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Signals as vectors

>

- Sighals «——» Vectors

- The operations among signals can be easily interpreted as
operations among vectors
- Component of a vector
- Inner product
- Norm
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Component of a vector

- Orthogonal projection: scalar product

f-x=|f]|x|cos @

Fig. 3.1 Component (projection) of a vector along another vector.

- Norm x|? = x - x
- Orthogonality f.ox =0
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Orthogonal projection

- The orthogonal projection of a vactor f over a vector x
approximates f with its component along x with minimum

(a) » o ()
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Component of a signal

Tke concept of a vector component and orthogonality can be extended to sig-
nals. Consider the problem of approximating a real signal f(t) in terms of another
real signal z(t) over an interval [t1, to]:

f(t)=ez(t) tiStsty (3.8)
The error e(t} in this approximation is

ot) = {f(t) —cx(t) t1 <t .<. t2 (3.9)
0 otherwise

“Best approximation” criterion: energy of the error signal

t2
E, = / e?(t) dt
t

1

t2
= [£(t) = ex(t)]? dt
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Component of a signal

- By minimizing the energy of the error signal one can show
that the optimal value of the constant c is given by

1 [t
e=g | O

t2
E, = / z2 (t)dt
t1

- Then the approximation is f(t) =~ cx(t)
- In vector terminology:

- ¢ X(t) is the projection of f(t) on x(t)

- If ¢c=0 then the vectors are orthogonal
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Component of a signal

- Based on such analogy

- Inner product of f(t) on x(t)
to

F()x(t)dt

t1
- Orthogonality t
/ f(t)x(t)dt =0
t1

- For complex signals

° I tz ty
Orthogonality / z1{t)za(t)dt =10 or / zi(t)z2(t)dt =0
1
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Energy of the sum of orthogonal signals

- The energy of the sum is the sum of the energies for both
vectors and signals

2I* = x|* + [yl*
E,=E,+E,
- Proof

ta i2

io ta t2
ix(t)+y(t)|2dt= |x(t)|2dt+ ly()]%dt + / z(t)y*(t)dt + ]t x* (t)y(t)dt

ty ty t 31

t2 ta
- |z (¢)]%dt + ly(t)|2dt (3.22)
i1 ty
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Correlation coefficient: vectors

- The larger the value of c, the higher the resemblance. Thus,
a suitable measure for vector similarity could be

f-x
¢, = COS f = ———

£ 1|

This similarity measure ¢,, is known as the correlation coefficient. Observe that

~1<e, <1 (3.24)

Thus, the magnitude of ¢, is never greater than unity. If the two vectors are aligned,
the similarity is maximum (¢, = 1). Two vectors aligned in opposite directions
have the maximum dissimilarity (c, = —1). If the two vectors are orthogonal, the
similarity is zero.
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Correlation coefficient: signals

- Following the same line, we can define the similarity among
signals as

S S TRV A

N BBz Joo

Observe that multiplying either f(t) or z(t) by any constant has no effect on this
index. It is independent of the size (energies) of f(¢) and z(t). Using the Schwarz
inequality,t we can show that the magnitude of ¢, is never greater than 1

~1<en <1 (3.26)
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Best friends, worst enemies and complete strangers

fit) = Kz(t) > c=1 Best friends
f(t)=—-Kz() - c= -1 Worst enemies
f(t) is orthogonal to z(t) = ¢ =10 Complete strangers
c=1 c=1 c=-1
x(1) fl(‘) fz(f) f;(‘)
1 1 (d)
0.5 ! —
0] t—> 5 of t—> 5 of r—> 5 0 ?
(a) (b) (c) -1
7, €¢=0.961
e-rl.'»

'\I (®)

0  — 5
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Correlation function

- Allows to measure the similarity among signals irrespectively
of their time-shift

-t (a)

g(’) e\
0 1 [ —= )
—(1=T)
e
ffl) I\ (b)
0 T T+1 [ ==

Fig. 3.5 Physical explanation of the correlation function.

Real signals Complegé signals
oC

Vig(t) = f(r)g(r —t)dr Yrgft) = fr(7)g(r —t)dr

-0

—0C
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Convolution and correlation

Convolution (zero—state response of LTIS)

U(f,2)(t) = f(t) % g(~1)

Correlation (signal similarity)

ft) x g(=t) = f(t) »w(t) —f flr)w(t —r1)dr —f f(r)g(r — t)dr —wfg(t)
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Autocorrelation function

- Correlation function of the signal with itself

i t)E]::f(r flr —t)dr

- Examples

Delta

Box 1D
Sinusoid
White noise |

i

0 200 &0 600 am 1000
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Orthogonal vector space

- Extending to more than one dimension

C3X3 ..

