Fundamentals of Signal Decompositions

"A journey of a thousand miles must begin with a single step."

Lao-Tzu, Tao Te Ching

Notations
Hilbert spaces
Linear algebra
Fourier theory and sampling
Signal processing
Time-frequency representations

Prerequisites

Fourier Basics

- Fourier transform (basic properties)
- Fourier series
- discrete-time Fourier transform and series

Linear Algebra

- basics (bases, linear independence, etc)
- special matrices (Toeplitz, circulant, unitary, etc)

Basic signal processing

- sampling theorem
- convolution theorem

Review

- Hilbert spaces
- projection theorem
- multirate signal processing
- time-frequency analysis

Notations

• inner products

$$\langle f, g \rangle = \int_{t} f^{*}(t) g(t) dt$$
 $\langle f, g \rangle = \sum_{n} f^{*}[n]g[n]$

roots of unity

$$W_N = e^{-j(2\pi/N)}$$
 $W_N^{(k+1N)} = 1$ $\sum_{k=0}^{N-1} W_N^{kn} = N$

- usual sets: ℵ, ℑ, ℜ, C
- vectors, matrices: "bold" letters (v and M)
- functions of continuous-time: f(t) with FT $F(\omega)$
- sequences of discrete-time: x[n] with DTFTX($e^{j\omega}$)
- z-transform

$$X(z) = \sum_{n} x[n]z^{-n}$$

Vector spaces

Def: A vector space over the set of real/complex numbers \Re , C is a set of vectors E together with

- addition of vectors x + y, x, y in E
- scalar multiplication α x, α in \Re , C and x in E

Def: An inner product is a real/complex valued function <...> defined on $E \times E$

Def: An inner product space is a vector space together with an inner product

Def: A complete inner product space is a Hilbert space

• separable Hilbert spaces admit orthonormal bases

Hilbert spaces

"Infinite dimensional Euclidean spaces"...

Norms

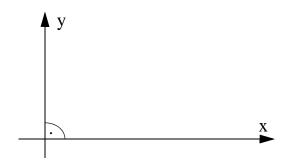
$$\|\mathbf{f}\| = \langle \mathbf{f}, \mathbf{f} \rangle^{1/2} = \left(\int_{\mathbf{f}} \mathbf{f}^*(\mathbf{t}) \mathbf{f}(\mathbf{t}) d\mathbf{t} \right)^{1/2} \qquad \|\mathbf{x}\| = \langle \mathbf{x}, \mathbf{x} \rangle^{1/2} = \left(\sum_{\mathbf{n}} \mathbf{x}^*[\mathbf{n}] \mathbf{x}[\mathbf{n}] \right)^{1/2}$$

Examples

- $L_2(\Re)$: space of square-integrable functions
- $l_2(\mathfrak{I})$: space of square-summable sequences

Key concept: orthogonality

• two vectors are called orthogonal if $\langle x, y \rangle = 0$



Hilbert spaces

Basis for a space: complete set of vectors $\{\phi_i\}$, i in $\mathfrak I$

orthonormal case:

$$\langle \phi_i, \phi_j \rangle = \delta[i-j]$$
 and

$$f = \sum_i \langle \phi_i, f \rangle \phi_i \qquad \text{with} \qquad \alpha_i = \langle \phi_i, f \rangle$$

are called Fourier coefficients

• biorthogonal case: there is a dual basis such that

$$\langle \psi_i, \phi_i \rangle = \delta[i-j]$$
 and

$$f = \sum_i \langle \phi_i, f \rangle \psi_i = \sum_i \langle \psi_i, f \rangle \phi_i \quad \text{with } \alpha_i = \langle \phi_i, f \rangle, \ \beta_i = \langle \psi_i, f \rangle,$$

