Fundamentals of Signal Decompositions

“A journey of a thousand miles
must begin with a single step.”

Lao-Tzu, Tao Te Ching

Notations

Hilbert spaces

Linear algebra

Fourier theory and sampling
Signal processing
Time-frequency representations
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Prerequisites

Fourier Basics
 Fourier transform (basic properties)
e Fourier series
e discrete-time Fourier transform and series

Linear Algebra
 basics (bases, linear independence, etc)
« special matrices (Toeplitz, circulant, unitary, etc)

Basic signal processing
« sampling theorem
e« convolution theorem

Review
 Hilbert spaces
 projection theorem
« multirate signal processing
 time-frequency analysis
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Notations

inner products

(f,9) = [F(t) g(t)dt (f,9) = yf*[nlg[n]
t n
roots of unity
. N-1
Wy, = eTi(@nN) W|£|k+IN): 1 3 W|l\<|n - N
k=0

usual sets: X, 3,R,C

vectors, matrices: ““bold’ letters (v and M)
functions of continuous-time: f(t) with FT F(w)
sequences of discrete-time: x[n] with DTFTX(er)
z-transform

X(z) = Y x[n]z™"
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Vector spaces

Def: A vector space over the set of real/complex numbers
‘R, C is a set of vectors E together with

e addition of vectors x+vy, X, yin E
o scalar multiplication a x, a in R, C and xin E

Def: An inner product is a real/complex valued function <.,.>
defined on ExE

Def: An inner product space is a vector space
together with an inner product

Def: A complete inner product space is a Hilbert space
« separable Hilbert spaces admit orthonormal bases
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Hilbert spaces

“Infinite dimensional Euclidean spaces’’...

Norms

/
Il = (.5 = (jFofod) . Ixl = (0" = (gxenixin)
t n

1/2

Examples
* L,(RN): space of square-integrable functions
* 1,(3): space of square-summable sequences

Key concept: orthogonality
« two vectors are called orthogonal if (x,y) =0

Ay
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Hilbert spaces

Basis for a space: complete set of vectors {¢;}, 1In3J
« orthonormal case:

(¢p @5 = 8[i-]] and
f = Z((pi,f>(pi with o = (¢, )
i

are called Fourier coefficients
 biorthogonal case: there is a dual basis such that

<‘|’i’(Pi> = J8[1—]] and

f= Z(@pﬂWi = Z<\Via Do, with a; = (93,0, B = (y;. ),
| I

» overcomplete: vectors are complete
but linearly dependent, frames, tight frames
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Hilbert spaces

Example: iRZ

orthogonal basis biorthogonal basis tight frame
€1 = 01 0
?q 1 €1
€1
P Po €0 = Pp €y = @p
e
0 ~
?o ?s

Note: quantization in orthogonal case is easy,
unlike in the other cases
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Hilbert spaces ...
.orthonormal bases

Theorem: Given an orthonormal system {x;,X,, ...}
in a Hilbert space H, the following are equivalent:

* The set {Xy,X,,...} Is an orthonormal basis for H.

| f (X3, y) =0 fori1=1,2,... theny = 0.

The span of {X;,X,,...} Is dense in H, that is,

every vector in His a limit of a sequence of vectors in
the span of {X,X,,...}.

Parseval's equality: For every y in H,

IylZ = 3] ¢ w2
i
Generalized Parseval’'s equality: For every y,,y, in H,

Yo Y0 = D X Y (X, Y0 -
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Hilbert spaces ...
. orthogonal projections

Given a Hilbert space Hand a closed subspace S:
H=sS®sl,
where St is the orthogonal complement of Sin H.

Moreover, if ueH then

u=v+w
A x
where ve S and weSt.
. y
Def: An operator P is called a :
projection operator onto S if d X,
|
P(v+w) =V |
Result: An operator Pis a projec- y
tion operator if and only if it is X1

 idempotent: P2 = P, and
« self-adjoint: P* = P.
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Hilbert spaces ...
. orthogonal projections

Orthogonal projection
 best subspace approximation is an orthogonal projection
e error is orthogonal to approximation

Y

(X9, ¥) y

g = (x,) RV g = (x93

Successive approximation
« orthonormal bases successively approximate (left)
 biorthogonal bases and frames do not (right)
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Linear algebra

Finite dimensional Hilbert spaces SRn, c"
Unitary matrices: Usuch that U*U=1

Special matrices such as DFT matrix Fij:WNij
Convolution Theorem: F*CF=L

Matrices of polynomials or rational functions H(z)
« MIMO LTI's
« normal rank: maximum rank of H(z)

e unitary matrices of polynomials (on unit circle):

paraunitary
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Sampling theorem

Theorem: If f(t) is continuous and bandlimited to o, then f(t)

Is uniquely defined by its samples taken at twice o, or

f(nt/o). The minimum sampling frequency is o, = 20, and

T = n/o,is the maximum sampling period. Then f(t) can be
recovered by:

f(t) = Z f(nT) L)

n=—oo

Another view: sinc(t-1),lin 3, is an orthonormal basis for
functions bandlimited to (-m,m), where sinc(t) is

sin(mt)
it

sinc(t) =
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Sampling theorem...

