


Introduction to 
Operational Semantics

An Imperative Language: IMP

syntax

semantics



number 

truth values

arithmetic expressions

boolean expression

commands 

locations 

S y n t a c t i c  S e t s



meta-variables



Aexp

Bexp

Co!

formation rules





Let S be the universe of derivable objects;
let                                   be generic elements of S.

Rules:
i. axioms (0-ary rules)                  or  symply 

ii. k-ary rules 

1 cap 2

S0, . . . , Sk
r

S

∀j ∈ [0, k]
··· Dj

Sj

S

ax
S

··· D0

S0 · · ·

··· Dk

Sk
r

S

2 cap3

(P (0)&(∀m ∈ ω.P (m) ⇒ P (m+1)) ⇒ ∀n ∈ ω.P (n)(∀m ∈ ω.(∀k〈m.Q(k)) ⇒ Q(m)) ⇒ ∀n ∈ ω.Q(n)

IND ⇒ C–IND
Let T (u) be ∀x〈u.Q(x)
Let us suppose that
∀m ∈ ω.(∀k〈m.Q(k)) ⇒ Q(m)
we want to show that:
∀v ∈ ω.Q(v)

Observe that ∀m.T (m) ⇒ T (m + 1)
and T (0) are true.
By means of IND we conclude that
∀v ∈ ω.T (v) is true and therefore ∀v ∈ ω.Q(v)
C–IND ⇒ IND
Let us suppose that
1)P (0)
and
2) (∀m ∈ ω.P (m) ⇒ P (m + 1))
we want to show that
∀v ∈ ω.P (v)

Let α(m) be (∀k〈m.P (k)) ⇒ P (m)
We want to show that for each m ∈ ω α(m) is true.
By cases:

• if m is 0 then α(m) is equivalent to P (0);

• if m is n + 1 then if (∀k〈m + 1.P (k)) we have P (m); by means of (2) we
conclude that P (m + 1) is true and therefore α(m + 1) is true.

By means of C–IND we conclude.

(∀a ∈ A.((∀b ≺ a.P (b))) ⇒ P (b))) → ∀a ∈ A.P (a)

··· D0

S0 · · ·

··· Dk

Sk
r

S
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1 cap 2

S0, . . . , Sk
r

S

∀j ∈ [0, k]
··· Dj

Sj

S

ax
S

··· D0

S0 · · ·

··· Dk

Sk
r

S

2 cap3

(P (0)&(∀m ∈ ω.P (m) ⇒ P (m+1)) ⇒ ∀n ∈ ω.P (n)(∀m ∈ ω.(∀k〈m.Q(k)) ⇒ Q(m)) ⇒ ∀n ∈ ω.Q(n)

IND ⇒ C–IND
Let T (u) be ∀x〈u.Q(x)
Let us suppose that
∀m ∈ ω.(∀k〈m.Q(k)) ⇒ Q(m)
we want to show that:
∀v ∈ ω.Q(v)

Observe that ∀m.T (m) ⇒ T (m + 1)
and T (0) are true.
By means of IND we conclude that
∀v ∈ ω.T (v) is true and therefore ∀v ∈ ω.Q(v)
C–IND ⇒ IND
Let us suppose that
1)P (0)
and
2) (∀m ∈ ω.P (m) ⇒ P (m + 1))
we want to show that
∀v ∈ ω.P (v)

Let α(m) be (∀k〈m.P (k)) ⇒ P (m)
We want to show that for each m ∈ ω α(m) is true.
By cases:

• if m is 0 then α(m) is equivalent to P (0);

• if m is n + 1 then if (∀k〈m + 1.P (k)) we have P (m); by means of (2) we
conclude that P (m + 1) is true and therefore α(m + 1) is true.

By means of C–IND we conclude.

(∀a ∈ A.((∀b ≺ a.P (b))) ⇒ P (b))) → ∀a ∈ A.P (a)

··· D0

S0 · · ·

··· Dk

Sk
r

S
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1 cap 2

S0, . . . , Sk
r

S

∀j ∈ [0, k]
··· Dj

Sj

S, S0, . . . , Si, . . .

