Time-domain analysis of Continuous-
Time Systems

Lathi Chapt. 2




Classification of systems

1. Linear and non linear

2. Constant parameters and time-varying parameters

3. Instantaneous (memoryless) and dynamic (with memory)
4. Causal and non-causal

5. Lumped-parameters and distributed-parameters

6. Continuous-time and discrete-time

7. Analog and digital




-
What do we want to do?

- We want to derive the equations ruling the system, that is
those equations that given an input signal allow to calculate
the output signal

- The main actor is the impulse response, which fully
characterizes the behavior of a linear time-invariant system

Input signal f(t) Output signal y(t)

Impulse response h(t)

N

Linearity Impulse Convolution
function




What do we need?

- The zero-input - The zero-state
response response
- Characteristic modes - Unit impulse response

- Characteristic roots - Convolution operator




Linear sytems
- Additivity

¢y — €1 and cy —+ €2
then for all ¢; and ¢2
¢y +cg — €1+ e

- Homogeneity

. c— e
then for all real or imaginary k
ke — ke

- Linearity implies addditivity and homogeneity

kicy + kacg —= ke + koer

Principle of superposition

(1.37)
(1.38)

(1.39)




Response of a linear system

- Total response = zero-input response + zero-state response

- This is possible thanks to linearity that allows to consider the
output as the sum of the contributions due to
- the input signal (the zero-state response) and

- the initial state of the system (that is the state at =0, namely the zero-
input response)

- Almost all systems become NON linear for sufficiently large
signals applied as inputs

- However, they can be locally linearized and treated as linear for small
signal variations




Zero-input and zero-state response

- The zero-input and zero—state responses are independent
of each other.

- The zero-state response only depends on the input signal
and the initial conditions are assumed to be zero.

- For each component, the other is totally irrelevant.




Linear time-invariant systems

- A linear continuous time system is described by a linear
differential equation
dny dn—ly dy

dt_" + Gn-1 2in—1 + - +a1:i-z +aoy(t) =

dm f dm—lf df
bmm + bm—1 Zmi R o 615 + bg f(t) (2.1a)

where all the coefficients a; and b; are constants. Using operational notation D to
represent d/dt, we can express this equation as

(D™ +an1D™ 1+ a1 D +ag) y(t)

= (bmD™ + b1 D™ - £ 51D + o) £(1)  (2.1b)
or

Q(D)y(t) = P(D)f(2) (2.1c)




e
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where the polynomials Q(D) and P(D) are

Q(D) = D" 4 an_lD“'l +---+a1D +ag
P(D) =bpD™ 4 bm_1D™ 1 4 .. 4+ 51D + by

Total response = zero-input response + zero-state response (2.3)

The zero-input component is the system response when the input f(t) = 0 so
that it is the result of internal system conditions (such as energy storages, initial
conditions) alone. It is independent of the external input f(¢). In contrast, the
zero-state component is the system response to the external input f(¢) when the

system is in zero state, meaning the absence of all internal energy storages; that is,
all initial conditions are zero.




Zero-input response
- System response to internal conditions

The zero-input response yo(t) is the solution of Eq. (2.1) when the input f(¢) =
0 so that

Q(D)yo(t) =0 (2.4a)
or

(Dn -+ an_an‘l + -+ a1D+ ao) vo(t) =0 (2.4b)

A solution to this equation can be obtained systematically.! However, we will take
a short cut by using heuristic reasoning. Equation (2.4b) shows that a linear com-
bination of yo(t) and its n successive derivatives is zero, not at some values of t,
but for all t. Such a result is possible if and only if yo(t) and all its n successive
derivatives are of the same form. Otherwise their sum can never add to zero for all
values of ¢. We know that only an exponential function e** has this property. So

let us assume that

yo(t) = ce™

is a solution to Eq. (2.4b). Then




Zero-input response

Then .
Yo At
Dyolt) = 20 =
yo(t) 7 che

2%

D?yo(t) = R cAZet

dﬂv
D™yo(t) = —2 = cAmeMt




Zero-input response

Substituting these results in Eq. (2.4b), we obtain

c (A“ +an A" bt a ) + ao) er =
For a nontrivial solution of this equation,

A"+ e A"t a A +ap =0 (2.5a)

