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Approximations with pursuits

To optimize non-linear signal approximations, one can adaptively choose
the basis depending on the signal

The set of orthogonal bases is much smaller than the set of non-orthogonal
bases that could be constructed by choosing N linearly independent vectors
from these P.

To improve the approximation of complex signals such as music recordings,
we study general non-orthogonal signal decompositions.

Consider the space of signals of size N. Let

D= {gp }OSp<p

be a redundant dictionary of P>N vectors which includes at least N linearly
independent vectors




Approximations with pursuits

For M21, an approximation f,, of f can be calculated with a linear
combination of any M dictionary vectors

M-—1

fm= Za[Prn] 8 om

m=0

The freedom of choice opens the door to a considerable combinatorial
explosion.

For general dictionaries of P > N vectors, computing the approximation

f~ that minimizes ||f —f,, Il is an NP hard problem.
— This means that there is no known polynomial time algorithm that can solve this
optimization.

Pursuit algorithms reduce the computational complexity by searching for
efficient but non-optimal approximations.




Basis pursuits

A basis pursuit formulates the search as a linear programming problem,
providing remarkably good approximations with “tractable” complexity.

For large signals, this remains prohibitive. Matching pursuits are faster
greedy algorithms that make the problem tractable

We study the construction of a “best” basis B, not necessarily orthogonal,
for efficiently approximating a signal f

The N vectors of the basis

B = {gp, }osm<n

are selected with a pursuit.




Basis pursuit

« Let us decompose f in the basis

N-1
f — Za[pm] gpm'
m=0

« A basis pursuit searches for a basis that minimizes

C(f,B) =7 f“ Z|a[pm1|

Minimizing the I' norm of the decomposmon coefficients avoids diffusing the
energy of f among many vectors. It reduces cancellations between the vectors
alp.,lg,.. that decompose f, because such cancellations increase |a[p,,]| and
thus increase the cost.

The minimization of an I' norm is also related to linear programming, which
leads to fast computational effective algorithms.




Linear programming

Linear Programming Instead of immediately isolating subsets of N vectors in
the dictionary D, a linear system of size P is written with all dictionary vectors

P-1
" alpl g,ln] = fln, (9.79)
p=0
while trying to minimize
P-1
> la[p]]. NxP  (9.80)
p=0

The system (9.79) can be expressed in matrix form with the P x N matrix G =
{8pn]}ocn<n,0<p<p

Ga=f. (9.81)
Although the minimization of (9.80) is nonlinear, it can be reformulated as a linear
programming problem.




Linear programming

It can be shown that the solution has at most N non zero coefficients

In the non degenerate cases, which are most often encountered, the non
zero coefficients correspond to N indicis {p,}o<m<v SUCh that

{gpm }0$m<N
are linearly independent.

This is the best basis of RN that minimizes the cost.




Matching pursuit

Despite the linear programming approach, a basis pursuit is computationally
expensive because it minimizes a global cost function over all dictionary
vectors.

The matching pursuit introduced by Mallat and Zhang [259] reduces the
computational complexity with a greedy strategy.

Let D= {87}761" be a dictionary of P>N vectors having unit norm.

This dictionary includes N linearly independent vectors that define a basis of
the space CN of signals of size N.

A matching pursuit begins by projecting f on a vector g+, € P and
computing the residue Rf

f= <f:8"/o>g'm+Rf-




Matching pursuit

Since Rf is orthogonal to g,

IFI1P = [{f, 8w)* + IRFI*. (9.86)

To minimize ||Rf| we must choose g,, € D such that |(f, g,,)| is maximum. In
some cases, it is computationally more efficient to find a vector g, that is almost
optimal:

1(f) 8w} = asup|(f,g|, (9.87)
vel

where o € (0,1] is an optimality factor. The pursuit iterates this procedure by
subdecomposing the residue. Let R°f = f. Suppose that the m” order residue

R™f is already computed form>0."