S

ax
S

··· D0

S0 · · ·

··· Dk

Sk
r

S

2 cap3

(P (0)&(∀m ∈ ω.P (m) ⇒ P (m+1)) ⇒ ∀n ∈ ω.P (n)(∀m ∈ ω.(∀k〈m.Q(k)) ⇒ Q(m)) ⇒ ∀n ∈ ω.Q(n)

IND ⇒ C–IND
Let T (u) be ∀x〈u.Q(x)
Let us suppose that
∀m ∈ ω.(∀k〈m.Q(k)) ⇒ Q(m)
we want to show that:
∀v ∈ ω.Q(v)

Observe that ∀m.T (m) ⇒ T (m + 1)
and T (0) are true.
By means of IND we conclude that
∀v ∈ ω.T (v) is true and therefore ∀v ∈ ω.Q(v)
C–IND ⇒ IND
Let us suppose that
1)P (0)
and
2) (∀m ∈ ω.P (m) ⇒ P (m + 1))
we want to show that
∀v ∈ ω.P (v)

Let α(m) be (∀k〈m.P (k)) ⇒ P (m)
We want to show that for each m ∈ ω α(m) is true.
By cases:

• if m is 0 then α(m) is equivalent to P (0);

• if m is n + 1 then if (∀k〈m + 1.P (k)) we have P (m); by means of (2) we
conclude that P (m + 1) is true and therefore α(m + 1) is true.

By means of C–IND we conclude.

(∀a ∈ A.((∀b ≺ a.P (b))) ⇒ P (b))) → ∀a ∈ A.P (a)

1

1 cap 2

S0, . . . , Sk−1
r

S

∀j ∈ [0, k]
··· Dj

Sj

S, S0, . . . , Si, . . .

S

ax
S

··· D0

S0 · · ·

··· Dk

Sk
r

S

D #R S

#R S

∝!"#%

2 cap3

(P (0)&(∀m ∈ ω.P (m) ⇒ P (m+1)) ⇒ ∀n ∈ ω.P (n)(∀m ∈ ω.(∀k〈m.Q(k)) ⇒ Q(m)) ⇒ ∀n ∈ ω.Q(n)

IND ⇒ C–IND
Let T (u) be ∀x〈u.Q(x)
Let us suppose that
∀m ∈ ω.(∀k〈m.Q(k)) ⇒ Q(m)
we want to show that:
∀v ∈ ω.Q(v)

Observe that ∀m.T (m) ⇒ T (m + 1)
and T (0) are true.
By means of IND we conclude that
∀v ∈ ω.T (v) is true and therefore ∀v ∈ ω.Q(v)
C–IND ⇒ IND
Let us suppose that
1)P (0)
and
2) (∀m ∈ ω.P (m) ⇒ P (m + 1))
we want to show that
∀v ∈ ω.P (v)

Let α(m) be (∀k〈m.P (k)) ⇒ P (m)
We want to show that for each m ∈ ω α(m) is true.
By cases:

• if m is 0 then α(m) is equivalent to P (0);

• if m is n + 1 then if (∀k〈m + 1.P (k)) we have P (m); by means of (2) we
conclude that P (m + 1) is true and therefore α(m + 1) is true.
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• If             is an axiom then      is a derivation tree

• if                         is a rule (instance) and                                      

and                                         is a derivation tree then

Derivation trees

1 cap 2

S0, . . . , Sk
r

S

∀j ∈ [0, k]
··· Dj

Sj

S, S0, . . . , Si, . . .

S

ax
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2 cap3

(P (0)&(∀m ∈ ω.P (m) ⇒ P (m+1)) ⇒ ∀n ∈ ω.P (n)(∀m ∈ ω.(∀k〈m.Q(k)) ⇒ Q(m)) ⇒ ∀n ∈ ω.Q(n)
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we want to show that:
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Observe that ∀m.T (m) ⇒ T (m + 1)
and T (0) are true.
By means of IND we conclude that
∀v ∈ ω.T (v) is true and therefore ∀v ∈ ω.Q(v)
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conclude that P (m + 1) is true and therefore α(m + 1) is true.

By means of C–IND we conclude.

(∀a ∈ A.((∀b ≺ a.P (b))) ⇒ P (b))) → ∀a ∈ A.P (a)
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is a derivation tree



Notation:

1 cap 2

S0, . . . , Sk
r

S

∀j ∈ [0, k]
··· Dj

Sj

S, S0, . . . , Si, . . .