C1X;+C2X)

. —

y b /

dl_ VERUNA |
J NI s 4
s ai S I
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Orthogonal vector space

f~e1x; + caXxo
The error e in this approximation is

e =f— (c1x1 + c2x2)
or

f=c1x1 +caxo+ €

Now, let us determine the ‘best’ approximation to f in terms of all three mu-
tually orthogonal vectors x;, xg, and x3:

f~c1x1 + coxg + caxs (3.33)




Orthogonal vector space

In this case, c1x1,coXg, and c3x3 are the projections (components) of f on x1, X2,
and x3, respectively; that is,

o = X (3.358)
X; " X4
_ I;l? fx, =123 (3.35b)

- Following the analogy, we can define a “signal basis” such
that

- The signals xi(t) of the basis are mutually orthogonal

- Each signal f(t) can be expressed as a linear combination of the basis
signals weighted by coefficients

- The coefficients are the correlation coefficients of the signal f(t) with
each signal of the basis x(t)
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Orthogonal signal spaces

- Signal basis

{z:(t)},i=1,....n
- Orthogonality

/t a0 ()t = 0,Vi 4

- Unit norm

- Approximation of f(t) using the considered basis

F(t) &~ c1z1(t) + coma(t) + - + cpan(t) = Z cizi(t)
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Signal approximation in an orthonormal basis

- Approximation error

N
e(t) = f(t) — chmn(t)
n=1
- Coefficients of the summation
2
f(t)zn(t) dt
Cp = b >
/ zn2(t) dt
31
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Signal approximation in an orthonormal basis

- The error decreases as the number of basis elements
Increases

t2 N
E.= [ ft)ydt-Y c,’En

t n=1

- When the error goes to zero for N going to infinity the basis is
said to be complete

- When the basis is complete the signal is approximated
without error and the equality holds
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Generalization to complex signals

The above results can be generalized to complex signals as follows: A set of
functions z1(t), z2(t), ..., zx(t) is mutually orthogonal over the interval [t1, t2] if

t2 0 m #Fn
/ ()2t () dt = { (3.43)
i, En m=n

If this set is complete for a certain class of functions, then a function f(t) in this
class can be expressed as

f(t) =c1z1(t) + caxa(t) + -+ + cizi(t) + -+ (3.44)

where

T [
Cp = — F(t)zh(t) dt (3.45)
En /i,
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Trigonometric Fourier series

- Consider a signal set

{1, cos wopt, cos 2wqt, ..., COS nwot, ...;

sin wot, sin 2wot, ..., sin nwot, ...} (3.46)

- The set is orthonormal over every interval T, = 27 /wy

0 n#m
/ €OS nwot COS mwot dt = ¢ . (3.47a)
To 3 m=n#0
0 n#m
/ sin nuwol sin mwetdt = ¢ (3.47b)
To 'én' n=m # 0

and

[ sin nuwpt cos mwgtdt =0 for all n and m (3.47¢)
To
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Trigonometric Fourier series

f(t)=00+¢11008(d0t+02008 2wot + + < -

+ by sin wpt + b2 sin 2wt + - - ty <t <t +Tp  (3.48a)
or
o<
f(t)=ao+ Y ancos nwot +bysin nwet  ty <t <t +To (3.48D)
n=1
where o
= 3.49
wo =7 (3.49)
Using Eq. (3.39), we can determine the Fourier coefficients ap, @, and b,. Thus
t1+7To
/ f(t) cos nwot dt
t
Un = =7 (3.50)

/ cos? ot dit
t

1
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Trigonometric Fourier series

The integral in the denominator of Eq. (3.50) as seen from Eq. (3.47a) (with m = n)
is To/2 when n # 0. Moreover, for n = 0, the denominator is 7. Hence

1 t1+7o
Go = = [ £t dt (3.51a)
TO t
and 9 t+To
an = —/ f(t) cos nwyt dt n=123,... (3.51b)
TO ty

