Probabilità I

Calcolo delle probabilità

- Nozioni di eventi
- · Definizioni di probabilità
- Calcolo di probabilità notevoli
- · Probabilità condizionate

Definizioni di base: evento

- Esperimento o prova: Accadimento dall'esito incerto e non noto a priori.
- Spazio degli eventi *U*: Insieme di tutti gli esiti possibili.
- Evento *E*: Un insieme dei possibili esiti dell'esperimento.
- Evento elementare: Evento a cardinalità uno (esito).
- Esempio
 - Esperimento: lancio di un dado a sei facce.
 - Evento: esca un numero pari.
 - Spazio degli eventi: *U* = {1 2 3 4 5 6}.
 - $E = \{246\}.$

Concetto di probabilità

• Cos'è una probabilità?

Idea di massima: misura di quanto un evento potenzialmente incerto si possa verificare

- Perché abbia senso debbo:
 - Definire con chiarezza cosa sia un evento
 - Scegliere una misura

2

Evento: considerazioni

Per la definizione data si ha che lo stesso esperimento può produrre spazi degli eventi molto diversi

- Esempio
 - Esperimento: Estrazione di una carta da bridge.
 - Evento: Si estragga una carta con un seme rosso.
 - Spazio degli eventi: U= {Cuori Quadri Fiori Picche}.
 - $E = \{Cuori\ Quadri\}$
- Esempio
 - Esperimento: Estrazione di una carta da bridge.
 - Evento: Si estragga una figura.
 - Spazio degli eventi: *U*={*A* 2 3 4 5 6 7 8 9 10 *J D R*}.
 - $E = \{J, D, R\}.$

Probabilità: definizione classica (Laplace).

 Definizione: La probabilità di un evento E è data dal numero di esiti favorevoli (al verificarsi di E) e quello dei casi possibili giudicati egualmente possibili.

$$P(E) = \frac{\|E\|}{\|U\|}$$

- Esempio
 - Esperimento: Estrazione di una carta da bridge.
 - Evento: Si estragga una figura.
 - Spazio degli eventi: *U*={*A* 2 3 4 5 6 7 8 9 10 *J D R*}.
 - $E = \{J D R\}.$

$$P(E) = \frac{\|E\|}{\|U\|} = \frac{3}{13} = 0.2308$$

Definizione classica: errori di modello

Esperimento: Lancio due dadi a 4 facce

Evento: Somma pari a 4

- Esempio errato: (evento elementare: somma dei 2 dadi)
 - $U = \{2345678\}.$
 - $-E = \{4\}.$ $P(E) = \frac{\|E\|}{\|U\|} = \frac{1}{7}$

Esempio corretto: (evento elementare: esito dei 2 dadi)

- $U = \{(1,1) (1,2) (1,3) (1,4) (2,1) (2,2) (2,3) (2,4) (3,1) (3,2) (3,3) (3,4) (4,1) (4,2) (4,3) (4,4) \}.$
- $E = \{(1,3)\,(2,2)\,(3,1)\,\}.$

$$P(E) = \frac{||E||}{||U||} = \frac{3}{16}$$

Definizione classica: considerazioni.

• Definizione: La probabilità di un evento E è data dal numero di esiti favorevoli (al verificarsi di E) e quello dei casi possibili giudicati egualmente possibili.

Condizione limitante!

- Esempio
 - Esperimento: Estrazione super enalotto.
 - Evento: Vincere.
 - Spazio degli eventi: U= {0 1 2 3 4 5 5+1 6}.

-
$$E = \{3\ 4\ 5\ 5+1\ 6\}.$$

$$P(E) = \frac{\|E\|}{\|U\|} = \frac{5}{8} = 0,625$$

• Gli eventi elementari non sono equiprobabili \Rightarrow P(E) insensata

6

Probabilità: definizione assiomatica.