This result means that ce*t is indeed a solution of Eq. (2.4), provided that ) satisfies
Eq. (2.5a). Note that the polynomial in Eq. (2.5a) is identical to the polynomial
Q(D) in Eq. (2.4b), with A replacing D. Therefore, Eq. (2.5a) can be expressed as

QAN =0 (2.5b)
When Q(\) is expressed in factorized form, Eq. (2.5b) can be represented as

QN = =A)A=22) - (A=An) =0 (2.5¢)




Zero-input response

Clearly, X has n solutions: Ay, Ag, ..., A,. Consequently, Eq. (2.4) has n possible
solutions: c1e*1?, cpe??t, .. cpe»t, with ¢y, c2, ..., cn as arbitrary constants. We
can readily show that a general solution is given by the sum of these n solutions,t

so that

yo(t) = c1e™* + coe™ + - + cpe? (2.6)

where ¢, ¢3, ... , ¢, are arbitrary constants determined by n constraints (the
auxiliary conditions) on the solution.




Zero-input response

Observe that the polynomial Q()), which is characteristic of the system, has
nothing to do with the input. For this reason the polynomial Q(A) is called the
characteristic polynomial of the system. The equation .

Q(A) =0 (2.7)

is called the characteristic equation of the system. Equation (2.5¢) clearly indi-
cates that Aq, Az, ..., An are the roots of the characteristic equation; consequently,
they are called the characteristic roots of the system. The terms characteristic
values, eigenvalues, and natural frequencies are also used for characteristic
roots.} The exponentials e**(i = 1,2,...,n) in the zero-input response are the
characteristic modes (also known as modes or natural modes) of the sys-
tem. There is a characteristic mode for each characteristic root of the system, and
the zero-input response is a linear combination of the characteristic modes of the
system.




Zero-input response

- Repeated roots

- The considered solution assumes that the n roots of the characteristic

polynomial are distinct. If this is not the case then the form of the
solution is slightly different

- For a double root (1) the differential equation becomes
(D = X)?yo(t) =0

yol(t) = (c1 + cQt)eAt

In this case the root ) repeats twice. Observe that the characteristic modes in this
case are e and te*. Continuing this pattern, we can show that for the differential
equation

(D = X)"yo(t) =0 (2.8)

the characteristic modes are e, te*t, t2e*t, ..., t""1e*t, and that the solution is

yo(t) = (c1+eat+- -+ + crtr—l) et (2.9)




Zero-input response with simple and repeated roots

Consequently, for a system with the characteristic polynomial
Q) =A-A)"(A=Arg1) - (A= An)

the characteristic modes are e*1t, tert, ... tr—leMt grr+it = grat apnd the
solution is

y()(t) = (C] +ct+ -+ crtr_l)exlt . cr_'_leAr-Q-lt SRR = cne'\nt

In order to obtain the zero-response, n auxiliary conditions must be given to
calculate the c; coefficients.
If the auxiliary conditions are at t=0 they are called initial conditions.




Characteristic equation
- System equation in zero-input conditions
Q) =0

- The polynomial Q is called characteristic polynomial because
it has nothing to do with the input signal and only depends on
the system itself

- Its solutions are the characteristic roots, or eigenvalues or
natural frequencies of the system

- Similarly, the corresponding functions

yi(t) = et
Are the characteristic modes, or natural modes or modes of
the system.

There is a characteristic mode for each characteristic root




Zero-input response

- The zero-input response is a linear combination of the
characteristic modes of the system

- Some insights into the zero-input behavior

- Characteristic modes also determine the zero-state response and thus
are the most important attribute of a LTIS

- The zero-input response describes the way the system recovers the
rest position after an instantaneous perturbation occurs
- The system uses a proper combination of characteristic modes to come

back to the rest position while satisfying appropriate boundary (or initial)
conditions.

- Resonance: the external input is a characteristic mode

- The system “sustains” such input and the output tends to diverge
* “This would be as pouring gasoline on a fire in a dry forest”




The unit impulse response h(t)

- To calculate the response of the system to the generic input
signal f(t) we first need to calculate the response to the unit
delta function

Input signal delta(t) Output signal h(t)

Impulse response h(t)

- How to get there

- Starting from the linearity implications, the response to a complex
signal will be derived as a linear combination (sum) of the responses to
Its instantaneous components




LTIS: the impulse-based view

- Due to additivity and homogeneity

Output signal y(t)

Impulse response h(t)

f(t)=a,f,(t)+af,(t)+...+a f. () y(t)=ay(t)tazy (t)+...+ay,(t)

yi(t)=zero-state response to the input fi(t)




Impulse-based view
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Fig. 1.27 Signal representation in terms of impulse and step components.