Arguing the same way, we obtain

2 t1+Tp
bn f f(t)sin nwetdt n=1,2,3,... (3.51c)

ty

T




Compact Trigonometric FS

where
Cp = \/an2 + by (3.53a)
n = tan™’ (‘7"2) (3.53b)

For consistency, we denote the dc term ag by Cp, that is
Co = ap (3.530)
Using the identity (3.52), the trigonometric Fourier series in Eq. (3.48) can be

expressed in the compact form of the trigonometric Fourier series as

o0
f(t)=Co+ Y _Cncos(nwot +0n) t1<t<t+To (3.54)

n=1

where the coefficients C,, and 8,, are computed from an and b, using Eqgs. (3.53).
Equation 3.51a shows that ap (or Cp) is the average value of f(t) (averaged
over one period). This value can often be determined by inspection of f(t).
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Example qui

. f(0)
We choose Ty = \1 L -t12 @)
2 |
= — =2
«o To n
-2r -K 0 b4 2n 7 —

0.504
! . 0244
G I o ».(.’"25,_ | ©

| 1 i e
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+
8,

_ (d)
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Fig. 3.7 A periodic signal and its Fourier spectra.
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Periodicity
- The FS is a periodic function with period T,
- Consider the function #(*)

e(t) = Co + z Cpcos {nwot + 6,)  for all t
and ml

e(t + To) =Co + Z C,, cos [mdo(t + To) + an]

n=1

=Co+ Z Ch cos [(ruvpt + 2n7) + 0,,]

n=1

=Co+ Y _ Cncos (nwpt + 8y,

n=1

= (t) for all ¢

(3.57)
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FS of periodic signals

- For periodic signals, the FS represents the signal over the
whole time axis

- A periodic signal can be seen as the repetition of a signal
segment over the entire temporal axis —the FS represents
the periodic signal f(t) irrespectively of the time point chosen
as starting point of the segment

. . - 1
Fourier coefficients wo=n [ fO)d
0JTy

an = -2— f(t) Cos nwot dt n=123,... (3.58b)
To T

and

bp = 2 f(t) sin nwot dt n=123,... (3.58¢)

To Jr,
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Fourier spectrum
¢ 0.504 Amplitude spectrum
i . 0244
< I e g 0428 ©
0 2 4 6 3 10 i
b —
eﬂ
(d)
-2 TERTSPRY JETHNNEIGIN PRSI
Fig. 3.7 A periodic signal and its Fourier spectra.
Phase spectrum
Table 3.1
n| 0 1 | 2 3 4 | 5 6 | 7

C, | 0504 | 0244 | 0.125 | 0.084 | 0.063 | 0.0504 | 0.042 | 0.036
6. | 0 | —75.06 | —82.87 | —85.24 | —86.42 | —87.14 | —87.61 | —87.95
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The double signal identity

Fourier domain

Time-domain




Other examples: box
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Fig. 3.8 A square pulse periodic signal and its Fourier spectra.
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Other examples: triangle

1)

bl g 84
Ca n?
8A 8A
O 25n2
? o . a O
. s 4
—(ﬂ n * In . Sn n on (b)
¢
O,
pit
2 T St on o>
. *—— -~
l In 1 I l (c)
el
2

Fig. 3.9 A triangular periodic signal and its Fourier spectra.




The effect of symmetry

- Signals with even symmetry can be expressed using
cosinusoids only and

- Signals with odd symmetry can be expressed using sinusoids
only

- In consequence, integration can be performed over half the
period only

How to determine the fundamental frequency?

- For a periodic signal expressed as the sum of trigonometric
functions is periodic if the ratio of their frequencies is a
rational number

- Fundamental frequency: highest positive number of which all
the other frequencies are multiples
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Examples

1
fi(t) =2+ Tcos @+91) +3COS+ 82) +5cos+ 83) —> G

fa(t) = 2cos (2t + 8,) + 5sin (nt + 83)

- Example: square pulse

1 fl)
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Example: square pulse

/2
an=l/ o:sntdt:—:',—sin (E)
T Jwia nw 2

0 n even
={ 2z n=1,59 13, --- (3.60b)

mn

-2 n=3711,15, -

n

/2
b= L [ sinntdt=0 (3.60¢)
w J-w/?

f(t) = %4-%(@—%0031@00:05 5@coa7t+---)

Only cosines Alternating positive and negative signs
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Example: square pulse

- The negative signes can be accommodated by a phase shift

—cosx = cos(x — )

f(t) = +% [Cost+loos(3t—1r)+%co 5t+lcos(7t-1r)+lcosgt+--.]

