


Introduction to
Operational Semantics

'~ An Imperative Language: IMP
@ syntax

& semantics




Syntactic Sets

@ number N

@ truth values B

Q@ arithmetic expressions Aexp
Q boolean expression Bexp

@ commands Com

@ locations Loc




meta-variables

n, m : range over [N

X, Y: range over Loc

a: to represent an arbitrary element of Aexp
b: to represent an arbitrary element of Bexp

c : to represent an arbitrary element of Com




formation rules

o Aexp

CLZ:II|X|CLO+ ai | agp — a1 | ap X aq
w Bexp
b::=true | false |ag=a; | ag<ai | b | by Aby | byV b

. Com,

c:=skip |c1 ; co | if b then cg else ¢; | X := a | while bdo ¢




Definition. Let e; and e; be from the same syntactic set. We
say that ey and ey are (syntactically) identical if ey and e; have
been built—up in exactly the same Way (i.e. the same parse tree).

Notation. we write ey = e; for ey and e; are identical

3+5+%8
5+ 3 %38




Let 8 be the universe of derivable objects;

let S, Sp,...,S;,... begeneric elements of §.

Rules:

i. axioms (O-ary rules) ¢ “*  or symply S
SO) SRR Sk—l

ii. k-ary rules

r

S




Derivation trees

o If g AL is an axiom then S is a derivation tree

So,...,S
o if 2° v r is a rule (instance) and
S
and Vj € [0, k] - Dj is a derivation tree then
S;
- Dy - Dy,
So - Sk . o
r is a derivation tree




Notation:
R-derivation: a derivation that use a set R of rules

D is an R-derivation of S

DFgrS

- R S means that there is a derivation Ds.z. D Fg S

we will omit the subscript R when the set R of rule is
understood

Book Notation

d | |_ RY (d is an R-derivation of y )




Operational Semantics

@ evaluation of arithmetic and boolean expression

@ execution of commands

Y semantic sets

Z : set of “machine number”
Y : set of “states” - |

3. :{o|o:Loc — Z} FINE9GENN/
C: set of “configurations” o LA

C ={{(p,o)|p € Aexp,Bexp, Com, o € X}




evaluation of Aexp elements

evalutation relation:(a, o) - n (n € Z)

Numbers:
(n,0) = n
locations:
(X,0) = o(X)
SUMS:
<a070> — N <a170> — N1
<ao+a1,a> — Ng + N1
substractions:
(ag,0) = ng {(a1,0) — nq
<CLO - CL1,0’> — Ng — N1
products:

(ag,0) = ng {(a1,0) — nq

<a0 X CL1,0’> — Ng X N1




example:
a=(Int + 5) + (7 +9)

state oy
oo(Int) = 0 derivation tree

e

(Int,00>—>0 <5,0'0>—>5 (7,0‘0)—)7 (9,0‘0)—)9

((Int + 5),00)—5 (7 F 9),00)—16

((Int + 5) + (7 + 9),00) — 21




step 1 (tree construction)

(Int,00>—>? <5,0‘0>—>? <7,0’0>—>? (9,0‘0)—>?

((Int +5),00)—7 ((7 + 9),00)—7

(Int+ 5) + (7 + 9),00) —=7?

step 2 (replacement of all the “?”)

(Int,og)—?7 (5,009)—7 (7T,00)—7 (9,009)—7

((Int +5),00)—7 ((7 + 9),00)—7

((Int+5) + (7 + 9),00) =7




an equivalence relation

apg ~ aq iff (VnEZVaEZ. (ag,0) &> n < (a1,0) = n)

... it is necessary to show that such a relation is:
1. reflexive

2. symmetric
3. transitive




evaluation of Bexp elements

evalutation relation: (b, o) —t ¢t € {true, false}

(true, o) — true

(false,o) — false

<CL0,0’> — N <a1,0> — N1

when ng = ny
(agp = a1,0) = true

<CL0,0'> — N <CL1,0’> — N1 when n ?é n
(ag = a1,0) — false ° !