S

ax
S

··· D0

S0 · · ·

··· Dk

Sk
r

S

D #R S

∝!"#%

2 cap3

(P (0)&(∀m ∈ ω.P (m) ⇒ P (m+1)) ⇒ ∀n ∈ ω.P (n)(∀m ∈ ω.(∀k〈m.Q(k)) ⇒ Q(m)) ⇒ ∀n ∈ ω.Q(n)

IND ⇒ C–IND
Let T (u) be ∀x〈u.Q(x)
Let us suppose that
∀m ∈ ω.(∀k〈m.Q(k)) ⇒ Q(m)
we want to show that:
∀v ∈ ω.Q(v)

Observe that ∀m.T (m) ⇒ T (m + 1)
and T (0) are true.
By means of IND we conclude that
∀v ∈ ω.T (v) is true and therefore ∀v ∈ ω.Q(v)
C–IND ⇒ IND
Let us suppose that
1)P (0)
and
2) (∀m ∈ ω.P (m) ⇒ P (m + 1))
we want to show that
∀v ∈ ω.P (v)

Let α(m) be (∀k〈m.P (k)) ⇒ P (m)
We want to show that for each m ∈ ω α(m) is true.
By cases:

• if m is 0 then α(m) is equivalent to P (0);

• if m is n + 1 then if (∀k〈m + 1.P (k)) we have P (m); by means of (2) we
conclude that P (m + 1) is true and therefore α(m + 1) is true.

1

D is an R-derivation of S 

R-derivation: a derivation that use a set R of rules

(d is an R-derivation of y )

Book Notation

1 cap 2

S0, . . . , Sk
r

S

∀j ∈ [0, k]
··· Dj

Sj

S, S0, . . . , Si, . . .

S

ax
S

··· D0

S0 · · ·

··· Dk
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D #R S

#R S

∝!"#%

2 cap3

(P (0)&(∀m ∈ ω.P (m) ⇒ P (m+1)) ⇒ ∀n ∈ ω.P (n)(∀m ∈ ω.(∀k〈m.Q(k)) ⇒ Q(m)) ⇒ ∀n ∈ ω.Q(n)

IND ⇒ C–IND
Let T (u) be ∀x〈u.Q(x)
Let us suppose that
∀m ∈ ω.(∀k〈m.Q(k)) ⇒ Q(m)
we want to show that:
∀v ∈ ω.Q(v)

Observe that ∀m.T (m) ⇒ T (m + 1)
and T (0) are true.
By means of IND we conclude that
∀v ∈ ω.T (v) is true and therefore ∀v ∈ ω.Q(v)
C–IND ⇒ IND
Let us suppose that
1)P (0)
and
2) (∀m ∈ ω.P (m) ⇒ P (m + 1))
we want to show that
∀v ∈ ω.P (v)

Let α(m) be (∀k〈m.P (k)) ⇒ P (m)
We want to show that for each m ∈ ω α(m) is true.
By cases:

• if m is 0 then α(m) is equivalent to P (0);

• if m is n + 1 then if (∀k〈m + 1.P (k)) we have P (m); by means of (2) we
conclude that P (m + 1) is true and therefore α(m + 1) is true.

1

means that there is a derivation D s.t. 

1 cap 2

S0, . . . , Sk
r

S

∀j ∈ [0, k]
··· Dj

Sj

S, S0, . . . , Si, . . .

S

ax
S

··· D0

S0 · · ·

··· Dk

Sk
r
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D #R S

∝!"#%

2 cap3

(P (0)&(∀m ∈ ω.P (m) ⇒ P (m+1)) ⇒ ∀n ∈ ω.P (n)(∀m ∈ ω.(∀k〈m.Q(k)) ⇒ Q(m)) ⇒ ∀n ∈ ω.Q(n)

IND ⇒ C–IND
Let T (u) be ∀x〈u.Q(x)
Let us suppose that
∀m ∈ ω.(∀k〈m.Q(k)) ⇒ Q(m)
we want to show that:
∀v ∈ ω.Q(v)

Observe that ∀m.T (m) ⇒ T (m + 1)
and T (0) are true.
By means of IND we conclude that
∀v ∈ ω.T (v) is true and therefore ∀v ∈ ω.Q(v)
C–IND ⇒ IND
Let us suppose that
1)P (0)
and
2) (∀m ∈ ω.P (m) ⇒ P (m + 1))
we want to show that
∀v ∈ ω.P (v)

Let α(m) be (∀k〈m.P (k)) ⇒ P (m)
We want to show that for each m ∈ ω α(m) is true.
By cases:

• if m is 0 then α(m) is equivalent to P (0);

• if m is n + 1 then if (∀k〈m + 1.P (k)) we have P (m); by means of (2) we
conclude that P (m + 1) is true and therefore α(m + 1) is true.