3 7 9

|-

- Fourier series in the compact trigonometric form

Co=%

0 n even
Cn = { 2

.. n odd

mn

{0 for all n # 3,7,11,15, - --

-7 n=37,1115, .-
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Fourier series of the square pulse

(a)
14
4 -
Cn .%
05# "
&
. o. I - — - ! * (b)
0 3 l o 6 - L 8 10
-l o

Fig. 3.8 A square pulse periodic signal and its Fourier spectra.




The effect of symmetry

- Even signals — cosines only
- Odd signals — sines only

- Proof
Even Odd
1 To/2
ag = — f t dt — —
T ~To/2 ( ) ag = an =0
To/2 4 S
2 0 b, = ——/ t)sin nwot dt
Qp = — f(t)cos nwot dt i " Ty 0 f( ) 0
To J-1y/2
2 To/2
bp = — f(t)sin nwgt di

To J-1y/2
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Trigonometric vs exponential Fourier series

N

oo
- f(t)=Co+ Y Cncos(nwot + bn)
f(t) - Z Dnejnwot n=1
n=-—o¢
1 .
Dy = ?0 /T Je(t)e“-"m“mt dt Chn cos (nwot + 0,) = %ﬁ [ej(mmt"'o") -4 e_j(nw”o")]
0
- 2 2
f(t)=Do+ Y Dnpel™ot 4 p_, e Imuet . Do
n=1
> ) — Dr»zejm"')e + D-ne-jm""t
- 5 o

n=-00

.D_.n = '%Cne-"a“




Partial signal reconstruction

S . —
. : 1 |
2 H
! (a)
-R -n/2 /2 ® { ——
_ \ | ®
Increasing — C -
the number 4 _,
of harmonic \ | -
components - N/ °
*vﬁi F S T Gibbs phenomenon
\ o B P .
| ~ ™ e N (e)

—=

Fig. 3.11 Synthesis of a square pulse periodic signal by successive addition of its har-
monics.




Continuity and spectral decay

- If the first (k-1)-th derivatives of a signal f(t) are continuous
and the k-th is discontinuous, the amplitude spectrum decays
as 1/nk*

- Square wave: the signal is discontinuous -> k=0
- Triangular signal: the first derivative is discontinuous -> k=1

lf(') A
—_— — PaN PN 1/\‘ N —~
-an 2 - "'g .’5 T 2n 3n > A (2)
(a)
: o4
?: . 9%1A 25n2
n o2 " ' o - . - o O
X x 3n o .51: - m on (b)
05, =
t
& P
: L2 %)
- :T:. -t () 2:-1-53-1-9""’*
0 7 l ;'4 6 - L. 8 10 1 — 1 e 1 ©
Y [ —I
T 2

Fig. 3.8 A square pulse periodic signal and its Fourier spectra.
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Exponential Fourier series

- The exponential series e/"f n =0,+1,4+2...1s orthonormal
over every interval of duration T, = 27 /wy

0 m#En
/ egmuot(ejnwot)t dt = / ej(m—n)wot dt = # (369)
To To To m=n

- And it is a complete set, thus any signal f(t) can be expressed
over a period of duration T, as

w -
= Y Dpelnent (3.70)

n=-=0oo

where [see Eq. (3.45)]

D, = -/ F(t)eImwot gy (3.71)
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Bandwidth of a signal

- Difference between the highest and the lowest frequencies of
the spectral components of a signal
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Parseval’s theorem

= 1 — & 2
Ft) = Co+ Y Cucos (nwot + 6n) Py =Co®+ 5 P Pr= Y  |Dxl

n=--0o0

ne=] n=1l
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LTIC response to periodic inputs
- A periodic signal can be expressed as the superposition of
everlasting complex exponentials (or sinusoids)

- The response of the system to an everlasting exponential is
H(s) thus, due to linearity

o> >0
eIWt = H(jw)el* Dpel™ot —s Do H (jnwg)e? ™0
~ . ’ 2 " z n

L™ >4 ~

7

inpu:r f(t) respor;e y(t)
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Limitations of the FS

- Can handle only periodic inputs — Continuous Time FT

- Cannot manage easily unstable or marginally stable systems —
Laplace Transform