<CL0,0‘> — N <a1,0> — N1

when ng < n
(ag < ay,0) = true o ="

<a0,0> — N <0,1,0'> — N1
(ag < a1,0) = false

when ng € nq




(b,o) =t
(mb,0) — —t

<bo,0’> — 1o <b1,0’> — 11
<b0 AN b1,0'> — to N 11

<bo,0’> — 1o <b1,0’> — 11
<b0\/ bl,O'> — to V 11

bo ~ by iff (Vt € {false,true} Vo € Z (bg,0) = t & (b1,0) — 1)




left-first-sequential evaluation:

(bg,0) — false
(bp ANby,0) — false
(bg,0) — true (by,0) — false

(bp ANb1,0) — false

(by,0) — true (by,0) — true
(bg ANby,0) — true




execution of commands

command execution

relation I 4

(c,0) — o

we assume the existence of an znitial state 0y such that

(VX € Loc. 0o(X) = 0)

/ . . . .
(c,0) > 0 » the execution of ¢ in o terminates in ¢’




Notation. Let o be a state. Let m € Z. Let X € Loc. We
write o|m/X| for “the state obtained from ¢ by replacing the
contents of X by m”, i.e.

m ity =X
o(Y) otherwise

olm/X|(Y) = {

Example: consider o such that o(X) =2, o(Y) = 4. Let ¢’
be 0[5/ X]. We have that ¢'(X) =5, ¢'(Y) =4




Atomic commands:

>
It

a, o) = om/X]

Sequencing:
(co,0) = " {(c1,0") = o

(co; c1,0) = o




Conditionals:

(b,o) — true {(cy,0) — o

(if b then ¢y else c1,0) — o’

(b,0) — false {(c1,0) — o

(if b then ¢y else c¢1,0) — o’




While-loops:
(b,0) — false

(while bdo c,0) =0

(b,0) — true (c,0) — ¢” (while bdo c¢,0") = o'

(while bdo c,0) — o’




equivalence of commands

co ~ 1 iff (Vo,0' € > . (co,0) = 0’ & (c1,0) = o)




Proposition
w = while bdo c ,

» W ~ W
w' = if b then ¢ ; w else skip

Proof:

we want to show that:

(Vo,0' €Y . (w,0) = 0’ & (W, 0) = o)

Let o, ¢’ be arbitrary elements in )




<w70> — o = <w,70> — 0

consider the derivation tree of (w,o) — o’

last rule

D

(b,o)—false (b,o)—true (c,0)—c" (w,0"")—>0o’

(w,0)—0 (w,0)—0o’
case (1) N
<b70'>_>fal86
(w,0)—0

.U
(b,a)—.>fa,lse (skip,0) >0
(if b then c ; w else skip,0)—o0

w,7—

by using st we obtain




case (i1)
LT ‘T :7T3

(b,o)—true (c,0)—c'"" (w,oc!")—0o’

by using 79, T3 we obtain

:7'('2 :7Tg

(c,a)—>o"’ (w,a”)—)o"
(c ; w,o0)—0'

and therefore
: 79 : 73

+ T (c,0)—o!l (w,o!)—a!

(b,o0)—=true (c ; w,o0)—0o!

(if b then c ; w else skip,0)—0o’
/
w




(w',o) >0 = (w,0) — o
consider the derivation tree of (w’, o) — o’

the last rule is either

(i-b) (b,oc)—true {(c ; w,0)—0c’
(if b then ¢ ; w else skip,0)—0o’

or

(b,oc)— false (skip,o)—0
(if b then ¢ ; w else skip,0)—0

(ii-b)




case (i-b)

the derivation is . .
. J-c L Jt

(b,0'>;>t'r"u,e (c ; w,o0)—=o!
(if b then ¢ ; w else skip,0)—0’

where 70’ is e B

(c,o0)—=c!l (w,c!)—o!
(c ; w,0)—0c’

we conclude with

. Lo

>~ ™

“~|o o o

(b,o)—=true (c,0)—c/! (w,o!

(w,o)—0o’




case (ii-b)
the derivation is
. T

(b,a)—.>false (skip,0) >0
(if b then c ; w else skip,0)—o0o

we conclude with

. T

(b,a)—.>false
(w,0)—0o

QED




[fwzwhile 0<x do (y:=2*y;x:=x-1) ]

(a) Let 0 = o[x — 2,y +— 3]. Find o« such that
(w, o) — o4 can be derived. Give complete derivation
tree.

(b) Prove thatifo(z) =a > 0, c(y) = b and
(w, o) — ox then o (y) = 2% - b.




