INTRODUCTION TO ROBOTICS

Andrea Calanca

About Myself

- Mail: <u>andrea.calanca@univr.it</u>
- Affiliation: Altair Robotics Lab, University of Verona

- Previous Experience
 - Academic Researcher (Univ. Verona)
 - Software Engineer (Replay, Sole24)
 - Automation engineer (Tetrapack Group)
 - Audio DSP engineer (Overloud)
 - Control Engineer (Electrolux Group)

Course Prerequisites

- Linear Algebra
 - Matrices, linear operators, vector spaces
- Newton Mechanics
 - Motion equations, linear and rotational
- Classic (Linear) Control Theory (Continuous systems)
 - Laplace transform, root locus, Bode and Nyquist diagrams
- Matlab
 - Basic programming skills

Course Material

- Books
 - "Robotica. Modellistica, pianificazione e controllo" di Siciliano, Sciavicco, Villani, Oriolo
 - "Robotica industriale. Modellistica e controllo di manipolatori" di Lorenzo Sciavicco e Bruno Siciliano
- Slides and Notes provided by the teacher.
- Lessons hand notes!
- Others:
 - "Appunti ed esercizi di Meccanica Razionale" Luciano Battaia

Course Program

- Kinematics
- Differential kinematics
- Dynamics (of rigid robots)
- Control (of rigid robots)
 - Position control
 - Force Control
 - Impedance Control

Course Program

- Kinematics Siciliano
- Differential kinematics ~Siciliano
- Dynamics (of rigid robots) Calanca+Siciliano
- Sensors and Actuators Siciliano
- Control (of rigid robots)
 - Position control Siciliano+Notes
 - Force Control Notes
 - Impedance Control Siciliano

Course General Information

- Receiving hours: Wednesday 16.00 17.30
- Exam: written + project

A very multidisciplinary subject

- Mechanic engineering
- Electronic engineering
- Control engineering
- Computer Science
- Artificial Intelligence

Mechanics

- Rigid body kinematics
- Rigid body dynamics
- Lagrangian Mechanics
- Hamiltonian Mechanics
- Deformable body kinematics and dynamics

Electronics & Electrotechnics

- Digital electronics (e.g. encoders, hall sensors, stepper motors, inverters)
- Analog electronics (e.g. potentiometers, resolvers, filters, linear amplifiers)
- Sensors & sensor conditioning
- Actuators & power units
- Processors & interfaces
- Communication

Control Theory


- Classical Control
 - Linear controllers, loop shaping, root locus, Nyquist and Bode stability criterions, robustness indexes
- Non-Linear Control
 - Feedback linearization, passivity based control, sliding-mode control, adaptive control, back-stepping control and more!
- Modern Control
 - Control as an optimization problem. Not so many examples for the moment due to computational burden (model predictive control)
- System Identification & Optimal Filtering
 - Parametric identification, state observers

Computer Engineering

- Operating systems, distributed and networked systems, real-time scheduling and resource allocations
- Software architectures & design patterns
- Modern (not obsolete) programming paradigms: object oriented, component oriented.
- Computer Vision: 3D reconstruction, classification, recognition, etc.
- Machine learning: learning by demonstration, reinforcement learning, etc.

Artificial Intelligence

- Reasoning: Solving Problems by Searching, Classical Search, Adversarial Search, Constraint Satisfaction Problems, Logical Agents, First-Order Logic, Planning, Knowledge Representation
- Uncertain reasoning: Probabilistic Reasoning (Bayes, e.g. Bayesian networks), Statistical Inference, Decision Support Systems, Fuzzy Logic.



designed to operate with hands made by another

This is not a Robot!

About this Course

- We will focus on Mechatronic Systems, mainly on mechanics and control topics aiming at understanding robot control design principles
- Base Topics
 - Kinematics
 - Differential Kinematics
 - Dynamics
 - Control Theory

The Importance of Mechanics

The Importance of Control

AUTOMATION & CONTROL INSTITUTE INSTITUT FÜR AUTOMATISIERUNGS-& REGELUNGSTECHNIK

Triple Pendulum on a Cart

Swing-up and Swing-down

Two-degrees-of-freedom design:

Constrained feedforward & optimal feedback control

© CDS - Complex Dynamical System Group, 2011

The Importance of Control

AUTOMATION & CONTROL INSTITUTE INSTITUT FÜR AUTOMATISIERUNGS-& REGELUNGSTECHNIK

Triple Pendulum on a Cart

Side-stepping

Two-degrees-of-freedom design:

Constrained feedforward control vs. Flatness-based feedforward control based on the nonlinear model

with optimal feedback control

© CDS - Complex Dynamical System Group, 2011