Input signal=sum of rectangular pulses of width Delta(t) of different

amplitude and delayed in time
Output signal=sum of the responses to such pulses
Importantly: the system’s response is the same because of time-invariance




Time Invariance

f(r) y ()

(a)

f(t=T) y(¢-T)

(®)




Back to the Unit impulse response

- If we know the system response to an input impulse we can
determine the system response to any input f(t)

- Such a response is the Unit impulse response h(t) that is the
response of the system to a unit delta function delta(t)
applied at t=0- and with all the initial conditions zero at t=0-.

- Hint: the delta creates initial conditions at t=0* and then
disappears, but it 'generates” energy storage in the system.
From then on, even though no input is present, the system
evolves because of these newly created initial conditions.

- Therefore, the system’s response will be of zero-input kind
and thus consist of a linear combination of characteristic

modes for t>0*.




Unit impulse response

- Overall, including t=0, the system response is
h(t)=A,6(t)+characteristic modes terms

h(t)=hy, () +[P(D)yn(O)]u(t)

where by, is the coefficient of the nth-order term in P(D) [see Eq. (2.17b)], and
yn(t) is a linear combination of the characteristic modes of the system subject to
the following initial conditions:

v 0) = 1, and ya(0) = gn(0) = 4n(0) = =" D(0) =0  (2.20)

where y( )(0) is the value of the kth derivative of y,(¢) at t = 0. We can express
this condition for various values of n (the system order) as follows:

1: y(0) =1

2: ya(0) =0 and §n(0) = 1

3: yn(0) =yn(0) =0 and y,(0) =1

4: ya(0) = 9x(0) = §n(0) = 0 and yo(0) =1 (2.21)

8 3 3
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and so on.

If the order of P(D} is less than the order of Q(D), b, = 0, and the impulse
term bné (t) in h(t) is zero.




System response to delayed input

Thanks to the time-invariance property

Input signal delta(t)

Output signal y(t)=h(t)
Impulse response h(t)

Input signal delta(t-T) Output signal y(t)=h(t-T)




Zero-state response

- System response to an external input assuming that the
system is in zero-state

- Method:

- model the input signal f(t) as a superposition of delayed rectangular
pulses of different amplitude

- Express the global response as the sum of the responses to these
pulses

- In the limit where the pulse duration Delta t tends to zero, each pulse
tends to a delta having a strength equal to the area under the pulse.
Then the pulse at the same location will have the amplitude f(nAt)At
and can therefore be represented as f(nAt)Atd(t — nAt).




Zero-state response

(@)

6(t) == hlt)
§(t = nA7) = h(t—ndr7)
[f(nAT)ATS(t = nlr) = [f(nAr)AT]R(t — nA7) (2.27)
—— Ne—— e

input output




Zero-state response

h(r)
16(:)
0 I 0 P
(b)
& (t - nAt) h(t-nAt)
0 ;261 1 —- 0 nAt =
(c)
w [f(nAT) At ]d (1 - nAT) Ay(1) f(nAt)h (1t - nAt)At
0 LaAx - 0  aaAx r—




Zero-state response

(e)

0 nax =

Fig. 2.3 Finding the system response to an arbitrary input f(t).




Zero-state response

Arﬁo Z: f(n&r)b(t —nlr)Ar = hm z ~ f(nAT)R(t — nAT)AT
n=-—00 o

) d N - —

The input f(¢t) The output. y(t)

The left-hand side is the input f(¢) represented as a sum of all the impulse compo-
nents in a manner illustrated in Fig. 2.3a. The right-hand side is the output y()
represented as a sum of the output components as shown in Fig. 2.3e. Both the
left-hand side and the right-hand side, by definition, are integrals given by{

/; f(r)o(t — 7)dr = /_ f(r)h(t = 7)dr (2.28)
N — N - ,
f(t) y(t)