Matching pursuit

The next iteration chooses g-, € D such that

[(R™f,8ym)| 2 @ sup|(R" £, 84)|,
vel

and projects R” f on g, :

R"f=(R"f,8,) 8 +R""'f. (9.89)

The orthogonality of R™*! f and g._implies
IR £1I? = [(R™ £, gu) [ + IR £]%. (9.90)
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Matching pursuit

Summing (9.89) from m between 0 and M — 1 yields

M-1
f=) (R"f,8.) 8y +R"f. (9.91)
m=(
Similarly, summing (9.90) from m between 0 and M — 1 gives
M-1
IFIZ =" [R™ £, 84a) >+ 1R £]I2. (9.92)
m=0

The following theorem proves that ||R™ f || converges exponentially to 0 when m
tends to infinity.
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Theorem

Theorem 9.10 There exists A > 0 such that for allm > 0

IR™ £ < 27*" || £1-
As a consequence
+00
f= Z(Rmf’gv.>87.,
m=0
and

+o00
IF1P =D~ (R™ £, ) .
m=0

(9.93)

(9.94)

(9.95)
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Matching pursuit

The convergence rate X decreases when the size N of the signal space
increases.

In the limit of infinite dimensional spaces, Jones' theorem proves that the

algorithm still converges but the convergence is not exponential [230,259].

Observe that even in finite dimensions, an infinite number of iterations is
necessary to completely reduce the residue.

In most signal processing applications, this is not an issue because many
fewer than N iterations are needed to obtain sufficiently precise signal
approximations.
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Fast network calculations

« A matching pursuit is implemented with a fast algorithm that computes

m+1 m . . .
<R f ,gy> from <R J ,gy> with a simple updating formula

R"f=(R"f.g, )8, +R™f

> (Rfg)= (R, )~ (RS .8, )(81.08))

To reduce the computational load, it is necessary to construct dictionaries with
vectors having a sparse interaction. This means that each g, has non-zero
inner products with only a small fraction of all other dictionary vectors

* Dictionaries are designed so that non-zero weights <ga,gy> can be
retrieved from memory or computed with O( 1) operations

14




Matching pursuit

A matching pursuit with a relative precision € is implemented as follows

1. Initialization Set m = 0 and compute {{f, 8) }er-

2. Best match Find g, € D such that

[((R" f8va)| = xsup [(R™ f, g4)|. (9.102)
3. Update For all g, € D with (g, ,g,) #0

(R™'f,8,) = (R"f,8y) — (R™f,87) (8vm> 8)-

4. Stopping rule If
IR = IR™£11* = [{R™ £ 83} * < €I £

then stop. Otherwise m =m+ 1 and go to 2.

15




Matching pursuit

If D is highly redundant, computations at steps 2 and 3 are reduced by
performing the calculation on a subdictionary Ds

D; = {8y }rer, CD.

The sub-dictionary Ds is constructed so that

if g5 € D, maximizes |(f,g,)| in D

then there exists g, € D which minimizes (9.102) and whos )’m IS
close to )’7
m

The index Vo is found by a local search

This is done in time-frequency dictionaries where a sub-dictionary can be
sufficient to indicate a time-frequency region where an almost best match is
located.
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Translation invariance

Decompositions in orthogonal bases lack translation invariance and are
thus difficult to use for pattern recognition.

Matching pursuits are translation invariant if calculated in translation
invariant dictionaries

A dictionary is translation invariant if for any

g, €D andnE[O,N—l]%gy[n—p]ED

Suppose that the matching decomposition of fin D is

flnl = 3" (R™ ., 82.) s ] + RY fn].

m=0
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Translation invariance

One can verify [151] that the matching pursuit of f,{n| = fln — p] selects a trans-
lation by p of the same vectors g, with the same decomposition coefficients

M-1

fp[n] = z (R"'f,g%)g,h[n— p +Rpr[n]'

m=0

Patterns can thus be characterized independently of their position. The same
translation invariance property is valid for a basis pursuit. However, translation
invariant dictionaries are necessarily very large, which often leads to prohibitive
calculations. Wavelet packet and local cosine dictionaries are not translation in-

variant because at each scale 2/ the waveforms are translated only by k2’ with
k € Z.
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Gabor dictionaries

A time and frequency translation invariant Gabor dictionary is constructed
by Qian and Chen [287] as well as Mallat and Zhong [259], by scaling,
translating and modulating a Gaussian window.

Gaussian windows are used because of their optimal time and frequency
energy concentration, proved by the uncertainty theorem.

