Diffusion MRI: Principles and Applications

Outline

Basics of diffusion

- What is "diffusion" and why it is important
- Diffusion MRI in a nutshell

Main applications

- Characterization of *tissue properties*
- Estimation of tissue structure
- Reconstruction of *neuronal fiber tracts*
- Estimation of structural brain connectivity

Intro to local reconstruction techniques

- Diffusion Spectrum Imaging (DSI)
- Diffusion Tensor Imaging (DTI)
- ► Q-BALL Imaging (QBI)
- Constrained Spherical Deconvolution (CSD)

What is diffusion?

Random movement of molecules due to thermal agitation from regions of high to regions of low concentration

EXAMPLE: in a glass of water, molecules diffuse randomly and freely, only constrained by the boundaries of the container

What is diffusion?

Random movement of molecules due to thermal agitation from regions of high to regions of low concentration

EXAMPLE: in a glass of water, molecules diffuse randomly and freely, only constrained by the boundaries of the container

First noted by Robert Brown in 1828

"...random motion without any apparent cause..."

Formally described by **Albert Einstein** in 1905

What happens in the brain?

Rough **brain anatomy**:

- ► *gray-matter* : neuronal cell bodies
- white-matter : mainly myelinated tracts
- ► Cerebrospinal fluid (CSF)

Metaphor: "connectivity" as "water supply network"

Cerebrospinal Fluid (CSF)

- ► Displacements are *isotropic*
- Variance depends on the fluid's properties

Neuronal tracts (white-matter)

- Diffusion more *restricted* perpendicular to the tracts
- Degree of restriction depends on tissue properties

Diffusion MRI in a nutshell

MRI sequences are sensitive to diffusion by inserting two additional magnetic field gradient pulses

- ► The goal is to **change phase** of moving molecules
- Movement
 phase differences
 signal cancels out/drops

Diffusion MRI in a nutshell

MRI sequences are **sensitive to diffusion** by inserting two additional *magnetic field gradient pulses*

- ► The goal is to **change phase** of moving molecules
- Movement \Rightarrow phase differences \Rightarrow signal cancels out/drops

signal $\propto e^{-bD}$

Signal decays as:

- ► D : diffusion coefficient of the tissue
- \blacktriangleright b : diffusion weighting/contrast of the images (δ , Δ , $|\mathbf{G}|$)

NOTE: signal <u>strongly depends</u> on

- ▶ the *b*-value (b)
- ► the diffusion coefficient (D)
- ► the gradient direction (G)

increasing /

(1/3)

Scalar maps

Estimate *local features* of the tissue

diffusion coefficient

diffusion anisotropy

axonal density

axonal dispersion

Intra-voxel fiber structure

Estimate the *number and orientation of fiber populations* in each voxel

Fiber-tracking

▶ Infer *axonal trajectories* by exploiting the diffusion information in each voxel

Connectivity analysis

► In-vivo and non-invasive assessment of structural wiring of the brain

fiber-tracking

cortical segmentation

connectivity matrix

EAP, ODF and fODF

EAP (Ensemble Average Propagator)

- In each voxel, 3D PDF giving the *probability of water displacements* → diffusion MRI is a 6D modality
- ► Related to the *signal attenuation* by a **3D FFT**:

$$\mathbf{P}(\vec{r}) = \int_{\mathbb{R}^3} E(\vec{q}) e^{-2\pi i \vec{q} \cdot \vec{r}} d\vec{q}$$
q-space

EAP, ODF and fODF

EAP (Ensemble Average Propagator)

- In each voxel, 3D PDF giving the *probability of water displacements* → diffusion MRI is a 6D modality
- ► Related to the *signal attenuation* by a **3D FFT**:

$$\mathbf{P}(\vec{r}) = \int_{\mathbb{R}^3} E(\vec{q}) e^{-2\pi i \vec{q} \cdot \vec{r}} d\vec{q}$$

q-space

ODF Or **dODF** (Orientation Distribution Function)

Probability of diffusion along a given direction:

$$\text{ODF}(\hat{r}) = \int_{\mathbb{R}_+} P(r, \hat{r}) \, r^2 \, dr$$

Function on the sphere

$$\int_{\mathbb{R}_+} P(r,\hat{r}) \, r^2 \, dr$$

FOD Or **fODF** (fiber ODF)

- Probability of having a fiber population along a given direction
- Function on the sphere

Diffusion SPECTRUM Imaging (DSI)