Let o0« = oly—12,x—0]. The derivation of (w, o) — o«
looks as follows

(0,0) >0 (x,0) > 2

(0 < x,0) — true ((y:=2*xy;x:=x-1),0) > 01 {(w,o1) — 0«

(w, o) — o4

where




(2,0) > 2 (y,o) =3 (x,00) > 2 (1,02) =1

(2xy,0) > 6 (x-1,00) > 1

(y :=2%*y,0) = oly—~6] = 02 (x :=x-1,02) = 02[x~1]

hence o1 = o2(x—1] = oly—6,x—1]

(0,0,) > 0 (x,04) >0

(0,01) >0 (x,01) =1 (0 < x,04) — false

(O < x, 0‘1) — frue <( . .), 0‘1> — O« (w, o'*> — O«




(2,01) > 2 (y,01) > 6 (x,03) =1 (1,03) > 1

(2xy,01) = 12 (x-1,03) = 0

(y :=2x%xy 01) = o1ly—12] = 03 (x :=x-1,03) = 03[x~0]

Observe that o3[x—0] = 01[y—12,3-0] = 0.




Big Step VS One Step

the evaluation and execution relations are
Big Step Relations

what about One Step Relation?
<Cv 0> —1 <C/7 OJ>
a possible rule:

(b,0) —1 (true, o)

(if b then ¢y else c¢1,0) —1 {(cy, 0)




(a,0) = n

(x :=a,0) —1 (skip, olz—n])




(b,o) — true

(if b then cg else cq1,0) —1 {(cg,0)

(b,o) — false

(if b then cg else cq1,0) —1 {(c1,0)

(b,o) — true

(while b do ¢,0) —1 {(c; while b do c, o)

(b,o) — false

(while b do c,0) —1 (skip, o)




We execute programp =x :=7; y := 4; w, Where
w = while not(x =y) do
if x <y then y:=y-1

else X :1=x-y

We denote body of the loop by c.




X :=T7;y:=4;w,0)
skip; y :=4; w,olx-7])

-t

y :=4; w,o0lx-7])

=

skip; w , o[x—7,y—4]

while not(x=y) do ¢,o

-t

if x <y then y:=y-1 else x :=x-y; w,0x—>7,y—~4]

-t

l—\

P41

-t

[
[
[ )
[XI—>7,yI—>4]>
[ )
[ )

X=X~ §V; W, 0x—>7y—4]




skip; w , o[x—3,y—4]

=

while not(x=y) do c,olx—3,y—4]

N

if x<y then y :=y-1 else x :=x-y; w,0[x—3y—4]

skip; w , o[x—3,y—3]

(Y

while not(x=y) do c,olx—3,y—~3]

Yy 44y

=t

[ )
[ )
[ )
y:=y-1;w,olx—3y—4])
[ )
[ )
[ )

skip , o[x—3,y—3]




[ Thm 1 If (c,0) —7] (skip, o«) then (c,o0) = ox. J

{ Thm 2 If (c,0) — o« then (c,0) —7 (skip, 0«). ]




PROOF (of Theorem 1) We assume that (c, o) —% (skip, o)
for some k. The proof will go by induction on k.

From our assumption
(c,0) =1 (¢, 0"y and (¢, o) =571 (skip, o)

We may use our IH (for k£ — 1) to infer that (c/, 6') — 0.
From (c,o) —1 (c/,o’) and (¢, 0’} — o« it follows that
(c,0) — 0% (using the lemma).

For the base case £ = 1 our assumption is

(c,0) —1 (skip, ox). Clearly (skip,o«) — o«. We can
use the lemma again to infer that (¢, o) — o«.




Lemma I

-
If (c,0) —1 (c/,c’) and (c/, 0’') — o' then
(c,o) = o

N

~

/

PROOF (By induction over structure of command ¢) There are 7
possible cases depending on which rule was used at the

bottom of the derivation tree of {c, o) —1 (¢, 0’).




Case (i) ¢ = x := a and the rule used was

(a,0) = n

(x :=a,0) —1 (skip, o[x—n])

Hence ¢’ = skip, o/ = o[x—n] and we must have a
derivation (A for (a, o) — n. We assume that

(!, o'y — ¢ can be derived and this is possible only
when ¢ = ¢/ = o[x—n]. Therefore we can derive
(c,0) — o' as follows

(a,0) = n

(x :=a,0) = olx—n]




Case (ii) ¢ = ¢p; c¢1 and the rule used was

<607 J> —1 <C67 OJ>

<CO; C]_,O'> —1 <C,O; 6170-,>

Hence ¢’ = ¢y; ¢1 and (cg, o) —1 (cp,0') is
derivable. We assume that (¢, ¢’} — ¢’ and the only
possible derivation of that transition must look as

follows:

(cgy0’) = o1 (e1,01) = o

(c’o; c1,0') = o




Hence (c, 0’) — o7 is derivable. We know also that
(cg,0) —1 (cg, o’) is derivable and since cg is
simpler than ¢ we can use IH to infer that there exists

a derivatin |C ) of (cg,0) — 1. Therefore we can
derive {c,o) — o' as follows:

(cg,0) > 01 ({c1,01) = "

<CO; C1, 0-> — o




Case (ili) ¢ = while b do d and the rule used was

(b, o) — true

(while b do d,o) —1 (d; while b do d, o)

Hence ¢/ = d; ¢, ¢/ = o and we must have a
derivation (A} for (b, ) — true. The only possible way
of deriving (c/, o’} — o" is

(d,o) = o1 {c,01) = o

(d; c,o) — o




Hence we can use derivations , and |CJto

derive {(c,o) — o' as follows:

(b,o) — true (d,o) — o1 {c,01) — o”

(c,o0) = 0




© N o O

Proof Structure /Case (ii)/ I

(c,0) —1 (', o’ derivable (assumption)
(!, o'y — o' derivable (assumption)

c = cp; c1 and the only applicable rule
was used to derive (1) (case assumption)

c = cj; c1 and (co, o) —1 (¢, 0')
is derivable (from 3)

(cy,0") — o1 can be derived and
c1,01) — o' can be derived (from 2 and 4)

{
(co,0) — o1 can be derived (from 4,5 and IH)
{

c,o) — o' can be derived (from 7 and 6, QED)




Proof Structure /Case (iii)/ I

(c,o) —1 {c,d’) derivable (assumption)
(', o’y — o' derivable (assumption)

c = (while b do d) and the first applicable rule
was used to derive (1) (case assumption)

¢ =(d;c), o’ =0 and
(b,o) — true is derivable (from 3)

(d,o) — o1 and {c,o1) — o
are derivable (from 2 and 4)

(c,o) — o' can be derived (from 5 and 6, QED)




Semantica

induction

e —




Induction

e how to prove that " ;i=in(n+1),Vn >0 ?

an answer: by induction!




In order to prove that ¥n € w.P(n)

_ basis: prove that P(0)

_ induction step: prove that
Vm € w. P(m) = P(m+1)

The Principle of Induction (IND)

(P(0)&(Vm € w.P(m) = P(m+1)) = Vn € w.P(n)




Course-of-values induction (C-IND)

(Vm € w.[(VkE <m.Q(k)) = Q(m)]) = Vn € w.Q(n)

IND e equivalente a C-IND




IND = C-IND

Let T'(u) be Vo < u.Q(x)

Let us suppose that

Vm € w.(Vk < m.Q(k)) = Q(m)

we want to show that:

Yo € w.Q(v)

Observe that Vm.T'(m) = T(m + 1)
and 71'(0) are true.
By means of IND we conclude that

Vv € w.T'(v) is true and therefore Vv € w.Q(v)




C-IND = IND
Let us suppose that
1)P(0)
and
2) (VYm e w.P(m)= P(m+1))
we want to show that
Vv € w.P(v)

Let a(m) be (Vk < m.P(k)) = P(m)
We want to show that for each m € w a(m) is true.
By cases:

e if m is 0 then a(m) is equivalent to P(0);

e if mis n+ 1 then if (Vk <n+ 1.P(k)) we have P(n);
by means of (2) we conclude that P(n 4+ 1) is true
and therefore a(n + 1) is true.

By means of C-IND we conclude.




Structural Induction

Principle: The induction is based on the structure of the elements.
First, show that the property holds for all atomic elements

Second, show that the formation rules to build non-atomic elements
preserve the property

Example: in order to show that a property P holds for all the arithmetic expressions it
it is sufficient to show that”

(

(VX € Loc. P(X)) A

(Vag,a1 € Aexp. P(ag) AN P(a1) = Plag + a1)) A
(Vag,a, € Aexp. P(ag) AN P(a1) = Plag - a1)) A
(Vag, a1 € Aexp. P(ag) N P(

S

1) — P(CLO Xal))




Well Founded Relation

Well-founded relation. A well-founded relation is a binary relation < on a
set A such that there are no infinite descending chains
cerq; <o < a1 < ag. For two elements a and b in A, if a < b, then we

say that a is a predecessor of b.

