Systems Design Laboratory

Teaser

Matteo Zavatteri

Department of Computer Science, University of Verona, ITALY

First and Most Important

Systems Design Laboratory is not another theory course!

Essential Information: Homepage and Academic Staff

Essential Information: Homepage

//www.corsi.univr.it/?ent=cs&aa=2021%2F2022&codiceCs=S81&codins=

4S009016&discr=&discrCd=&id=954&menu=Studiare&tab=Insegnamenti&lang=en

Essential Information: Academic Staff

Tiziano Villa (coordinator)

- Formal models for discrete-event systems
- Boolean functions and networks
- Decision diagrams
- Multiple-valued and temporal logics
- Finite and ω -automata

https://www.di.univr.it/?ent=persona&id=3849&lang=en

Essential Information: Academic Staff

Luca Geretti

- Modeling with Hybrid Automata
- Static verification
- Dynamic verification

https://www.di.univr.it/?ent=persona&id=6462&lang=en

Essential Information: Academic Staff

Matteo Zavatteri

- Modeling with Finite State Automata
- Supervisory Control
- ESCET software

Essential Information: Educational Material

- Books and papers (some already suggested in previous classes)
- Lecture notes and classroom teaching material
- Reports on the analysis of case studies
- Online documentation and tutorials
- Example code

Essential Information: Tentative Setup

Fully Controllable Setting: We are probably going to meet in a lab but you will do everything on your own computer. (Fewer problems, no UniVR/IT dependencies).

Essential Information: Exam

Mainly a project

(possibly a short written test depending on the number of students)

Essential Information: Take Home Message

Systems Design Laboratory:

- is a "hands-on" modeling course
- provides you with concrete skills
- involves the use of several software libraries
- is about solving concrete problems

Last but not least: plenty of room for theses, research, and more (e.g., the ICE lab context)

https://www.icelab.di.univr.it/?lang=en

Today's Teaser: Supervisory Control Part

Today you are going to see an example of concrete supervisory control application

- Modeling plants/specifications through
 Finite State Automata
- Synthesizing controllers for it with ESCET
- Simulating the controlled plants

Eclipse Supervisory Control Engineering Toolkit (ESCET)

- Modeling of hybrid systems
- Graphical user interface
- Simulation
- Controller synthesis for (Extended) Finite State Automata
- PLC code generation
- Used in many real-word case studies

Eclipse Supervisory Control Engineering Toolkit (ESCET)

Introduced in the course 4TC00 Model-Based Systems Engineering (bachelor degree, 3rd year) Eindhoven University of Technology (TU/e) https://cstweb.wtb.tue.nl/4tc00/index.html

Eclipse Supervisory Control Engineering Toolkit (ESCET)

Check out the youtube channel for videos, examples, and more https://www.youtube.com/channel/UC1lkrlkRkgtbYDul9BwI_Bw

The Database Concurrency Example

- Events a_1, b_1 are controllable
- Events a_2, b_2 are uncontrollable
- G_0 is the initial state
- G_8 is the marked state

The Database Concurrency Example: Requirement

Requirement: a_1 precedes b_1 if and only if a_2 precedes b_2

The Database Concurrency Example: Requirement

G∥H

• (G_4, H_9) is uncontrollable

• (G_1, H_1) is uncontrollable

• (G_2, H_2) is not accessible

• (G_5, H_5) is not accessible

Requirement

Control Policy:

- At the beginning S disables a_1
- When the plant G is in state G₄, S disables b₁.

A Sample-Collecting Problem

We sent a rover to some planet.

Our purpose is to use it for sample-collecting in the area where it landed.

The Area

- (transmission point)
- (analysis point)
- $\approx_{\text{(liquid point)}}$
- (mineral point)
- ¥ (flora point)
- (fossil point)

- analyze the collected samples
- data transmission
- move right
- move down

- collect a liquid sample
- move left
- move right
- move down

- collect a fossil sample
- move left
- move down

- collect a flora sample
- move right
- move up
- move down

- collect a liquid sample
- move left
- move right
- move down
- move up

- collect a mineral sample
- move up
- move left
- move down

Details on Rover Free Behavior: Fossil points

- collect a mineral sample
- move up
- move right

Details on Rover Free Behavior: Fossil points

- collect a fossil sample
- move up
- move left
- move right

Details on Rover Free Behavior: Fossil points

- collect a flora sample
- move up
- move left

Formalizing Plant States

So, it makes sense to introduce a notion of **grid** on which the rover **moves**.

Does it ring a bell?

What about transitions?

Sample collection?

Sample collection

Analysis and Transmission?

Analysis and Transmission

Finalizing Plant Formalization: State Names

Uncontrolled Rover Behavior

Formalizing Requirements

What about supervisory control?

Requirement

At least 1 sample must be collected before analysis

Requirement

Requirement

- States?
- Events?
- Marking?

Every analysis must be transmitted exactly once

Every analysis must be transmitted exactly once

Requirement

Exactly 1 liquid, at least 2 fossils, at most 3 florae, from 1 to 3

Requirement 4: Decomposition

Exactly 1 liquid, at least 2 fossils, at most 3 florae, from 1 to 3 minerals must be collected before analysis:

- 4a) Exactly 1 liquid must be collected before analysis
- 4b) At least 2 fossils must be collected before analysis
- 4c) At most 3 florae must be collected before analysis
- 4d) From 1 to 3 minerals must be collected before analysis

Assumption: Every analysis removes all collected samples from the rover

Requirement 4a

Requirement

- States?
- Events?
- Marking?

Exactly 1 liquid must be collected before analysis

Requirement 4a

Requirement

Exactly 1 liquid must be collected before analysis

Requirement 4b

Requirement

- States?
- Events?
- Marking?

At least 2 fossils must be collected before analysis

Requirement 4b

At least 2 fossils must be collected before analysis

Requirement 4c

analysis transmission liauid right right $R_{1,2}$ left left ир ир down ир down right right $R_{2.1}$ $R_{2.2}$ $R_{2.3}$ left left liquid ир down ир down ир down right right $R_{3,1}$ $R_{3,2}$ R_{3,3}

Requirement

- States?
- Events?
- Marking?

At most 3 florae must be collected before analysis

Requirement 4c

Plant

At most 3 florae must be collected before analysis

Requirement 4d

Requirement

- States?
- Events?
- Marking?

From 1 to 3 minerals must be collected before analysis

Requirement 4d

At most 1 sample from each subarea containing a fossil must be collected before analysis

Requirement 5: Decomposition

At most 1 sample from each subarea containing a fossil must be collected before analysis

1

- 5a) At most 1 sample from subarea (1,3) containing a fossil must be collected before analysis
- 5b) At most 1 sample from subarea (3,2) containing a fossil must be collected before analysis

Requirement 5a

At most 1 sample from subarea (1,3) containing a fossil must be collected before analysis

Requirement 5b

At most 1 sample from subarea (3,2) containing a fossil must be collected before analysis

Size of controller(s) (number of states)

Requirements	Generated States	Removed States	Total States
R_1	18	0	18
R_1, R_2	54	0	54
R_1, R_2, R_3	108	0	108
R_1, R_2, R_3, R_4	1458	846	612
R_1, R_2, R_3, R_4, R_5	1620	900	720