... pictorially
f () fW(f) ﬁfs(t) sinc(t) *
/ \\\l // R A& :‘»Q(7Q<
At >t >t et T >t
\/ \\ //
AF(CO) *W(a)) *FS (o) (sinc(e) Aﬁ(m)
Om s @s /2 ®m
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Expansions

Continuous-time integral transform or expansion

X(1) = [X(0)- o, (Hdw X(@) = (@q (1), X(1)

Example: Fourier transform

jot t

1 ~ j©
0,(1) = 5=-¢ Go() = €

Continuous-time series expansion

X(t) = > X[I] - ¢;(t) X[ = (oi(t), x(t)

Example: Fourier series [0,1]

j2mkt j2mkt

o, (1) = e Pu(t) = e
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Expansions

Discrete-time integral transform or expansion

x[n] = [X(o)- ¢, [n]do X(@) = (@q[n], x[n])

Example: Discrete-time Fourier transform

1 joon ~ joon
0, = 5= ¢ doln] = €

Discrete-time series expansion

X[n] = Y X[i] - @;[n] X[ = (oi[n], x[n])

Example: Discrete-time Fourier series [0,N-1] (or DFT)

1 j2nkn)/N ~ j2ntkn)/N
oln] = - el filn] = eU2 M
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MO

f[n]

Fourier theory

AF (o)
()
AF (o)
2T
TI__
L
F (o)
F K]

CTFT

CTFS

DTFT

DTFS
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Fourier theory

Transform Time | Freq. S':\/ r;\?llwy;sliss Duality
F(o) = jf(t)e-iwtdt
Fourier transform C C . t self-
CTFT f(t) = ZJF(m)ertdm dual
[0
T
2 t
i . 1 -j2nk= .
Fourier series C D F[k] = = j f(t)e Tdt dual with
CTFS P . DTFT
2
j2nk=
f(t) = S F[kle T
k
. —j27m2
F(el®) = Zf[n]e Os
Discrete-time D C . dual with
Fourier transform P s CTFS
DTFT 2 0@
fin] = £ [ Feloye o
[n] = = [ F(eio)e o
S o,
2
N-1 _jzn D
F[k] = f[nle N
Discrete-time D D o self-
Fourier series P P N =1 oD dual
DTFS - IR
fin z Flkle Fundamentals - 17
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Fourier theory

f(t) F (o)

‘ * + L T\\\ BL-CTFT
f (1) F (o) 2

S

f () F (o)
[ W BL-CTFS

16 F (o)
W T [ FL-DTFT
4

012-- Nl

N, 8_’
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Fourier theory

Transform Time Frequency Equivalence Duality
Fourier transform Can be Wy O Sample time. dual with
of bandlimited signal sampled (—7, ?> Periodize frequency. FL-CTFT
BL-CTFT
Fourier transform (0, T) Can be Periodize time. dual with
of finite-length signal sampled Sample frequency. BL-CTFT
FL-CTFT
Fourier series of Finite number Sample time. dual with
bandlimited periodic signal of Fourier Finite Fourier series in time. FL-DTFT
coefficients
Discrete-time Finite number Sample frequency. dual with

Fourier transform of
finite-length sequence
FL-DTFT

of
samples

Finite Fourier series in frequency.
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Multirate Digital Signal Processing

Branch of DSP
* not a single, but multiple sampling rates
« important in many applications
« analysis more complex

Key points
e aliasing!
« complex exponentials are not eigenfunctions anymore
* linear periodically time-varying (LPTV) systems

Key analysis methods

« map single input single output (SISO) LPTV
system into a multiple input multiple output (MIMO)
linear time-invariant system
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Multirate DSP...
... downsampling by 2

x[n] @ . y[n] = x[2n]
X[0]x[1]x[2]... .. X[0]x[2]x[4]
ey = D2 X
y[:l] 100000 X[_Ol]
y[0]| = (001000 X[l]
y[11| l000010 zu
Y(@) = ZIX(2Y?) + X(21?)]
Y(ej(x)) — %[X(ej(D/Z) + X(ej(w—ZTc)/Z)]
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Multirate DSP...
... downsampling by 2

A X
1

Note: downsampling = subsampling ~ decimation
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Multirate DSP...
... downsampling by N

Downsampling by Nin time domain: ...x[0],x[1],X[2]... , that

s, ...X[0],X[N],X[2N]... , produces in frequency domain:
. k27)/
jo. _ J(o—k2m)/N
YET) =5 Y Xe )
k=0

