
Image Enhancement

Part 1: pixel-based operations
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Review: Linear Systems

• We define a system as a unit that converts an input function into an 
output function 

System operator or Transfer 
function

Independent 
variable
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Linear Time Invariant Discrete Time Systems
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THEN
The overall continuous time system is 
equivalent to a LTIS whose frequency 
response is H.

IF
• The input signal is bandlimited
• The Nyquist condition for sampling is met
• The digital system is linear and time 
invariant
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Overview of Linear Systems

Then the system H is called a linear system.

where  fi(x) is an arbitrary input in the class of all inputs 
{f(x)}, and gi(x) is the corresponding output.

• Let

• If

• A linear system has the properties of additivity and homogeneity. 

[ ] [ ]{ } [ ]{ } [ ]{ }H a f n b g n aH f n bH g n⋅ + ⋅ = +
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Linear Systems

for all fi(x) ∈{f(x)} and for all x0. 

• The system H is called shift invariant if

• This means that offsetting the independent variable of the input by x0
causes the same offset in the independent variable of the output. Hence, 
the input-output relationship remains the same. 



6

Linear Systems

• The operator H is said to be causal, and hence the system described by 
H is a causal system, if there is no output before there is an input.  

• In other words

• A linear system H is said to be stable if its response to any bounded input 
is bounded.  That is, if

where K and c are constants.
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Linear Systems

δ(a)

x
a

δ(x-a)

• A unit impulse function, denoted δ(a), is defined by the expression

• The response of a system to a unit impulse function is called the impulse 
response of the system.

h(x) = H[δ(x)]

[ ] [ ]{ }h n H nδ=
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Linear Systems

• If H is a linear shift-invariant system, then we can find its response to any 
input signal f(x) as follows:

• Underlying model: signal=“sum” of deltas of amplitude f[n]

• This expression is called the convolution integral.  It states that the response 
of a linear, fixed-parameter system is completely characterized by the 
convolution of the input with the system impulse response.  

[ ] [ ] [ ]
k

g n f k h n k
+∞

=−∞

= −∑



9

Linear Systems

[ ]* [ ] [ ] [ ]
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• Convolution of two functions of a continuous variable is defined as

• In the discrete case

( )* ( ) ( ) ( )f x h x f h x dα α α
∞

−∞
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Linear Systems

1 2

1 2 1 2 1 2 1 1 2 2[ , ]* [ , ] [ , ] [ , ]
m m
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1 2[ , ]h n n is a linear filter.

• In the 2D discrete case
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Linear systems

• Cascade (“in serie”) • Parallel (“in parallelo”)
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Proof

f[n]
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f2[n]

y[n]
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IP Algorithms

Spatial domain

• Operations are performed in the 
image domain 

• Image ⇔ matrix of numbers

• Examples
– luminance adaptation 
– chromatic adaptation
– contrast enhancement
– spatial filtering
– edge detection
– noise reduction

Transform domain

• Some operators are used to 
project the image in another space

• Operations are performed in the 
transformed domain

– Fourier (DCT, FFT)
– Wavelet (DWT,CWT)

• Examples
– coding
– denoising
– image analysis

Most of the tasks can be implemented both in the image and in the transformed 
domain. The choice depends on the context and the specific application.
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Spatial domain processing

Pixel-wise

• Operations involve the single pixel

• Operations:
– histogram equalization
– change of the colorspace
– addition/subtraction of images
– get negative of an image

• Applications:
– luminance adaptation
– contrast enhancement
– chromatic adaptation

Local-wise

• The neighbourhood of the 
considered pixel is involved

– Any operation involving digital 
filters is local-wise

• Operations:
– correlation
– convolution
– filtering
– transformation

• Applications
– smoothing
– sharpening
– noise reduction
– edge detection
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Image enhancement

• There is no general unifying theory of image enhancement at 
present because there is no general standard of image quality that 
can serve as a design criterion for an image enhancement 
processor. 
– Consideration is given here to a variety of techniques that have proved 

useful for human observation improvement and image analysis.

• [Pratt, Chapter 10]



Pixel-wise operations

• Contrast enhancement
– Amplitude scaling
– Histogram straching/shrinking, sliding, equalization

• Contrast can often be improved by amplitude rescaling of 
each pixel
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Amplitude scaling

Window-level transformation. The window value is the 
width of the linear slope; the level is located at the 
midpoint c of the slope line. Very common in medical 
imaging.
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Amplitude scaling

Q component of a YIQ 
image representation.
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Window level transformation: ex.

Gray scale contouring is at the threshold of visibility.
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Contrast enhancement via graylevel transf.

• Point transformations that modify the contrast of an image within a 
display's dynamic range

• Often nonlinear point transformations
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example
original
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log amplitude scaling

• The logarithm function is useful for scaling image arrays with a very 
wide dynamic range.

a>0
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Reverse and Inverse functions

• Reverse function • Inverse function
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clipped below 0.1 to maintain the range 
(max value=1)
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example
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Level slicing

• Pixels within the amplitude 
passband are rendered maximum 
white in the output, and pixels 
outside the passband are 
rendered black. 