 overcomplete: vectors are complete but linearly dependent, frames, tight frames

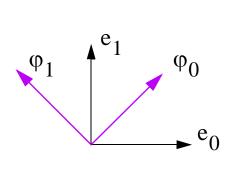
Hilbert spaces

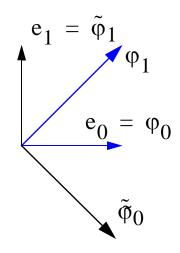
Example: \Re^2

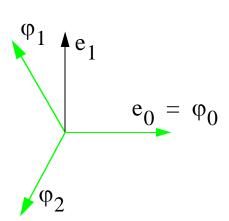
orthogonal basis

biorthogonal basis

tight frame







Note: quantization in orthogonal case is easy, unlike in the other cases

Hilbert spaces orthonormal bases

Theorem: Given an orthonormal system $\{x_1, x_2, ...\}$ in a Hilbert space H, the following are equivalent:

- The set $\{x_1, x_2, ...\}$ is an orthonormal basis for H.
- If $\langle x_i, y \rangle = 0$ for i = 1, 2, ... then y = 0.
- The span of $\{x_1, x_2, ...\}$ is dense in H, that is, every vector in H is a limit of a sequence of vectors in the span of $\{x_1, x_2, ...\}$.
- Parseval's equality: For every y in H,

$$\|\mathbf{y}\|^2 = \sum_{\mathbf{i}} |\langle \mathbf{x}_{\mathbf{i}}, \mathbf{y} \rangle|^2.$$

Generalized Parseval's equality: For every y₁, y₂ in H,

$$\langle y_1, y_2 \rangle = \sum_i \langle x_i, y_1 \rangle^* \langle x_i, y_2 \rangle.$$

Hilbert spaces orthogonal projections

Given a Hilbert space H and a closed subspace S:

$$H = S \oplus S^{\perp},$$

where S^{\perp} is the orthogonal complement of S in H.

Moreover, if $u \in H$ then

$$u = v + w$$

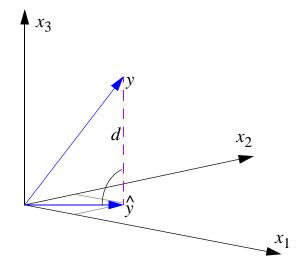
where $v \in S$ and $w \in S^{\perp}$.

Def: An operator P is called a projection operator onto S if

$$P(v+w) = v$$

Result: An operator P is a projection operator if and only if it is

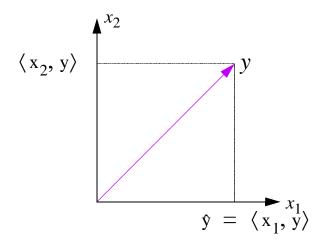
- idempotent: $P^2 = P$, and
- self-adjoint: $P^* = P$.

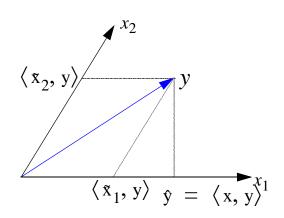


Hilbert spaces orthogonal projections

Orthogonal projection

- best subspace approximation is an orthogonal projection
- error is orthogonal to approximation





Successive approximation

- orthonormal bases successively approximate (left)
- biorthogonal bases and frames do not (right)

Linear algebra

Finite dimensional Hilbert spaces \Re^n , C^n

Unitary matrices: U such that U*U=I

Special matrices such as DFT matrix $F_{ij} = W_N^{\ ij}$

Convolution Theorem: F*CF = L

Matrices of polynomials or rational functions H(z)

- MIMO LTI's
- normal rank: maximum rank of H(z)
- unitary matrices of polynomials (on unit circle): paraunitary

Sampling theorem

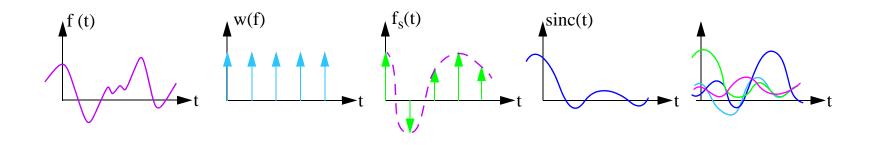
Theorem: If f(t) is continuous and bandlimited to ω_m , then f(t) is uniquely defined by its samples taken at twice ω_m or $f(n\pi/\omega_m)$. The minimum sampling frequency is $\omega_s=2\omega_m$ and $T=\pi/\omega_m$ is the maximum sampling period. Then f(t) can be recovered by:

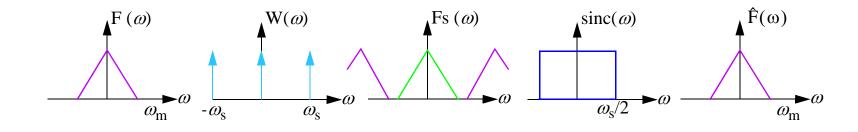
$$f(t) = \sum_{n = -\infty}^{\infty} f(nT) \frac{\sin(\pi t/T)}{\pi t/T}$$

Another view: sinc(t-1), 1 in \Im , is an orthonormal basis for functions bandlimited to $(-\pi,\pi)$, where sinc(t) is

$$\operatorname{sinc}(t) = \frac{\sin(\pi t)}{\pi t}$$

Sampling theorem... ... pictorially





Expansions

Continuous-time integral transform or expansion

$$x(t) = \int X(\omega) \cdot \phi_{\omega}(t) d\omega \qquad X(\omega) = \langle \tilde{\phi}_{\omega}(t), x(t) \rangle$$

Example: Fourier transform

$$\varphi_{\omega}(t) = \frac{1}{2\pi} \cdot e^{j\omega t}$$
 $\tilde{\varphi}_{\omega}(t) = e^{j\omega t}$

Continuous-time series expansion

$$x(t) = \sum X[i] \cdot \phi_i(t)$$
 $X[i] = \langle \tilde{\phi}_i(t), x(t) \rangle$

Example: Fourier series [0,1]

$$\varphi_{\omega}(t) = e^{j2\pi kt}$$
 $\tilde{\varphi}_{\omega}(t) = e^{j2\pi kt}$

Expansions

Discrete-time integral transform or expansion

$$x[n] = \int X(\omega) \cdot \phi_{\omega}[n] d\omega \qquad X(\omega) = \langle \tilde{\phi}_{\omega}[n], x[n] \rangle$$

Example: Discrete-time Fourier transform

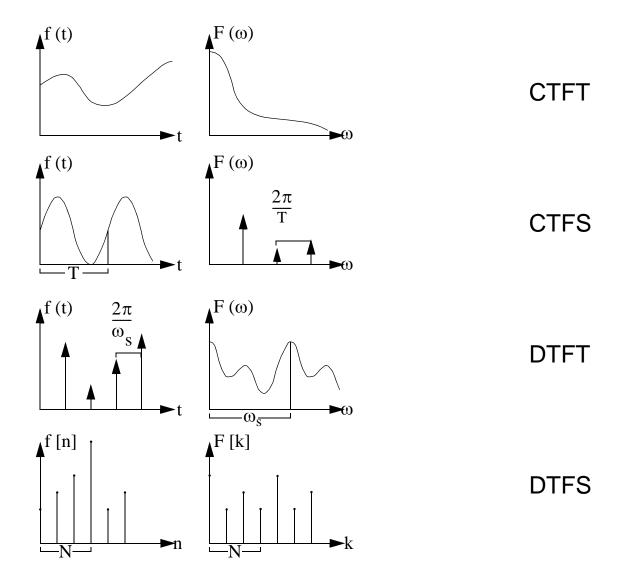
$$\varphi_{\omega}[n] = \frac{1}{2\pi} \cdot e^{j\omega n}$$
 $\tilde{\varphi}_{\omega}[n] = e^{j\omega n}$