The left-hand side expresses the input f(t) as made up of the impulse components
in a manner depicted in Fig. 2.3a. The right-hand expresses the output as made up
of the sum of the system responses to all the impulse components of the input as
illustrated in Fig. 2.3e. To summarize, the (zero-state) response y(t) to the input
f(t) is given by

Convolution integral

y(t) = /_ Z f(r)h(t —7)dr / (2.29)




Zero-state response and characteristic modes

- The characteristic modes shape the zero-state response
through the unit impulse response

o j FOR(E 1) d

h(t)=A,6(t)+characteristic modes terms

+00
vt)= [ F@ht - ryr
f(r)=0for 7 <0

1




The convolution integral: properties

fi(t) * fa(t) = fi(r)fa(t — 7)dT

-0

1. The Commutative Property: Convolution operation is commutative; that is,
f1(t)=f2(t) = fa(t)* f1(t). This property can be proved by a change of variable.
In Eq. (2.30), if we let z =t — 7 so that r =t — = and dr = —dz, we obtain

-0

flt) « falt) = — / Fa(2)falt — 7) da

o0

= /'°° fa(z)1(t = z)dz
= fa(t) * fi(t) (2.31)

2. The Distributive Property: According to this property:

F1(2) * [f2(2) + fa(t)] = fi(t) * f2(t) + f1(t) = f3(t) (2.32)
3. The Associative Property: According to this property:
f1(t) * [f2(t) = fa(t)] = [f1(2) * f2(2)] * fa(t) (2.33)

The proofs of (2.32) and (2.33) follow directly from the definition of the con-
volution integral. They are left as an exercise for the reader.
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The convolution integral: properties
4. The Shift Property: If

f1(t) * fa(t) = c(t)

then
fi(t)* fot —T)=c(t-T) (2.34a)
fi(t =T)« fa(t) = c(t = T) (2.34b)

and
filt =Th) = fo(t = T2) = c(t — T1 — T2) (2.34c)

Proof: We are given

f1(t) * falt) = [_ " ) falt = ) dr = c(t)

Therefore

fit)* f2(t = T) = /;00 fi(r)f2(t =T —r)dr

=e¢(t—-T)

Equation (2.34b) follows from (2.34a) and the commutative property of convo-
lution; Eq. (2.34¢) follows directly from (2.34a) and (2.34b).




The convolution integral: properties

5. Convolution with an Impulse: Convolution of a function f(t) with a unit
impulse results in the function f(t) itself. By definition of convolution

f(t)x8(t) = [w f(r)é(t —r)dr ' (2.35)

Because 6{t — 7) is an impulse located at 7 = t, according to the sampling
property of the impulse [Eq. (1.24)], the integral in the above equation is the
value of f(r) at 7 =t, that is, f(¢). Therefore

f(t)+6(t) = £(t) (2.36)

Actually this result has been derived earlier in Eq. (2.28).




The convolution integral: properties

6. The Width Property: If the durations (widths) of f1(t) and f2(t) are Ty and
T, respectively, then the duration (width) of fi(t) * f2(t) is Ty + T2 (Fig. 2.4).
The proof of this property follows readily from the graphical considerations
discussed later in Sec. 2.4-2. This rule may superficially appear to be violated

in some special cases discussed later.

f, () £y (1)

fi () * fL00

— 7, ———

{ —

{ =

Fig. 2.4 Width property of convolution.
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Zero-state response and causality

- So far we have hypothesized linearity and time-invariance

- However, most signals are also causal, so they are zero
before t=0. This simplifies the convolution integral limits

- A causal system impulse response function is a causal signal because
it cannot start before the t=0

- In formulas N

y(t) = / F()h(t — 7)dr

— 00

f(r)=0for 7 <0
- Similarly
h(t)=0fort<0—=>h(t—7)=0fort—7<0— fort<r
— f(1) x h(t —7) #0 only for 0 < 7 < ¢

- If t<0 there is no interval where the product is different from zero




Limits of the convolution integral

flr)=0 hit-t)=0
l 0 ‘p!a!aaauaai!aaaaamam, tz0
T —=
(a)
f(r)=0 h(t-t)=0 t<0

(b)

Fig. 2.5 Limits of convolution integral.