Hence, a well-founded relation on A is such that no element of A has an

infinite number of predecessors.

Note. A well-founded relation is necessarily irreflexive. That is, there is
no a € A such that a < a.

Notation. In the sequel, we shall use < for the reflexive closure of <.
That is, for a,b € A, a <b< a=bor a < b for




Well-Founded Induction (W-IND)

(Ya € A.(Vb < a.P(b))) = P(b))) — Ya € A.P(a)

Observation. Note that mathematical induction, course-of-values
induction and structural induction are both special cases of well-founded

induction

Proposition. Let < be a binary relation on a set A. The relation < is
well-founded if and only if any non-empty subset () of A has a minimal

element. More formally,

VQCA (Q#0D=(IFmeQ. Vb<m. b Q))))




Induction on derivation trees

. define the size #D of derivation D:
1. if D is an axiom S then #D=0
2.1d D is

then #D = sup{#D,; +1|i <k}




remember that... subderivations are subtrees!

Rule instance. A rule instance is a pair (X/y), where X (resp. y) is a

finite set of premises (resp. the conclusion) of the rule instance

Set of rule instances R: set of pairs (X/y)

Definition. An R-derivation of y is either

(0/y) or

({d1, -+, dn}/y)

where ({x1,---,2,}/y) is a rule instance and d; is an R-derivation of x;,
(1 <i<n)

d IFr y to mean “d is an R-derivation of y”




@/y) IFryif (0/y) € R

({d1, -, dn}/y) IFR Y

if ({z1,- -, 2n}/y) € R) N (AjZ1(di IFR 7))




Immediate subderivation: We say that d’ is an immediate subderivation of
d and we write d’ <; d if and only if d has the form (D/y) with d' € D

we denote the transitive closure of <1 by <

We say that d’ is a proper subderivation of d iff d’ < d

Reminder. Transitive closure of a relation r on a set X is
+ k41
roo= Ukew r

where ¥ = Idx is the identity relation on X, and for

k>0, rk:form--og
k times

The transitive, reflexive closure of r is r* = r* U Idx

Note. <; and < are well-founded because derivations are finite




Semantica

e —

denotational semantics




Denotational Semantics of

IMP

e mathematical meaning of syntactic objects

e the meaning of syntactic objects is given by
suitable functions

Notation: We shall use || around an argument of a semantic function

Vocabulary: Given x a syntactic object, F a semantic function, z is said

to denote F|x] and F[x] is said to be a denotation, meaning of x




the informal idea:

Let a € Aexp

a represents a function that maps a state c toan € Z

Let b € Bexp
b represents a function that maps a state o to a

t € T ={false,true}

Let ¢ € Com

represents a function that maps a state o to a state o’

what about non termination?




A . Aexp —

lap + a1]o

SO N

[n]o =n

[ X o = o(X)

ap — aq]

Q
|

lao X a1]

o+ Alai]lo

o — Ao

Q
|

DD D

— .og, —

o x Alai]lo

(22— Z)




give the semantics of:

3 + 5
11 - 3
X+Y in state o such that ¢(X) =6, c(Y) =9

X XY in state o such that o(X) =2, o(Y) =3




B
B
B
B
B
B
B
B

B

[false]o

[true]o

[ao < a1]

[bo A b1]
[bg V b1]

B — b]o

ap < an]

Bexp —

false

true

= true when Afag
= false when Afag
= true when Afag
= false when Afag]

= B[[bo]]a' A B[[bl]]a
= Blbg]o V Blbi]o

-B[b]o

(22— T)

MIA Y
L




[skip]o

lco 5 c1]o

Com — (O —))

'

set of partial functions

Clen](Cleo]o)




C[if b then ¢y else c1]o =

) Cleollo if Bfb]o = true
Cler]o if  B[b]o = false




w = while bdo ¢
we know that:

w ~ if b then ¢ ; w else skip

Cle ; wlo if B[b]o = true

Clwlo =
L] o if B[blo = false




using the semantics of composition we have

Clw](Clc]lo) if B[b]o = true

Clwlo = o
o it B|bloc = false

How can we determine C[w]

(the currently unknown meaning of while b do ¢) ?