Discrete-time series expansion

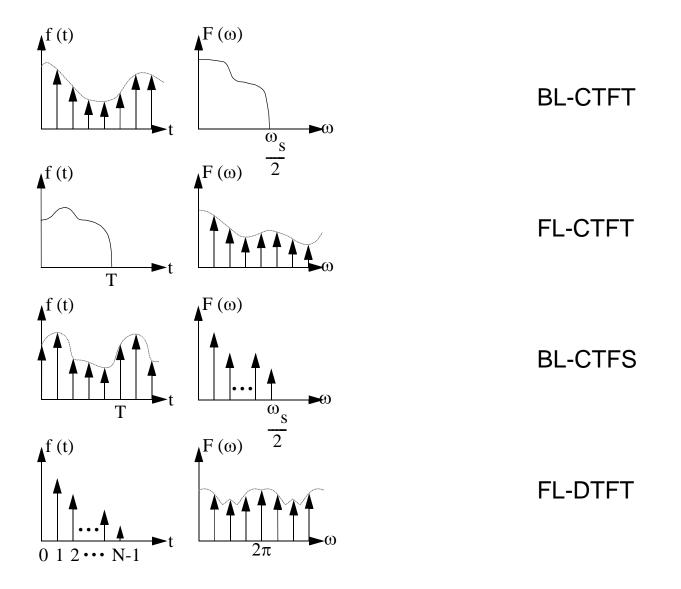
$$x[n] \, = \, \sum X[i] \cdot \phi_i[n] \hspace{1cm} X[i] \, = \, \langle \tilde{\phi}_i[n], x[n] \rangle$$

Example: Discrete-time Fourier series [0,N-1] (or DFT)

$$\phi_k[n] = \frac{1}{N} \cdot e^{(j2\pi kn)/N} \qquad \tilde{\phi}_k[n] = e^{(j2\pi kn)/N}$$



Transform	Time	Freq.	Analysis Synthesis	Duality
Fourier transform CTFT	С	С	$F(\omega) = \int_{t}^{t} f(t)e^{-j\omega t}dt$ $f(t) = \frac{1}{2\pi} \int_{\omega}^{t} F(\omega)e^{j\omega t}d\omega$	self- dual
Fourier series CTFS	C P	D	$F[k] = \frac{1}{T} \int_{T}^{T} f(t)e^{-j2\pi k} \frac{t}{T} dt$ $\frac{-\frac{T}{2}}{f(t)} = \sum_{t=1}^{T} F[k]e^{j2\pi k} \frac{t}{T}$	dual with DTFT
Discrete-time Fourier transform DTFT	D	C P	$F(e^{j\omega}) = \sum_{n} f[n]e^{-j2\pi n \frac{\omega}{\omega_{s}}}$ $f[n] = \frac{1}{\omega_{s}} \int_{-\frac{\omega_{s}}{2}}^{\frac{\omega_{s}}{2}} F(e^{j\omega})e^{j2\pi n \frac{\omega}{\omega_{s}}} d\omega_{s}$	dual with CTFS
Discrete-time Fourier series DTFS	D P	D P	$F[k] = \sum_{\substack{n=0\\N-1}}^{N-1} f[n]e^{-j2\pi k} \frac{n}{N}$ $f[n] = \sum_{k=0}^{N-1} F[k]e^{-j2\pi k} \frac{n}{N}$	self- dual Fundamentals - 17



Transform	Time	Frequency	Equivalence	Duality
Fourier transform of bandlimited signal BL-CTFT	Can be sampled	$\left(-\frac{\omega_s}{2}, \frac{\omega_s}{2}\right)$	Sample time. Periodize frequency.	dual with FL-CTFT
Fourier transform of finite-length signal FL-CTFT	(0, T)	Can be sampled	Periodize time. Sample frequency.	dual with BL-CTFT
Fourier series of bandlimited periodic signal BL-CTFS	Periodic can be sampled	Finite number of Fourier coefficients	Sample time. Finite Fourier series in time.	dual with FL-DTFT
Discrete-time Fourier transform of finite-length sequence FL-DTFT	Finite number of samples	Periodic can be sampled	Sample frequency. Finite Fourier series in frequency.	dual with BL-CTFS

Multirate Digital Signal Processing

Branch of DSP

- not a single, but multiple sampling rates
- important in many applications
- analysis more complex