• Pixels outside the amplitude 
passband are displayed in their 
original state
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Histogram changes

gold

gnew

gold

H

• Graylevel transformations induce histogram changes

max
max

max’

H

max’ gnew

min’

min’
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Other non-linear transformations

• Used to emphasize mid-range levels

gnew = gold+ gold C (gold,max – gold)

gold

gnew

gnew

gold

gnew

gold
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Sigmoid transformation (soft thresholding)

gout

gin

H(gin)

gin

H(gout)

gout
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Pixel-wise: Histogram equalization

• Pixel features: luminance, color, 

• Histogram equalization: shapes 
the intensity histogram to 
approximate a specified 
distribution

– It is often used for enhancing 
contrast by shaping the image 
histogram to a uniform distribution 
over a given number of grey 
levels. The grey values are 
redistributed over the dynamic 
range to have a constant number 
of samples in each interval (i.e. 
histogram bin).

– Can also be applied to colormaps
of color images. 
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Histogram equalization

gamma=4gamma=0.1

bottom

top

low height

=1

bottom bottom

top top

low height low height

<1 >1Gamma function

Can be used to compensate the distortions in the gray level distribution due to the 
non-linearity of a system component

Vin

Y Y Y

Vin
Vin
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Histogram

• Function H=H(g) indicating the number of pixels having gray-value 
equal to g
– Non-normalized images: 0≤g ≤255 → bin-size≥1, can be integer
– Normalized images: 0≤g ≤1 → bin-size<1

H(l)
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In the continuous case
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Histogram transformation
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More formally

• The histogram modification process can be considered to be a monotonic 
point transformation gd=T{fc } for which the input amplitude variable f1≤fc
≤ fC is mapped into an output variable g1≤gd ≤ gD such that the output 
probability distribution Pr{gd=bd} follows some desired form for a given 
input probability distribution Pr{fc=ac} where ac and bd are reconstruction 
values of the cth and dth levels. 
– Clearly, the input and output probability distributions must each sum to unity.

NB: C and D are caps!
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Histogram equalization

– Furthermore, the cumulative distributions must equate for any input 
index c.

• the probability that pixels in the input image have an amplitude less than or 
equal to ac must be equal to the probability that pixels in the output image
have amplitude less than or equal to bd, where bd=T{ac} because the 
transformation is monotonic. Hence

• in the continuous domain (easier for calculations)

cumulative probability distribution of the input

pf(f) and pg(g) are the probability 
densities of f and g

(a)

( ) ( )
1

c

f F
m

P f H m
=

≈ ∑ histogram

cumulative probability 
distribution of the output

NB: C and D are lowercase!
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Histogram equalization

(a)

cumulative histogram

When the output density is forced to be the uniform density

Solving (b) for g we get the histogram equalization 
transfer function:

cumulative probability distribution of the output

gmin gmax
g

pg(g)
max min

1
g g−

( )
max min

1 (area=1)gp g
g g

=
−

(b)
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example
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Some mappings
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Adaptive hist. equalization

• The mapping function can be made spatially adaptive by applying 
histogram modification to each pixel based on the histogram of 
pixels within a moving window neighborhood.
– This technique is obviously computationally intensive, as it requires 

histogram generation, mapping function computation, and mapping 
function application at each pixel.

– Some interpolation-based solutions can be envisioned to improve 
computational efficiency
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example
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H. original
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H. shrinked
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H. stratched
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H. stratching/shrinking

stratching

shrinking
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H. stratching/shrinking
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45
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Example: region-based segmentation

• If the two regions have different graylevel distributions (histograms) 
then it is possible to split them by exploiting such an information

A2

A1

H1

H2
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Example: region-based segmentation


	Image Enhancement
	Review: Linear Systems
	Linear Time Invariant Discrete Time Systems
	Overview of Linear Systems
	Linear Systems
	Linear Systems
	Linear Systems
	Linear Systems
	Linear Systems
	Linear Systems
	Linear systems
	IP Algorithms
	Spatial domain processing
	Image enhancement
	Pixel-wise operations
	Amplitude scaling
	Amplitude scaling
	Window level transformation: ex.
	Contrast enhancement via graylevel transf.
	example
	log amplitude scaling
	Reverse and Inverse functions
	example
	Level slicing
	Histogram changes
	Other non-linear transformations
	Sigmoid transformation (soft thresholding)
	Pixel-wise: Histogram equalization
	Histogram equalization
	Histogram
	Histogram transformation
	More formally
	Histogram equalization
	Histogram equalization
	example
	Some mappings
	Adaptive hist. equalization
	example
	H. original
	H. shrinked
	H. stratched
	H. stratching/shrinking
	H. stratching/shrinking
	Example: region-based segmentation
	Example: region-based segmentation