(22— 2
I'(f)
|ty 80
o if =6(0o)

g =C|c] and g = B[b]




se ['(ff) = ff allora
ff €’ punto fisso
effe’la

semantica del while




fi(o)

fa(o)

/N

[ folg?(0))
g(o)

O

\

if 5(o)

if =4(0)

if (o)

if =8(0)

if B(o) A
if B(o) A
if =B(0)

B(g(a))
-8(g(0))




S
SR
S T
e
O
>
w2 b

o = fs3(o0) {

if B(a) A B(g(o)) N B(g°(0))

Jfo (93(0))
g9° (o)

if B(a) A B(g(0)) N —8(g%(0))

if B(c) A —pB(g(0))

if =43(o)




folg" (o)) if A;_y B(g*(0))

g" (o) if Aioy B(g'(0)) A —B(g" (o))
fn+1(0) = < ...

g(o) if B(c) N —=B(g(0))

o if =06(o)




w = while b do c

C[[w]] —det UnEw fn — UnEw Fn(@)

ol - { Clel(clele)

|

it B
it B
f(g(o))

o)

b]
b]

o = true

o = false

if 5(0)
if +4(0)




Equivalence of Denotational and Operational semantics

Lemma: For any a € Aexp,

Ala] = {(o,n) | (a,0) = n}

proof: induction on a

Lemma: For any b € Bexp,
Blb] = {(o,t) | (b,0) =t}

proof: induction on b




Lemma: For any command ¢ and states o, o', we have

(c,0) = 0’ = (0,0") € C[c]

Proof

The proof is by rule-induction on the operational semantics of commands

For c € Com, 0,0’ € >, we define

P(c,0,0") = (0,0") € C[c]
we prove that:

(c,0) = 0’ = P(c,0,0’) for any command ¢ and states o, o’

we verify only one clause: the case of w = while bdo c




(w,o) = o' = P(w,o,0")

(w,0) — o

> { derivation rules for commands}

(2) (b,0)—true (c,0) 50" (w,0’) so’

or (%)

(w,o)—0o’

(b,a)—.>fa,lse
(w,o0)—0’




case (i1)

(b,0) — false

> { Lemma (9) }

B[b](c) = false

> { definition of C|w] and the above line }

Clw](o) =0' =0 ie. (0,0) €Clw]

> { definition of P }

P(w,o,0) holds




case (1)
(b,o) = true A (c,o0) - " N P(c,0,0")
A {w,0"y = o AN Plw,o”,0")

> { Lemma (9) and the above line }

B[b] (o) = true
> { Definition of P and the above line }

B[b](o) = true A Clc](o) =0c" A Clw](c") =0’
> { Definition of C|w] when B[b] = true, the above line }

Clw](o) = Cle;wl(o) = Clw](Cc](0)) = Clw](c”) = o
> { Definition of P }

P(w,o,0")




Theorem: For any command ¢, we have
Cle] = {(o,0") | (c,0) = o'}

Equivalently,

(o,0") € Clc] & {(c,0) = o'

we have proved the “only if” part




proof by induction on ¢

c = skip

(0,0") € C[skip]

> { Definition of C[[skip] }
oc=0

> { execution rule for skip }

(skip,o0) — o’




X:=a

C

(0,0") € C[X := a]
> { definition of C[X := a] }
Alal](c) =n A ¢ = o[n/X]

(a,0) = n

(c,0) — o'




¢ = while b do c¢g

Clc] = fix(T) let g = Clco| and g = B|b]

o otherwise
fo=T%2) =0
vn € w'fn—|—1 — F(fn) — I‘n‘H(@)

o otherwise

frnr1(o) =T (fn)(o) = { fnlg(o)) if B(o) = true

fiz(T) = | fa

ncw




In order to show that
fiz(T') (o) =0’ = {(¢,0) — o'
we show by induction that:
Vn.No,o'.fn(0) =0c" = (c,0) — o

base n = 0: trivial

induction step if f,,11(0) = ¢’ we have two cases:




1. B(o) = true:

by a previous lemma we have (b, c) — true and
by definition of f;’s, f,(g(c)) = o’

by induction hypothesis (c, g(c)) — o’

let Clcol (o) = o”

by structural ind-hyp (cg, o) — o”

summarizing we have:

(b,0) — true, (c,d"”) — o', (cg,0) — "

and by means of the rule of while (c,o) — ¢’

2. B(o) = false :
by a previous lemma we have (b, c) — false and
by definition of f;’s, ¢’ = o
and by means of the rule of while (c,o) — ¢’