Key points

- aliasing!
- complex exponentials are not eigenfunctions anymore
- linear periodically time-varying (LPTV) systems

Key analysis methods

 map single input single output (SISO) LPTV system into a multiple input multiple output (MIMO) linear time-invariant system

Multirate DSP... ... downsampling by 2

$$x[n] \bullet y[n] = x[2n]$$

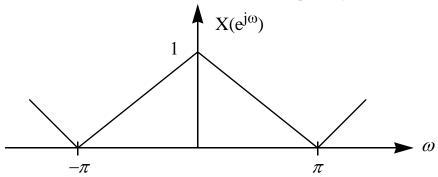
•
$$y = D_2 \cdot x$$

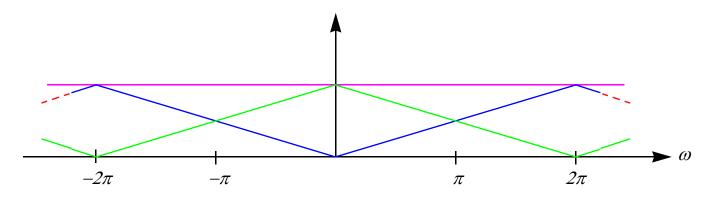
$$\begin{bmatrix} \dots \\ y[-1] \\ y[0] \\ y[1] \\ \dots \end{bmatrix} = \begin{bmatrix} \dots \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ \dots & \dots & \dots & \dots \end{bmatrix} \cdot \begin{bmatrix} \dots \\ x[-1] \\ x[0] \\ x[1] \\ x[2] \\ \dots \end{bmatrix}$$

$$Y(z) = \frac{1}{2}[X(z^{1/2}) + X(-z^{1/2})]$$

$$Y(e^{j\omega}) = \frac{1}{2}[X(e^{j\omega/2}) + X(e^{j(\omega - 2\pi)/2})]$$

Multirate DSP... ... downsampling by 2



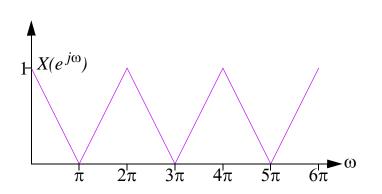


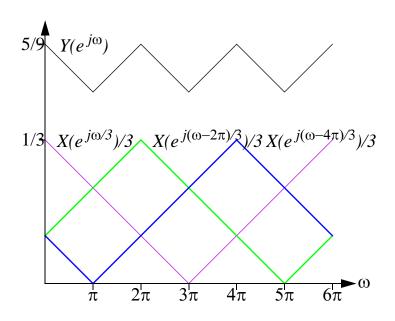
Note: downsampling = subsampling ~ decimation

Multirate DSP... ... downsampling by N

Downsampling by N in time domain: ...x[0],x[1],x[2]..., that is, ...x[0],x[N],x[2N]..., produces in frequency domain:

$$Y(e^{j\omega}) = \frac{1}{N} \sum_{k=0}^{N-1} X(e^{j(\omega - k2\pi)/N})$$





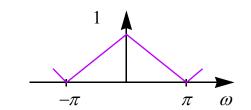
Multirate DSP... ... upsampling by 2

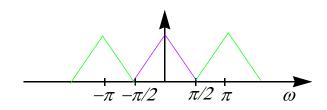
$$x[n]$$
 \bullet $y[n] = \begin{cases} x[n/2] \text{ for n even} \\ 0 \text{ for n odd} \end{cases}$

...x[0]x[1]x[2]... ...x[0] 0 x[1] 0 x[2] ...