- The convolution integral thus becomes This result shows that
if f(t) and h(t) are both
causal, the response

/ f(T)h(t — 7)dT for t >0  y(t)is also causal

yis causal 0 for t <0




_ —_—

Th I t. No f1(?) f2(¢) F1(t) = f2(t) = f2(t) * f1(t)
1 f(t) 6(t—1T) f@—T)
table 2 e Mu(t) u(t) 1 :';M u(t)
3 u(t) u(t) tu(t)
4 eMiu(t) er2ty(t) ﬁ;—}—:—i‘%i w(t) AL # A2
5 e u(t) e u(t) tertu(t)
6 teXtu(t) e Mu(t) %tze)‘tu(t)
At n n~—j
7 ) Mu(t) LLNOEDS K;'%'(t—n-}ﬁ u(t)
Jj=o
8 t™u(t) t"u(t) ﬁ_‘;l—), tmtla(e)
. 2t er2t — eMt o (A — )\g)te)‘lt
9 te* tu(t) er2ty(t) 7 = 222 u(t)
10 t"‘e}‘tu(t) t"’e‘“u(t) (n—_’?%m t"‘"‘"*’le”u(t)
m t n_ A2 =< (—1)?m! + j) g IeMt
11 tme fu(t) the?tu(t) ; §-!(,,3 = j()?(,\ljl A,)nfm w(t)
L (—1)*nl(m + k) tnkerat
A1 # A2 +Z l(c!('n.)—- k()TZAQ __)Al)m+-6k+1 u(t)
k=0

cos (0 — p)et — e P cos (Bt + 8 — @) w(®)
Via+ )2+ 52

12 e~ 2t cos (Bt + @)u(t) e u(t)

¢ = tan"[—B/(a + A)]

e,\ltu(t) + e)«,zt

u(—t)
Re ) A
P edz2 > Re

13 erty(t) ety (—t)

A1t _ gAzt

e —-¢€ -
A2 — A1

14 ertu(—t) ety (~—t) u(—t)




Graphical understanding of convolution

f(n g(t)

42
|
\
-1 0 { —- .'2 0 [ ——
(a) (b)
fx) 8(t) |,
l
\
-1 |0 T -2 0 T
(©) (d)

g(-v) 1 4 7
j —/ (c)




Graphical understanding of convolution

£ (-1) /P/ /f(r) o
_z) ‘

-1 of 2 T
e !l —
g (1=-1) 1 : , ()
_ — (f)
t=1>0 o “t :
0] 2 24t T
-1,°
g(1-v) / ; f(x)
r=1,<0 Az- : ®
0f 2+¢, 2 T —-
L
g (t-1) 3
r=1<-3 f(x)
- (h)
2414 -1 0 T




The convolution integral: summary

Summary of the Graphical Procedure
The procedure for graphical convolution can be summarized as follows:

. Keep the function f(r) fixed.

9. Visualize the function g(r) as a rigid wire frame, and rotate (or invert) this
frame about the vertical axis (r = 0) to obtain g(~7).

3. Shift the inverted frame along the r axis by to seconds. The shifted frame now
represents g(tg — 7).

4. The area under the product of f(r) and g(to — 7) (the shifted frame) is ¢(tg),
the value of the convolution at ¢t = tp.

5. Repeat this procedure, shifting the frame by different values (positive and

negative) to obtain ¢(t) for all values of t.
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Zero-state response: the everlasting exponential

- Remember that the everlasting exponential is a characteristic
mode of the system

- Response to the everlasting exponential

+00
y(t) = h(t) * exp®’ = / h(r) exp®®) dr =

— OO

+00
= exp®’ / h(T)exp™ °" dr = H(s) exp®

— OO

100 Transfer
H(S) — / h(7-) eXp_ST dT function of

the system




Transfer function

Hi(s) = output signal

|'input:everlasting exponential H(S) —

AN/A\WA

input signal
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Transfer function

- The transfer function is the response of the system when the
iInput is the everlasting exponential
- Note: this is not the causal exponential estu(t)

ft)=14(t)

Impulse
response

Frequency

Transfer .
domain

function




Total response

n

y(t) = e+ F(1) + h(t)

"/ \

Zero input Zero state

- Note that

- For repeated roots the zero-input response needs to be modified
- The ¢; constants are detetermined by the auxiliary conditions

- There is another way of representing the output that is
through the natural response and the forced response.




Natural and forced response: classical representation

- Natural response: contains all the characteristic modes of the
system

- It may happen that the zero-state response coincides with one of the
characteristic modes.