1

we will omit the subscript R when the set R  of rule is 
understood



Operational Semantics

evaluation of  arithmetic and boolean expression

execution of  commands

Z : set of “machine number” 

semantic sets

∑ : set of “states”
Σ : {σ|σ : Loc → Z}

C: set of “configurations”
C = {〈p, σ〉|p ∈ Aexp,Bexp, Com, σ ∈ Σ}

FINE ! GENN



evaluation of Aexp elements

 

evalutation relation: (n ∈ Z)



example:

derivation tree



step 1 (tree construction)

step 2 (replacement of  all  the “?”)



an equivalence relation

... it is necessary to show that such a relation is:
1. reflexive
2. symmetric
3. transitive



evaluation of Bexp elements
evalutation relation: t ∈ {true, false}





left-first-sequential evaluation:



execution of commands
command execution 

relation 

we assume the existence of an initial stat" σ0 such that

the execution of  c in σ  terminates in σ＇











equivalence of commands



Proposition

Proof:
we want to show that:



consider the derivation tree of 
last rul"

or(i) (ii)

case (i) π

by using  π  we obtain π

w
′



case (ii)
π1

π2

π1

π2 π3

by using we obtain

π3

and  therefore

π2, π3

π2 π3

w
′



consider the derivation tree of 

the last rule is either

(i-b)

(ii-b)

or



case (i-b)
the derivation is π π’

where π’ is βα

π α β

we conclude with



case (ii-b)
the derivation is

π

we conclude with

π

QED



Exercise

(a) Let . Find such that

can be derived. Give complete derivation

tree.

(b) Prove that if , and

then .

(c) Let . Prove that if and

then .

1

Derivation Tree

Let . The derivation of

looks as follows

true

A B

where

A

hence

B true

C false

C

Observe that .

2

The Lemma

Let , . If and is a result

of executing in state , that is if can

be derived, then .

PROOF (By induction on the height of the inference tree of

)

We assume that and that we have an

inference tree for . There are only two cases

possible:

Case (i) The last rule used in the derivation is

false

In that case , hence .

Moreover, we must have a derivation for

false and the only one possible is

false

and it must be that . From the assumption

it follows that . Therefore

3

Proof Continuation

Case (ii) The last rule used is

true

We must have:

A derivation of true. The only
possible one is

true

and it must be that .

A derivation of .

There is only one possible:

Hence .

A derivation of which is shorter than

the derivation of . We know that

and that , because

. Therefore we can use inductive hypothesis

to infer that . Hence

4
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Big Step VS One Step

the evaluation and execution relations are 
Big Step Relations

what about One Step Relation?

〈c, σ〉 →1 〈c′, σ′〉

a possible rule:

〈b, σ〉 →1 〈true, σ〉

〈if b then c0 else c1, σ〉 →1 〈c0, σ〉

fine #$ gen%



Single Step Semantics of Imp

1

Example Computation

We execute program , where

We denote body of the loop by .

Notation:

2

Equivalence

Thm 1 If then .

Thm 2 If then .

PROOF (of Theorem 1) We assume that

for some . The proof will go by induction on .

From our assumption

and

We may use our IH (for ) to infer that .

From and it follows that

(using the lemma).

For the base case our assumption is

. Clearly . We can

use the lemma again to infer that .

3

Lemma

If and then

.

PROOF (By induction over structure of command ) There are 7

possible cases depending on which rule was used at the

bottom of the derivation tree of .