•
$$y = U_2 x$$

$$\bullet \begin{bmatrix} \dots \\ y[0] \\ y[1] \\ \dots \end{bmatrix} = \begin{bmatrix} \dots & \dots & \dots & \dots \\ \dots & 1 & 0 & 0 & \dots \\ \dots & 0 & 0 & 0 & \dots \\ \dots & 0 & 1 & 0 & \dots \\ \dots & 0 & 0 & 0 & \dots \\ \dots & 0 & 0 & 1 & \dots \end{bmatrix} \begin{bmatrix} \dots \\ x[0] \\ x[1] \\ x[2] \\ \dots \end{bmatrix}$$

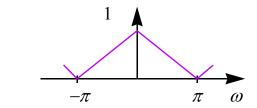


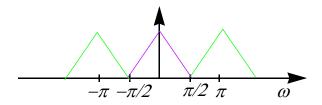


Y(z) =
$$X(z^2)$$

 $Y(e^{j\omega}) = X(e^{j2\omega})$

Multirate DSP... ... upsampling by 2





Upsampling by N

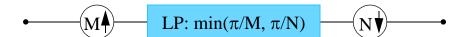
$$Y(z) = X(z^{N})$$
 $Y(e^{j\omega}) = X(e^{jN\omega})$

Multirate DSP... ... basic operations

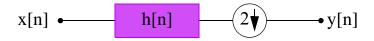
Filtering before downsampling

Filtering after upsampling

Rational sampling rate change



Basic operations... ... filtering before downsampling



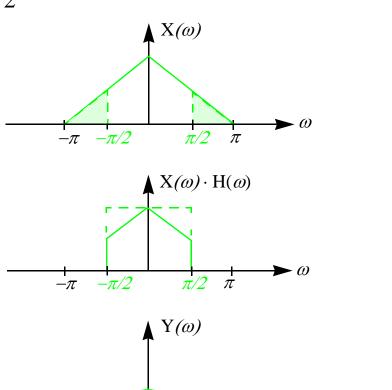
•
$$H = \begin{bmatrix} \dots & \dots & \dots & \dots & \dots \\ \dots & h[2] & h[1] & h[0] & 0 & 0 & \dots \\ \dots & h[3] & h[2] & h[1] & h[0] & 0 & \dots \\ \dots & h[4] & h[3] & h[2] & h[1] & h[0] & \dots \\ \dots & \dots & \dots & \dots & \dots \end{bmatrix}$$
Toeplitz

$$\bullet \ y = D_2 \cdot H \cdot x$$

$$y = \begin{bmatrix} \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & h[2] & h[1] & h[0] & 0 & 0 & 0 & 0 & \dots \\ \dots & h[4] & h[3] & h[2] & h[1] & h[0] & 0 & 0 & \dots \\ \dots & h[6] & h[5] & h[4] & h[3] & h[2] & h[1] & h[0] & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \end{bmatrix} x$$

Basic operations... ... filtering before downsampling

$$Y(z) = \frac{1}{2}[H(z^{1/2})X(z^{1/2}) + H(-z^{1/2})X(-z^{1/2})]$$



Basic operations... ... filtering after upsampling

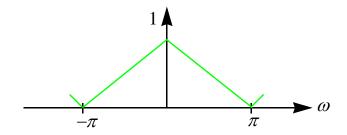
•
$$G = \begin{bmatrix} \dots & \dots & \dots & \dots & \dots \\ \dots & g[2] & g[1] & g[0] & 0 & 0 & \dots \\ \dots & g[3] & g[2] & g[1] & g[0] & 0 & \dots \\ \dots & g[4] & g[3] & g[2] & g[1] & g[0] & \dots \\ \dots & \dots & \dots & \dots & \dots \end{bmatrix}$$
Toeplitz

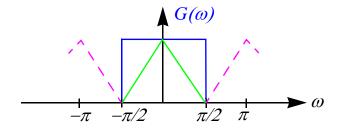
•
$$y = G \cdot U_2 \cdot x$$

$$y = \begin{bmatrix} \dots & \dots & \dots & \dots & \dots \\ \dots & g[0] & 0 & 0 & \dots \\ \dots & g[1] & 0 & 0 & \dots \\ \dots & g[2] & g[0] & 0 & \dots \\ \dots & g[3] & g[1] & 0 & \dots \\ \dots & g[4] & g[2] & g[0] & \dots \\ \dots & \dots & \dots & \dots \end{bmatrix} x$$