For each scale 2/, a discrete window of period N is designed by sampling and
periodizing a Gaussian g(t) = 21/% exp(—t?):

gjln = K; Zg(" pN)-

p=—00
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Gabor dictionaries

The constant K; is adjusted so that || g;|| = 1. This window is then translated in time
and frequency. Let I" be the set of indexes 7y = (p,k,2/) for (p,k) € [0,N — 1]?
and j € [0,log; N]. A discrete Gabor atom is

iz”"") . (9.105)

gy[n] = gj[n— p] exp ( =

The resulting Gabor dictionary D = {g- }er is time and frequency translation
invariant modulo N. A matching pursuit decomposes real signals in this dictionary
by grouping atoms g.+ and g~ with v = (p,+k,2/). At each iteration, instead
of projecting R™ f over an atom g., the matching pursuit computes its projection
on the plane generated by (g,+, g,-). Since R™ f|[n] is real, one can verify that this
is equivalent to projecting R™ f on a real vector that can be written

2mkn )

glln] =K s gjln— p| cos (T +¢

20



Gabor dictionaries

The constant K ; 4 sets the norm of this vector to 1 and the phase ¢ is optimized to
maximize the inner product with R™ f. Matching pursuit iterations yield

-+00
f=Y (R"f gl gln. (9.106)
m=0




Orthogonal MP

« The approximations of a matching pursuit are improved by orthogonalizing
the directions of projection, with a Gram-Schmidt procedure

« The resulting orthogonal pursuit converges with a finite number of iterations,
which is not the case for a non-orthogonal pursuit.

« The price to be paid is the important computational cost of the Gram-
Schmidt orthogonalization.

The vector g, selected by the matching algorithm is a prior1 not orthogonal
to the previously selected vectors {g-, }o<p<m. When subtracting the projection
of R™ f over g, the algorithm reintroduces new components in the directions of
{8y, }o<p<m- This is avoided by projecting the residues on an orthogonal family

{up }o<p<m computed from {g, }o<p<m.
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Orthogonal MP

Let us initialize ug = g.,. For m > 0, an orthogonal matching pursuit selects

g~, that satisfies
[((R™f,8yn)| 2 StellEl(Rmfa8'7>|° (9.108)

The Gram-Schmidt algorithm orthogonalizes g, with respect to {g, }o<p<m and

defines
m—1

(8vm» Up)
Upn =8, — )  ———Up. (9.109)
o ;, lupl 7
The residue R™ f is projected on u,, instead of g.,_:
R"f u
R"f = ( IIu{nII;) Um+R™TLE (9.110)
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Orthogonal MP

Summing this equation for 0 < m < k yields

k-1
f = Z(RI’I"u{.’IIuﬂ U+ REf 9.111)
m=0

= Py, f + R* f,
where Py, is the orthogonal projector on the space V; generated by {um }o<m<k-
The Gram-Schmidt algorithm ensures that {g., }o<m< is also a basis of V. For

any k > 0 the residue R* f is the component of f that is orthogonal to V. For
m =k (9.109) implies that

(R™f ytm) = (R™ f , 8)- (9.112)
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Orthogonal MP

Since V; has dimension k there exists M < N such that f € V, so RM f =0 and
inserting (9.112) in (9.111) for k = M yields

E lum? ™ G15)

The convergence is obtained with a finite number M of iterations. This is a de-
composition in a family of orthogonal vectors so

M-1

2
I£12=>" (R"S &) 9.114)

He |12

To expand f over the original dictionary vectors { g, }o<m<u, We must perform
a change of basis. The triangular Gram-Schmidt relations (9.109) are inverted to

expand Uy, in {g, fo<p<m:

Um =Y _b[p,m]g,,. (9.115)
p=0




Orthogonal MP

Inserting this expression into (9.113) gives

M-1
£=Y alle,
p=0

with

M—1
a['yp] — Zb[P,m] (Rmf)g')'m) '
m=p

|2

(9.116)
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Orthogonal MP

During the first few iterations, the pursuit often selects nearly orthogonal
vectors, so the Gram-Schmidt orthogonalization is not needed.

The orthogonal and nonorthogonal pursuits are then nearly the same.

When the number of iterations increases and gets close to N, the residues
of an orthogonal pursuit have norms that decrease faster than for a non-

orthogonal pursuit.
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