Case (i) and the rule used was

Hence , and we must have a

derivation A for . We assume that

can be derived and this is possible only

when . Therefore we can derive

as follows

A

4
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Proof of the Lemma

Case (ii) and the rule used was

Hence and is

derivable. We assume that and the only

possible derivation of that transition must look as

follows:

A B

Hence is derivable. We know also that

is derivable and since is

simpler than we can use IH to infer that there exists

a derivatin C of . Therefore we can

derive as follows:

C B

5

Proof of the Lemma

Case (iii) and the rule used was

true

Hence , and we must have a

derivation A for true. The only possible way
of deriving is

B C

Hence we can use derivations A , B and C to

derive as follows:

A

true

B C

6

Proof Structure /Case (ii)/

1. derivable (assumption)

2. derivable (assumption)

3. and the only applicable rule

was used to derive (1) (case assumption)

4. and

is derivable (from 3)

5. can be derived and

6. can be derived (from 2 and 4)

7. can be derived (from 4,5 and IH)

8. can be derived (from 7 and 6, QED)

7

Proof Structure /Case (iii)/

1. derivable (assumption)

2. derivable (assumption)

3. and the first applicable rule

was used to derive (1) (case assumption)

4. , and

5. true is derivable (from 3)

6. and

are derivable (from 2 and 4)

7. can be derived (from 5 and 6, QED)

8
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Semantica

induction



Induction

• how to prove that

 an answer: by induction!

?



In order to prove that 

basis: prove that P(0)

induction step: prove that

 
The Principle of Induction (IND)

(P (0)&(∀m ∈ ω.P (m) ⇒ P (m + 1)) ⇒ ∀n ∈ ω.P (n)



Course-of-values induction (C-IND)

(∀m ∈ ω.[(∀k < m.Q(k)) ⇒ Q(m)]) ⇒ ∀n ∈ ω.Q(n)

IND è equivalente a C-IND



(P (0)&(∀m ∈ ω.P (m) ⇒ P (m+1)) ⇒ ∀n ∈ ω.P (n)(∀m ∈ ω.(∀k < m.Q(k)) ⇒ Q(m)) ⇒ ∀n ∈ ω.Q(n)

IND ⇒ C–IND
Let T (u) be ∀x < u.Q(x)
Let us suppose that
∀m ∈ ω.(∀k < m.Q(k)) ⇒ Q(m)
we want to show that:
∀v ∈ ω.Q(v)

Observe that ∀m.T (m) ⇒ T (m + 1)
and T (0) are true.
By means of IND we conclude that
∀v ∈ ω.T (v) is true and therefore ∀v ∈ ω.Q(v)
C–IND ⇒ IND
Let us suppose that
1)P (0)
and
2) (∀m ∈ ω.P (m) ⇒ P (m + 1))
we want to show that
∀v ∈ ω.P (v)

Let α(m) be (∀k < m.P (k)) ⇒ P (m)
We want to show that for each m ∈ ω α(m) is true.
By cases:

• if m is 0 then α(m) is equivalent to P (0);

• if m is n + 1 then if (∀k < m + 1.P (k)) we have P (m); by means of (2)
we conclude that P (m + 1) is true and therefore α(m + 1) is true.

By means of C–IND we conclude.

1



C–IND ⇒ IND
Let us suppose that
1)P (0)
and
2) (∀m ∈ ω.P (m) ⇒ P (m + 1))
we want to show that
∀v ∈ ω.P (v)

Let α(m) be (∀k < m.P (k)) ⇒ P (m)
We want to show that for each m ∈ ω α(m) is true.
By cases:

• if m is 0 then α(m) is equivalent to P (0);

• if m is n + 1 then if (∀k < n + 1.P (k)) we have P (n);
by means of (2) we conclude that P (n + 1) is true
and therefore α(n + 1) is true.

By means of C–IND we conclude.

(∀a ∈ A.((∀b ≺ a.P (b))) ⇒ P (b))) → ∀a ∈ A.P (a)

··· D0

S0 · · ·

··· Dk

Sk
r

S

#D = sup{#Di + 1|i ≤ k}

∀d∀y.d ! y ⇒ y ∈ Q

Let A ⊆ IR

∀a ∈ A.Q(a)

for all rule instance (X/y) ∈ R with X ⊆ IR ∩ A and y ∈ A

(∀x ∈ X.Q(x)) ⇒ Q(y)

