:1}

In this exercise the student will understand how to create a custom Hadoop data type to be used as value type.
Instructions

There are two files for this exercise:
e StringTolntMapWritable java: the data structure file, to be implemented
* Stripes java: the MapReduce job, that the student must implement using the StringToIntMapWritable data
structure

Example of usage

hadoop jar <compiled jar> fr.eurecom.dsg.mapreduce.Stripes 2 <input file>
<output_path>

To test your code use the file /user/student/INPUT/text/quote.txt,saved in the local HDFS fs.

To run the final version of your job, you can use a bigger file, /user/student/INPUT/text/gutenberg-
partial.txt.

4.3 Exercise 3 — Relative term co-occurrence and Order Inversion
Design Pattern
In this example we need to compute the co-occurrence matrix, like the one in the previous exercise, but using the

relative frequencies of each pair, instead of the absolute value. Pratically, we need to count the number of times each
pair (w;, w;) occurs divided by the number of total pairs with w; (marginal).

The student has to implement the Map and Reduce methods and the special partitioner (see
OrderInversion#PartitionerTextPair class), which apply the partitioner only according to the first
element in the Pair, sending all data regarding the same word to the same reducer. Note that inside the

OrderInversion class there is a field called ASTERISK which should be used to output the total number of
occourrences of a word.

Instructions

There is one file for this exercise called OrderInversion. java. The run method of the job is already
implemented, the student should complete the mapper, the reducer and the partitioner, as explained in the TODOs.

Example of usage

hadoop jar <compiled jar> fr.eurecom.fr.mapreduce.OrderInversion 4 <input file>
<output_path>

To test your code use the file /user/student/INPUT/text/quote.txt, saved in the local HDFS fs.

To run the final version of your job, you can use a bigger file, /user/student/INPUT/text/gutenberg-
partial.txt.

4.4 Exercise 4 — Joins

In MapReduce the term join refers to merging two different dataset stored as unstructured files in HDFS. As for
databases, in MapReduce there are many different kind of joins, each with its use-cases and constraints. In this
laboratory the student will implement the Reduce-Side Join: the map phase tags each record such that records of
different inputs that have to be joined will have the same tag. Each reducer will receive a tag with a list of records and
perform the join.

Jobs

* Reduce Side Join: You need to find the two-hops friends, i.e. the friends of friends of each user, in the twitter
dataset. In particular, you need to implement a self-join, that is a join between two instances of the same
dataset, on the twitter graph. To test your code use the file
/user/student/INPUT/twitter/twitter-small.txt, saved in the local HDFS fs. To run the
final version of your job, you can use a bigger file, /user/student/INPUT/twitter/twitter-big-
sample.txt. Both files contain lines in the form userid friendid.

Instructions

* Reduce Side Join: use the file ReduceSideJoin java as starting point. This exercise is different from the others
because it does not contain any information on how to do it. The student is free to choose how to implement it.

Example of usage

hadoop jar <compiled jar> fr.eurecom.fr.mapreduce.ReduceSideJoin 1 <input file2>
<input filel> <output path>

4.5 Exercise 5 — PageRank

In this example, we compute the simple version of the PageRank, i.e., we do not consider the jump factor and the
presence of sink nodes (every node has at least one output link, and the graph is completely connected).

The graph is described through its adjacency list: in particular, the starting input file has the following format for each
line:

nodeID currentPageRank neighNodeIDl1 neighNodeID2 neighNodeID3 .o

where “nodeID” is the unique identifier of the node, “currentPageRank” is the current value of the PageRank
(initially set to the inverse of the number of nodes), and then there are the identifiers of the output links (the graph is
directed, i.e., the adjacency matrix is not symmetric). The files of two different graphs can be downloaded from the

course webpage (and should be stored in HDFS).

The student has to implement the Map and Reduce methods for the simplified PageRank computation. The run
method of the job should launch a finite number of iterations (given as input parameter). At each iteration, the
intermediate directory should be removed, so that, at the end, there will be only the initial directory and the final one.
Note that, since the output of a MapReduce computation is a directory, and the PageRank computation is iterative, then
the input (even at the beginning) should be always a directory. The student, therefore, should put the files describing a
graph in separated directories.