- Idea: associo ad ogni evento elementare una probabilità e poi con delle regole di costruzione calcolo le probabilità di eventi più complessi.
- Ho bisogno
 - Catalogare gli eventi più complessi.
 - Trovare le regole
 - Fissare le probabilità di alcuni eventi mediante
 - Assiomi
 - · Approccio classico
 - Conoscenze innate

Evento certo ed impossibile

- Evento certo. Evento che si verifica sicuramente. $E \equiv U$
 - Esempio
 - Esperimento: Lancio di un dado a 6 facce.
 - Evento: Totalizzare meno di 7.
 - Probabilità classica: P(U) = 1.
- Evento impossibile. Evento che non si può verificare $E = \emptyset$.
 - Esempio
 - Esperimento: Lancio di un dado a 6 facce.
 - Evento: Totalizzare più di 7.
 - Probabilità classica: $P(\emptyset) = 0$.

9

Evento complementare.

- Evento complementare di un evento. Dato un evento E il suo complementare [indicato con \overline{E}] è dato dall'insieme di tutti gli eventi elementari non compresi in E.
 - Esempio
 - Esperimento: Lancio di un dado a 6 facce.
 - Evento: Totalizzare meno di 3.
 - Evento complementare: totalizzare 3 o più.
 - Probabilità classica:

$$P\left(\overline{E}\right) = \frac{\left\|\overline{E}\right\|}{\left\|U\right\|} = \frac{\left\|U - E\right\|}{\left\|U\right\|} = \frac{\left\|U\right\| - \left\|E\right\|}{\left\|U\right\|} = \frac{\left\|U\right\|}{\left\|U\right\|} - \frac{\left\|E\right\|}{\left\|U\right\|} = 1 - P\left(E\right)$$

11

Eventi incompatibili

- Definizione: due eventi A e B si dicono incompatibili se non possono verificarsi contemporaneamente. $A \cap B = \emptyset$
 - Esempio
 - Esperimento: Lancio di un dado a 6 facce.
 - Evento A: rilevare un # pari.
 - Evento B: rilevare un 5.
 - A e B sono incompatibili.
 - Esempio
 - Esperimento: Lancio di un dado a 6 facce.
 - Evento *A*: rilevare un # pari. *A* = {2 4 6}
 - Evento *B*: rilevare un # primo. *B*={1 2 3 5}
 - $A \in B \text{ NON sono incompatibili. } A \cap B = \{2\}.$
- Osservazione:gli eventi elementari fra loro sono incompatibili

Evento intersezione

Definizione: Dati due eventi A e B l'evento intersezione $A \cap B$ è l'evento che si verifica quando entrambi gli eventi si verificano.

- Esempio
 - Esperimento: Lancio di un dado a 6 facce.
 - A: estrarre un # pari $A=\{2 \ 4 \ 6\}$.
 - *B*: estrarre un # primo *B*={1 2 3 5}.
 - $A \cap B$: estrarre un # primo e pari. $A \cap B = \{2\}$.

Osservazione: l'evento intersezione di due eventi incompatibili è sempre l'evento impossibile.

- Esempio
 - Esperimento: Lancio di un dado a 6 facce.
 - A: estrarre un # pari $A=\{2 \ 4 \ 6\}$.
 - B: estrarre un 3 $B=\{3\}$.
 - Evento intersezione: impossibile!

Evento unione

Definizione: Dati due eventi A e B definisco l'evento unione quando almeno uno dei due si verifica. $E = A \cup B$.

- Esempio
 - · Esperimento: Lancio di un dado a 6 facce.
 - Evento A: estrarre un # perfetto $A = \{1 6\}$.
 - Evento B: estrarre un # primo *B*={1 2 3 5}.
 - Evento unione: estrarre un # primo o perfetto.

$$E = A \cup B = \{12356\}.$$

- Probabilità classicà:

$$P(A \cup B) = \frac{\|A \cup B\|}{\|U\|} = \frac{\|A\| + \|B\| - \|A \cap B\|}{\|U\|}$$
$$P(A) + P(B) - P(A \cap B) = \frac{2}{6} + \frac{4}{6} - \frac{1}{6} = \frac{5}{6}.$$

• Se gli eventi sono incompatibili P(E) = P(A) + P(B).