5/9A jo
A Y\(E)/\/\/
X(e 1)

1/3 X(ej®/3)/3 X(ej(w—zﬂ)/ /3X(ej(oa—4 )/3)/3

3t 4n  Sm 6m
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Multirate DSP...
. upsampling by 2

. A . _ J x[n/2] for n even
Al @ yin| { 0 for nodd
LLX[OX[L]X[2]. .. ...X[0] 0x[1] 0 x[2] ...
1
Y= Ugx A
0 ] ' -
R R _ —IT T w
m .1 0 0.
.0 0 0 ...||x[0]
. [YIO] -
1] .0 1 0 ... |x[1]
y L0 0 0 ..||x[2] A
- T .0 0 1. . .
- 7 -2 Al e
" Y(@) = X(@Z®)

Y(el®) = X(el2)
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Multirate DSP...
. upsampling by 2

AL,

I i

A

Upsampling by N

Y(z) = X)) YE®) = x@ ")

Fundamentals - 25



Multirate DSP...
... basic operations

Filtering before downsampling

co PN Ny

Filtering after upsampling
(RN

Rational sampling rate change

o———(Mh— LP: mina/M, =/N) —(NY)
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Basic operations...
.. filtering before downsampling

o +—— [ Gr)——m
... h[2]1 h[1]h[0] O © |

* H= ... h[3]1h[2] h[1] h[0] O Toeplitz
h[4] h[3] h[2] h[1] h([O]

ey = D2. H - x
h[2] h[11h[0] O O 0 O

y = h[4] h[3] h[2] h[1] h[0] 0 O X

h[6] h[5] h{4] h[3] h[2] h[1] h[O]
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Basic operations...
... filtering before downsampling

Y(2) = %[H(z“zmz“z) + H(=z1/2)X (-z1/%)]

* X(w)
i . ‘ : : >
7 T

* X() H(w)
f | >
—7r T

Fundamentals - 28



.- 9[2] g[1]g[0] O O

Basic operations...
. filtering after upsampling

o G

* G = .. 9g[3]9[2] g[1] g[0] O N Toeplitz
.. 9[4] 9[3] 9[2] g[1] g[O] ...
) y j— G U2X

Fundamentals - 29



Basic operations...
... filtering after upsampling

e Y(2) = G(z2) X(z?)
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Basic operations...
. smoothing operator

X[n] (29)—(2b) yIn]

where (g[n],g[n-2k]) =5, and  g[n] = g[-n] (*)

Claim: The operator P mapping X —Yy is a projection

Proof:
P=G-U, D, -G
Since G =G' and D,G-GU, = | because of (*) then
P2=G-U,-D,-G-G-U,-D,-G =GU,-1-D,-G =P
P*=(G-U,-D, - 6&)" =G6U,-D))T-6=G-U,-D,-G =P
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Basic operations...

... piecewise constant approximation

x[n]

O

with g[n] = —}E[S[n]+8[n—1]] and

. ~ 1
Since D,-G = —
2 2

then N
P:G'U2D2'G =

...1100 ...

...0011 .. and G-U,

NI

...0000 ...

.10 ...
.10 ...
.01..
.01 ..

y[n]

lgl, = 1

1

.10 ...
.10 ...
J2 ...

.01 ..

..1100 ...
..1100 ...
..0011 ..

..0011 ..

01...
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Basic operations...
... piecewise constant approximation

Therefore

(X[0]X[1]X[2]...} — {%(X[O] +X[11), 5(x[0] + x[1]), }

x[n] yn]
A A

L N\
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Multirate DSP

Multirate identities

(M,N) coprime._@_@_‘
N H) = e HEY
(N

Polyphase transform

ﬁ

. FPT IPT
S T
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Time-frequency representations

Basis functions have some spread in time and frequency
* leads to time-frequency tile or atom

A(O
y
.
\

vy IfOF

Joint time-frequency resolution is lower bounded by

uncertainty principle:
2 2
A -sz

T

T
2
where A2 and A,% are the integrals of t2[f(t)|2 and w?|F(w)|?

Can trade time for frequency resolution and vice-versa
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STFT versus WT

S =

N

\

> 1

c=

%////////////%

I»t

‘C'O 2:50 3‘It0 4:50 5’,[0 6T0

6y |

S|
40,

30g 1

200 |
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Scale and resolution

Scale is as in maps:
 large scale < less details, large area
« small scale < detail, small area

Resolution: ~ information
. halfband R Resolution:
X[n] e lowpass * yIn] Scale:

Resolution:

halfband q Resolution:

X[n] lowpass \2Y) yln] Scale:

halved
unchanged

unchanged
halved

halved
doubled
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