Γ(f) = {(σ,σ′)|∃σ′′.β(σ)&f(σ′′) = σ′&g(σ) = σ′′}∪

∪{(σ,σ)|¬β(σ)}

R = {({(σ′′,σ′)}/(σ,σ′))|β(σ)&g(σ) = σ′′}∪

∪{(∅/(σ,σ))|¬β(σ)}

R̂(f) = {(σ,σ′)|∃X ⊆ f.(X/(σ,σ′)) ∈ R} =

{(σ,σ′)|∃σ′′.β(σ)&f(σ′′) = σ′&g(σ) = σ′′}∪

∪{(σ,σ)|¬β(σ)} = Γ(f)

Let f0 = Γ0(∅) = ∅
∀n ∈ ωfn+1 = Γ(fn)

fix(Γ) =
⋃

n∈ω

Γn(∅)

2



Structural Induction

Example: in order to show that a property P holds for all the arithmetic expressions it 
it is sufficient to show that” 



Well Founded Relation



(P (0)&(∀m ∈ ω.P (m)⇒ P (m+1))⇒ ∀n ∈ ω.P (n)(∀m ∈ ω.(∀k < m.Q(k))⇒ Q(m))⇒ ∀n ∈ ω.Q(n)

IND ⇒ C–IND
Let T (u) be ∀x < u.Q(x)
Let us suppose that
∀m ∈ ω.(∀k < m.Q(k))⇒ Q(m)
we want to show that:
∀v ∈ ω.Q(v)

Observe that ∀m.T (m)⇒ T (m + 1)
and T (0) are true.
By means of IND we conclude that
∀v ∈ ω.T (v) is true and therefore ∀v ∈ ω.Q(v)
C–IND ⇒ IND
Let us suppose that
1)P (0)
and
2) (∀m ∈ ω.P (m)⇒ P (m + 1))
we want to show that
∀v ∈ ω.P (v)

Let α(m) be (∀k < m.P (k))⇒ P (m)
We want to show that for each m ∈ ω α(m) is true.
By cases:

• if m is 0 then α(m) is equivalent to P (0);

• if m is n + 1 then if (∀k < m + 1.P (k)) we have P (m); by means of (2)
we conclude that P (m + 1) is true and therefore α(m + 1) is true.

By means of C–IND we conclude.

(∀a ∈ A.((∀b ≺ a.P (b)))⇒ P (b)))→ ∀a ∈ A.P (a)

1

Well-Founded Induction (W-IND)



Induction on derivation trees

define the size #D of derivation D: 

1. if D is an axiom S then #D=0

2. id D is

then   

(P (0)&(∀m ∈ ω.P (m) ⇒ P (m+1)) ⇒ ∀n ∈ ω.P (n)(∀m ∈ ω.(∀k〈m.Q(k)) ⇒ Q(m)) ⇒ ∀n ∈ ω.Q(n)

IND ⇒ C–IND
Let T (u) be ∀x〈u.Q(x)
Let us suppose that
∀m ∈ ω.(∀k〈m.Q(k)) ⇒ Q(m)
we want to show that:
∀v ∈ ω.Q(v)

Observe that ∀m.T (m) ⇒ T (m + 1)
and T (0) are true.
By means of IND we conclude that
∀v ∈ ω.T (v) is true and therefore ∀v ∈ ω.Q(v)
C–IND ⇒ IND
Let us suppose that
1)P (0)
and
2) (∀m ∈ ω.P (m) ⇒ P (m + 1))
we want to show that
∀v ∈ ω.P (v)

Let α(m) be (∀k〈m.P (k)) ⇒ P (m)
We want to show that for each m ∈ ω α(m) is true.
By cases:

• if m is 0 then α(m) is equivalent to P (0);
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Semantica
denotational semantics



Denotational Semantics of
IMP

• mathematical meaning of syntactic objects

• the meaning of syntactic objects is given by 
suitable functions



the informal idea:

Let c ∈ Com

what about non termination?





give the semantics of:





set of partial functions
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we know that:



using the semantics of composition we have





 se Γ(ff) = ff allora 
ff e’ punto fisso

e ff e’ la 
semantica del while











Equivalence of Denotational and Operational semantics

proof: induction on  a

proof: induction on  b



Proof
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proof by induction on c
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∀d∀y.d ! y ⇒ y ∈ Q