Exploits the **3D Fourier Transform relationship** between the *MR signal* and the *displacement distribution* (EAP)

 $\mathbf{P}(\vec{r}) = \int_{\mathbb{R}^3} E(\vec{q}) e^{-2\pi i \vec{q} \cdot \vec{r}} d\vec{q}$

SIGNAL E(q)

The q-space must be properly sampled

- Data must be sampled in a dense 3D cartesian grid
- Usual protocol: 515 samples with $b_{max} \approx 8000 \text{ s/mm}^2$

Measures directly water displacements making "almost" no assumptions

"almost" = short pulse condition is required

Advantages:

- Model free
- Complex fiber configurations recovered
- Recovers the EAP (even though radial information is usually ignored!!!)

Limitations:

- Long acquisitions (≈ 30-40 min)
- Motion sensitive
- ► High b-values + long TE ➡ low SNR
- Short pulses never met = smooth EAP
- No useful maps from the EAP
- Severe truncation artifacts
 - Inherent to FFT and "relatively low" b-values
 - Hanning filter mitigates but introduces blurring

0.005

8000

0.2

(2/2)

Diffusion TENSOR Imaging

Assumption: displacements of water molecules follow a multivariate gaussian distribution

- Process fully characterized by its covariance matrix (3x3 symmetric positive semi-definite matrix)
- Usually represented as an ellipsoid
- 6 degrees of freedom (3 rotations + 3 variances)

estimated acquiring 6+1 DWI images (at least)

represents one 3D DWI image

• Usual protocol: 6-32 directions with $b \approx 1000 \text{ s/mm}^2$

Alessandro Daducci

Diffusion TENSOR Imaging

Advantages:

- Fast acquisitions (≈ 4-5 min) ⇒ clinically feasible
- Does not require special hardware
- ► Useful *scalar maps*, e.g.
 - Mean Diffusivity (MD) :

$$\bar{\lambda} = \frac{\lambda_1 + \lambda_2 + \lambda_3}{3}$$

- Fractional Anisotropy (FA) :

$$FA = \sqrt{\frac{3}{2}} \sqrt{\frac{(\lambda_1 - \bar{\lambda})^2 + (\lambda_2 - \bar{\lambda})^2 + (\lambda_3 - \bar{\lambda})^2}{\lambda_1^2 + \lambda_2^2 + \lambda_3^2}}$$

Limitation(s):

Biomedical Image Processing

- Complex fiber configurations cannot be modeled
 - majority of voxels in the brain
 - Enough for characterization of major bundles, but inadequate for whole brain connectivity analyses
 - NB: acquiring more data does overcome this limitation!

Mean Diffusivity: high values = fast diffusion

Fractional Anisotropy: high values = fiber bundles

(2/2)

HARDI: overview

High angular resolution diffusion imaging (HARDI):

- ► Focus on *angular information*:
 - The radial component is discarded/averaged
 - No access to tissue micro-structural features, e.g. axonal diameter and density
- Usually based on *spherical sampling* (at least 60 samples in q-space)

Vast literature of methods:

- Multi-Tensor fitting (Tuch et al, 2002)
- ► Q-BALL (QBI) (Tuch, 2004)
- Q-BALL in Constant Solid Angle (QBI_{CSA}) (Aganj et al, 2010)
- Constrained Spherical Deconvolution (CSD) (Tournier et al, 2004)
- Diffusion Orientation Transform (DOT) (Ozarslan et al, 2006)

15

(1/3)

IDEA: data is acquired on a single shell and the ODF is approximated by means of Funk-Radon Transform (FRT)

Samples distributed on a single-shell Same idea behind CT, but on the sphere

ODF are smooth

Notes:

- Model free
- ► FRT induces blurring
- ODF is only approximated (missing r² term in the integral)
- Usual protocol: >=60 directions with $b \approx 3000 \text{ s/mm}^2$

HARDI: constrained spherical deconvolution (3/3)

Assumption: ODF can be seen as a convolution on the sphere

ODF kernel FOD The kernel characterizes the diffusion response-function of a single fiber; can be estimated from the data:

- Identify known areas with only one fiber population
- ► Fit a tensor in each voxel and average

Notes:

- Model based
- ► High angular accuracy (i.e. sharper profiles), but sensitive to noise
- ► Assumes the *same diffusion properties* across the whole brain
- ▶ Usual protocol: <=60 directions with b ≈ 3000 s/mm²