Definizione assiomatica: esempio

- Esempio
 - Esperimento: Estrazione super enalotto.
 - Evento: Vincere.
 - Spazio degli eventi: U= {0 1 2 3 4 5 5+1 6}
 - $-E = \{3 \ 4 \ 5 \ 5+1 \ 6\}.$
- Supponiamo di avere le probabilità degli eventi elementari (incompatibili)

$$P(E) = P(E_3) + P(E_4) + P(E_5) + P(E_{5+1}) + P(E_6) = 0.3145\%$$

oppure

$$P(E)=I-P(\overline{E})=I-(P(E_0) + P(E_1) + P(E_2)) = P(E)= 0.3145\%$$

	\boldsymbol{E}_{i}	n _i	$P(E_i)$	
)	0	406.481.544	65,28621790%	
	1	185.232.096	29,75068157%	
	2	28.942.515	4,64854400%	
	3	1.905.680	0,30607697%	
	4	52.290	0,00839845%	
	5	498	0,00007999%	
	5+1	6	0,00000096%	
	6	1	0,00000016%	
		622.614.630	100,000000ბზ%	

Definizione assiomatica di Probabilità.

Definizione: Dato uno spazio degli eventi U, la probabilità è una funzione P(.) che associa ad ogni possibile evento E un numero reale P(E), rispettando i seguenti assiomi

- Assiomi
 - P(E) >= 0.
 - P(U) = 1.
 - Se A e B sono incompatibili $P(A \cup B) = P(A) + P(B)$.
- Si ricavano le seguenti proprietà:
 - $P(\emptyset) = 0$.
 - $0 \le P(E) \le 1$.
 - $\bullet P(\overline{E})=1-P(E).$
 - $\bullet P(A \cup B) = P(A) + P(B) P(A \cap B).$

14

Definizione assiomatica: considerazioni

- Nessuna metodologia di calcolo viene fornita per l'evento elementare.
- · Si forniscono solo regole di derivazione.
- Se si aggiunge l'ipotesi che tutti gli eventi sono equiprobabili si riottiene la definizione classica.

Probabilità condizionata: motivazioni.

- Osservazione: A volte ho delle informazioni parziali sull'esito dell'esperimento.
 - Esempio:
 - Esperimento: estrazione di uno studente del corso.
 - Evento: altezza superiore a 185 cm.
 - · Informazione aggiuntiva: l'estratto è maschio
 - Esempio 2:
 - Esperimento: Lancio di un dado. *U*={1 2 3 4 5 6}
 - Evento: esca un # pari. A ={2 4 6}
 - Informazione aggiuntiva: l'estratto è un # primo.
 B = {1 2 3 5}

Probabilità condizionata: calcolo.

- Esempio: lancio di un dado. *U={1 2 3 4 5 6}*
 - A: esca un # pari. $A = \{2 \ 4 \ 6\} => P(A) = 0.500$
 - B: l'estratto è un # primo. $B = \{1 \ 2 \ 3 \ 5\} => P(B) = 0.666$
 - $-A \cap B = \{2\} \Longrightarrow P(A \cap B) = 0.166$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{0.166}{0.6666} = 0.25 < P(A)$$

- · Esempio: estrazione di un biotecnologo.
 - A: altezza superiore a 185 cm. => P(A) = 0.10
 - B: l'estratto è uomo. $\Rightarrow P(B) = 0.35$
 - $A \cap B$: uomini più alti di 185 cm.=> $P(A \cap B) = 0.07$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{0.07}{0.35} = 0.2 > P(A)$$

Probabilità condizionata.