Basic operations... ... filtering after upsampling

• $Y(z) = G(z) \cdot X(z^2)$

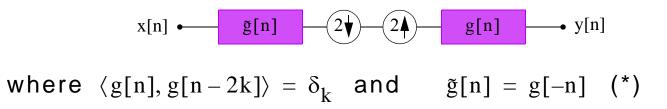




• If g[n] = h[-n], then

$$G \cdot U_2 = (D_2 H)^T$$

Basic operations... ... smoothing operator



Claim: The operator P mapping $x \rightarrow y$ is a projection **Proof**:

$$\begin{split} \textbf{P} &= \textbf{G} \cdot \textbf{U}_2 \cdot \textbf{D}_2 \cdot \tilde{\textbf{G}} \\ \textbf{Since} \quad \tilde{\textbf{G}} &= \textbf{G}^T \quad \text{and} \quad \textbf{D}_2 \tilde{\textbf{G}} \cdot \textbf{G} \textbf{U}_2 = \textbf{I} \quad \text{because of (*) then} \\ \textbf{P}^2 &= \textbf{G} \cdot \textbf{U}_2 \cdot \textbf{D}_2 \cdot \tilde{\textbf{G}} \cdot \textbf{G} \cdot \textbf{U}_2 \cdot \textbf{D}_2 \cdot \tilde{\textbf{G}} = \textbf{G} \textbf{U}_2 \cdot \textbf{I} \cdot \textbf{D}_2 \cdot \tilde{\textbf{G}} = \textbf{P} \\ \textbf{P}^* &= (\textbf{G} \cdot \textbf{U}_2 \cdot \textbf{D}_2 \cdot \tilde{\textbf{G}})^T = \textbf{G} (\textbf{U}_2 \cdot \textbf{D}_2)^T \cdot \tilde{\textbf{G}} = \textbf{G} \cdot \textbf{U}_2 \cdot \textbf{D}_2 \cdot \tilde{\textbf{G}} = \textbf{P} \end{split}$$

Basic operations... ... piecewise constant approximation

$$x[n] \longleftarrow \underbrace{\tilde{g}[n]} - 2 \underbrace{\hspace{-0.2cm} \downarrow} - 2 \underbrace{\hspace{-0.2cm} \downarrow} - \underbrace{\hspace{-0.2cm} \downarrow} - g[n] \longrightarrow y[n]$$
 with
$$g[n] = \frac{1}{\sqrt{2}} [\delta[n] + \delta[n-1]] \quad \text{and} \quad \|g\|_2 = 1$$

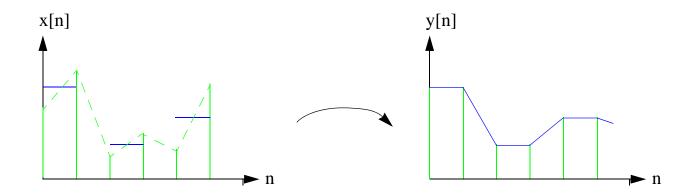
Since
$$D_2 \cdot G = \frac{1}{\sqrt{2}} \begin{bmatrix} \dots & 1 & 1 & 0 & 0 & \dots \\ \dots & 0 & 0 & 1 & 1 & \dots \\ \dots & 0 & 0 & 0 & 0 & \dots \end{bmatrix}$$
 and $G \cdot U_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} \dots & 1 & 0 & \dots \\ \dots & 1 & 0 & \dots \\ \dots & 0 & 1 & \dots \\ \dots & 0 & 1 & \dots \end{bmatrix}$

$$\begin{array}{l} \text{then} \\ P = G \cdot U_2 D_2 \cdot \tilde{G} = \frac{1}{2} \begin{bmatrix} \dots \ 1 \ 0 \ \dots \\ \dots \ 1 \ 0 \ \dots \\ \dots \ 0 \ 1 \ \dots \end{bmatrix} \begin{bmatrix} \dots \ 1 \ 1 \ 0 \ 0 \ \dots \\ \dots \ 0 \ 0 \ 1 \ 1 \ \dots \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \dots \ 1 \ 1 \ 0 \ 0 \ \dots \\ \dots \ 0 \ 0 \ 1 \ 1 \ \dots \\ \dots \ 0 \ 0 \ 1 \ 1 \ \dots \end{bmatrix}$$