- Forced response: the part of the total response that cannot
be expressed by characteristic modes

- In this case the initial conditions must be used on the total
response to obtain the constants c; that appear in the natural
response

- We will rely on the zero-input/zero-state formulation




I
System stability

- We consider causal, linear, time-invariant systems
- Key concept: equilibrium state

LV

Stable Neutral Unstable




I
System stability

- Equilibrium : zero-state
- Let’'s assume that the system is in zero-state and we perturb

it by creating non-zero initial conditions. Then the system is
stable if it naturally evolves to the zero—state initial condition

- Since the zero-input response of the system is shaped by its
characteristic modes, the output of a stable system in zero-
input condition must tend to zero as t goes to infinity

$




e
System stability

- The system is (asymptotically) stable if and only if its
characteristic modes tend to zero as t goes to infinity

- If any of the modes grows without bound the system is
unstable

- If the zero-input response remains bounded approaching a
constant or oscillating with a constant amplitude as t —
infinity then the system is marginally stable

| | AL




System stability: dependence on characteristic roots

- Assuming n distinct characteristic modes

n

y(t) =) e’

j=1

- Then lim e' =0 if Re{)\; < 0}

t—00

lim %' = oo if Re{\; > 0}

t—00

- A system is stable if and only if its characteristic roots lie in
the left half (LHP) of the complex plane
- If any of the roots lie in the right half (RHP) then the system is unstable

- If any of the simple (unrepeated) roots lie on the imaginary axis then
the system is marginally stable

- Repeated roots do not cause instability unless thay are on the
imaginary axis ( ¢keiwt )




e
System stability

b

marginally stable —
ReA=0

Fig. 2.15 Characteristic roots location and system stability.







System stability

Characterisic Root Characterisic Root
Location Zero-Input Response Location Zero-Input Response

0 t ——

(a) (b)

0 : ——

(d)




e
BIBO systems

Ln a séazle syg[,tem a t
ounded input generates _
a bounded output y(t) = h(t) = £(t)

Recall that for an LTIC system

= /‘°° h(T)f(t — 7)dr
Therefore

() < [ " RN - ) dr

Moreover, if f(t) is bounded, then |f(t — 7)| < K1 < o0, and

o0

w(6) < Ky [ Ih(r)ldr

Because hit} comtains terms of the form €% ar t%e*?, &[f) decays exponentially
with time if Re A; < 0. Consequently, for an asympiotically stable systemt

j“’ [airildr < K2< a0 (265)
-

and

it <K1K3<




Response time: the system time constant

- Since y(t)=h(t)*f(t), the width of the output is the sum of the
widths of the input and the impulse response

- If the input is a delta, the output has a finite width which
means that the system requires time to fully respond (Th, the

width of h(t)
- If the input has width T, the output has width T+T,

f () £ (1) f;in*L0
i“* Tl 3' k'_ Tg _‘)I }4 TI+T2 —‘"‘—4
f— [— i —

Fig. 2.4 Width property of convolution.




System time constant

- The system time constant describes how fast the system is
- The smaller the time constant, the fastest the system

- How to define it?

0 fy T}, [ —




System time constant

- One possible way is to define it as the height of the
rectangular pulse with same area than h(t)

00 100
Thh(to) = /_+ h(t)dt — Ty, = fo;(?o()t)dt

- For a system with a single characteristic root

h(t) = AeMu(t)
h(0

(0)= A

1 [t —1
T:— At = —
h A/O e dt A

- For a multimodal system, h(t) is a weighted sum of the
characteristic modes thus T, is a weighted sum of the time
constants of the characteristic modes of the system




Time constant and rise time
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Fig. 2.19 Rise time of a system.




Time constant, filtering and rate of information

- There is a strict connection between the system time
constant and its filtering properties

- A short time constant means that the system is able to react
quickly to input variations

- A system with time constant T, behaves as a low-pass filter
with cut-off frequency F_=1/T,, Hertz

- The system takes T, seconds to fully react to a single
iImpulse — in order to avoid interference among impulse
responses these must be spaced by at least T, seconds

- — the maximum rate attainable by the system cannot exceed
1/T,, pulses/sec.




Time constant and filtering
h(t) F. =
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y (1)
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Fig. 2.20 Time constant and filtering.