- Definizione: Dati due eventi A e B che insistono sullo stesso spazio degli eventi U, definisco P(A / B) [leggasi: "probabilità di A condizionata B"] come la probabilità che si verifichi A sapendo che si è già verificato B.
- Probabilità classica

$$P(A|B) = \frac{\|A \cap B\|}{\|B\|}$$

· Probabilità assiomatica

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

• Osservazione: se B non si verifica,P(A/B) non ha sens δ .

Probabilità assiomatica: evento intersezione

• Teorema: Dati due eventi generici A e B vale

$$P(A \cap B) = P(A)P(B|A) = P(B)P(B|A)$$

Dim:

$$P(A)P(B|A) = P(A)\frac{P(A \cap B)}{P(A)} = P(A \cap B)$$

$$P(B)P(A|B) = P(B)\frac{P(B\cap A)}{P(B)} = P(A\cap B)$$

- Esercizio: Calcolare la probabilità che esca un # pari e primo lanciando un dado a 6 facce.
 - P(B) = 4/6
 - P(A/B) = 1/4.
 - $P(A \cap B) = P(A)P(B|A) = 1/6.$

Eventi Indipendenti

- Concetto (nella realtà): due eventi si dicono indipendenti se non si influenzano. Ovvero il verificarsi di uno non influenza l'altro.
- Idea (statistica): due eventi sono indipendenti se il verificarsi di uno non modifica la probabilità di verificarsi dell'altro.
- Definizione (statistica): due eventi A e B si dicono indipendenti se

$$P(A|B)=P(A)$$
 $P(B|A)=P(B)$

• Osservazione: se voglio verificare l'indipendenza (statistica) di due eventi A e B devo controllare se le due relazioni valgono.

Probabilità assiomatica: eventi indipendenti

• Teorema: Se due eventi sono indipendenti vale

$$P(A \cap B) = P(A)P(B)$$

- Esercizio
 - Esperimento: lancio contemporaneamente un dado a 6 facce ed una moneta
 - Calcolare la probabilità di ottenere una testa ed un numero maggiore di 4.
- Svolgimento:
 - A: Ottenere testa lanciando una moneta $\Rightarrow P(A) = 1/2$.
 - B: Ottenere un # > 4 lanciando un dado => P(B) = 1/3.
 - Eventi indipendenti => $P(A \cap B) = P(A)P(B) = 1/6$.
- Osservazione: la definizione assiomatica non richiede di definire U!

Eventi Indipendenti: verifica

Esperimento: di due dadi a 4 facce

- evento elementare: esito dei 2 dadi.
- Spazio degli eventi: *U*= {(1,1) (1,2) (1,3) (1,4) (2,1) (2,2) (2,3) (2,4) (3,1) (3,2) (3,3) (3,4) (4,1) (4,2) (4,3) (4,4)
- Evento A: fare 4 con il primo dado => $P(A) = \frac{4}{16} = 0.25$ Evento B: fare 4 con il secondo dado => $P(B) = \frac{4}{16} = 0.25$
- Evento intersezione: fare 4 con ambo i dadi => $P(A \cap B) = \frac{1}{16}$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{1/16}{1/4} = \frac{1}{4} = P(A)$$

$$P(B|A) = \frac{P(B \cap A)}{P(A)} = \frac{1/16}{1/4} = \frac{1}{4} = P(B)$$

L'esito di un lancio di un dado non influenza il successivo!

Ricapitolando

- Definizione classica di probabilità: $P(E) = \frac{||E||}{||U||}$
- Definizione assiomatica di probabilità:

- Evento certo E = UP(U)=1

 $P(\emptyset) = 0$ - Evento impossibile $E = \emptyset$

 $P(\bar{E})=1-P(E)$ Evento complementare

 $P(A|B) = \frac{P(A \cap B)}{P(B)}$ - Probabilità condizionata

P(A|B) = P(A); P(B|A) = P(B)Eventi indipendenti

 Eventi unione $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

• Eventi incompatibili $P(A \cup B) = P(A) + P(B)$

 Evento intersezione $P(A \cap B) = P(A)P(B|A)$

• Eventi indipendenti $P(A \cap B) = P(A)P(B)$