Let A ⊆ IR

∀a ∈ A.Q(a)
for all rule instance (X/y) ∈ R with X ⊆ IR ∩ A and y ∈ A

(∀x ∈ X.Q(x)) ⇒ Q(y)
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∪{(σ,σ)|¬β(σ)}
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∪{(∅/(σ,σ))|¬β(σ)}
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{(σ,σ′)|∃σ′′.β(σ)&f(σ′′) = σ′&g(σ) = σ′′}∪

∪{(σ,σ)|¬β(σ)} = Γ(f)
Let f0 = Γ0(∅) = ∅

∀n ∈ ωfn+1 = Γ(fn)

fix(Γ) =
⋃

n∈ω

Γn(∅)

R̂| = Γ
f ′ ⊆ f ′′ ⇒ Γ(f ′) ⊆ Γ(f ′′)
∀n ∈ ω.Γn(∅) ⊆ Γn+1(∅)

A =
⋃

n∈ω

Γn(∅)

Γ(A) ⊆ A

A ⊆ Γ(A)
i.e.

y ∈ Γ(A)
⇒

(σ,σ′) ∈ Γ(A) ⇒ (σ,σ′) ∈ (A)
i.e.

Γ(A)(σ) = σ′ ⇒ A(σ) = σ′

c ≡ while b do c0

2

i.e.
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c ≡ while b do c0
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let g ≡ C[[c0]] and β ≡ B[[b]]
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{

f(g(σ)) if β(σ)
σ otherwise

f0 = Γ0(∅) = ∅
∀n ∈ ω.fn+1 = Γ(fn) = Γn+1(∅)

fn+1(σ) = Γ(fn)(σ) =
{

fn(g(σ)) if β(σ) = true
σ otherwise

fix(Γ) =
⋃

n∈ω

fn

In order to show that
fix(Γ)(σ) = σ′ ⇒ 〈c,σ〉 → σ′

we show by induction that:

∀n.∀σ,σ′.fn(σ) = σ′ ⇒ 〈c, σ〉 → σ′

the

base n = 0: trivial

induction step if fn+1(σ) = σ′ we have two cases:

1. β(σ) = true :
by a previous lemma we have 〈b, σ〉 → true and
by definition of fi’s, fn(g(σ)) = σ′

by induction hypothesis 〈c, g(σ)〉 → σ′

let C[[c0]](σ) = σ′′

by structural ind-hyp 〈c0,σ〉 → σ′′ summarizing we have:

〈b, σ〉 → true, 〈c,σ′′〉 → σ′, 〈c0,σ〉 → σ′′

and by means of the rule of while 〈c,σ〉/toσ′

2. β(σ) = false :
by a previous lemma we have 〈b, σ〉 → false and
by definition of fi’s, σ′ = σ
and by means of the rule of while 〈c,σ〉/toσ′
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1. β(σ) = true :
by a previous lemma we have 〈b, σ〉 → true and
by definition of fi’s, fn(g(σ)) = σ′

by induction hypothesis 〈c, g(σ)〉 → σ′

let C[[c0]](σ) = σ′′

by structural ind-hyp 〈c0,σ〉 → σ′′

summarizing we have:

〈b,σ〉 → true, 〈c,σ′′〉 → σ′, 〈c0,σ〉 → σ′′

and by means of the rule of while 〈c,σ〉 → σ′

2. β(σ) = false :
by a previous lemma we have 〈b, σ〉 → false and
by definition of fi’s, σ′ = σ
and by means of the rule of while 〈c,σ〉 → σ′

An element p ∈ P is said to be a least upper bound (lub) of
S ⊆ P iff

(i) p is an upper bound fo S

(ii) for each upper bound p′ of S in P , p & p′

Let (P,&) be a partial order Let (D,&D) be a partial order
A partial order (D,&D) is a complete partial order
if each ω–chain (di)i∈ω has lub (

⊔
i∈ω di)

Let f : D → D be a continuos function on a cpo D

1. a prefixed point of f is a d ∈ D s.t. f(d) & d

2. a fixed point of f is a d ∈ D s.t. f(d) = d

Let f : D → D be a continuos function on a cpo D with ⊥D.
Let us define

fix(f) =
⊔

i∈ω

f i(⊥D)

then

(i) f(fix(f)) = fix(f)
i.e. fix(f) is a fixed point of f

(ii) if f(d) & d then fix(f) & d
i.e. fix(f) is the least fixed point of f

Let d a prefixed point.
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