Basic operations... ... piecewise constant approximation

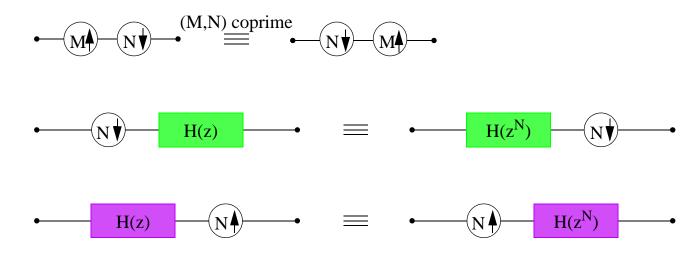
Therefore

$$\{x[0]x[1]x[2]...\} \rightarrow \left\{\frac{1}{2}(x[0]+x[1]), \frac{1}{2}(x[0]+x[1]), ...\right\}$$

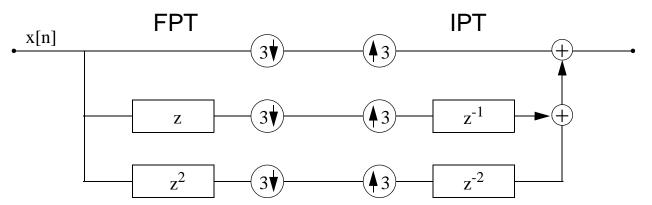


Multirate DSP

Multirate identities



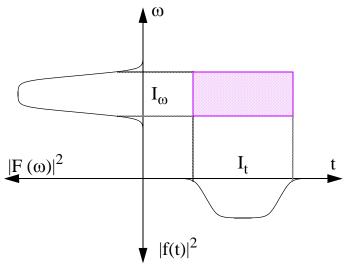
Polyphase transform



Time-frequency representations

Basis functions have some spread in time and frequency

• leads to time-frequency tile or atom



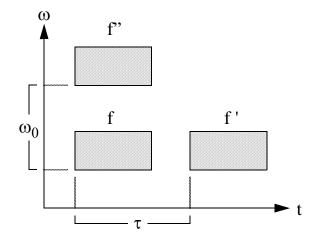
Joint time-frequency resolution is lower bounded by uncertainty principle:

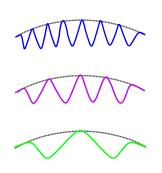
$$\Delta_{\tau}^2 \cdot \Delta_{\omega}^2 \ge \frac{\pi}{2}$$

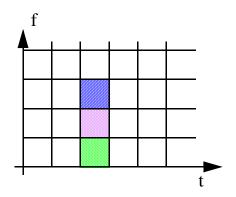
where ${\Delta_\tau}^2$ and ${\Delta_\omega}^2$ are the integrals of $t^2|f(t)|^2$ and $\omega^2|F(\omega)|^2$

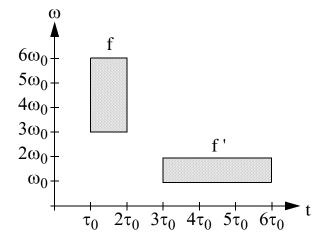
Can trade time for frequency resolution and vice-versa

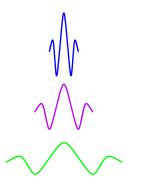
STFT versus WT

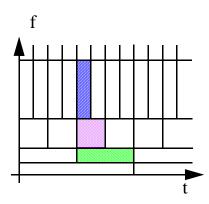












Scale and resolution

Scale is as in maps:

- large scale ⇔ less details, large area
- small scale ⇔ detail, small area

Resolution: ~ information

