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Classification of systems
1. Linear and non linear
2. Constant parameters and time-varying parameters
3. Instantaneous (memoryless) and dynamic (with memory) 
4. Causal and non-causal
5. Lumped-parameters and distributed-parameters
6. Continuous-time and discrete-time
7. Analog and digital
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What do we want to do?
• We want to derive the equations ruling the system, that is 

those equations that given an input signal allow to calculate 
the output signal

• The main actor is the impulse response, which fully 
characterizes the behavior of a linear time-invariant system

Impulse response h(t)

Input signal f(t) Output signal y(t)

Linearity Impulse 
function

Convolution



What do we need?

• The zero-input 
response
• Characteristic modes
• Characteristic roots

• The zero-state 
response
• Unit impulse response
• Convolution operator



Linear sytems
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• Additivity

• Homogeneity

• Linearity implies addditivity and homogeneity

Principle of superposition



Response of a linear system
• Total response = zero-input response + zero-state response
• This is possible thanks to linearity that allows to consider the 

output as the sum of the contributions due to 
• the input signal (the zero-state response) and 
• the initial state of the system (that is the state at t=0, namely the zero-

input response)

• Almost all systems become NON linear for sufficiently large 
signals applied as inputs
• However, they can be locally linearized and treated as linear for small 

signal variations



Zero-input and zero-state response
• The zero-input and zero—state responses are independent 

of each other.
• The zero-state response only depends on the input signal 

and the initial conditions are assumed to be zero.
• For each component, the other is totally irrelevant.



Linear time-invariant systems
• A linear continuous time system is described by a linear 

differential equation



LTIS



Zero-input response
• System response to internal conditions



Zero-input response



Zero-input response



Zero-input response



Zero-input response



Zero-input response
• Repeated roots

• The considered solution assumes that the n roots of the characteristic 
polynomial are distinct. If this is not the case then the form of the 
solution is slightly different

• For a double root (𝜆) the differential equation becomes



Zero-input response with simple and repeated roots

In order to obtain the zero-response, n auxiliary conditions must be given to 
calculate the ci coefficients.
If the auxiliary conditions are at t=0 they are called initial conditions.



Characteristic equation
• System equation in zero-input conditions

𝑄 𝜆 = 0
• The polynomial Q is called characteristic polynomial because 

it has nothing to do with the input signal and only depends on 
the system itself

• Its solutions are the characteristic roots, or eigenvalues or 
natural frequencies of the system

• Similarly, the corresponding functions
𝑦& 𝑡 = 𝑒)*+

Are the characteristic modes, or natural modes or modes of 
the system.
There is a characteristic mode for each characteristic root



Zero-input response
• The zero-input response is a linear combination of the 

characteristic modes of the system
• Some insights into the zero-input behavior

• Characteristic modes also determine the zero-state response and thus 
are the most important attribute of a LTIS

• The zero-input response describes the way the system recovers the 
rest position after an instantaneous perturbation occurs
• The system uses a proper combination of characteristic modes to come 

back to the rest position while satisfying appropriate boundary (or initial) 
conditions.

• Resonance: the external input is a characteristic mode
• The system “sustains” such input and the output tends to diverge

• “This would be as pouring gasoline on a fire in a dry forest”



The unit impulse response h(t)
• To calculate the response of the system to the generic input 

signal f(t) we first need to calculate the response to the unit 
delta function 

• How to get there
• Starting from the linearity implications, the response to a complex 

signal will be derived as a linear combination (sum) of the responses to 
its instantaneous components

Impulse response h(t)

Input signal delta(t) Output signal h(t)



LTIS: the impulse-based view
• Due to additivity and homogeneity

Impulse response h(t)

f(t)=a1f1(t)+a2f2(t)+…+anfn(t)

Output signal y(t)

y(t)=a1y1(t)+a2y2(t)+…+anyn(t)

yi(t)=zero-state response to the input fi(t)



Impulse-based view

Input signal=sum of rectangular pulses of width Delta(t) of different 
amplitude and delayed in time
Output signal=sum of the responses to such pulses
Importantly: the system’s response is the same because of time-invariance



Time invariance



Back to the Unit impulse response
• If we know the system response to an input impulse we can 

determine the system response to any input f(t)
• Such a response is the Unit impulse response h(t) that is the 

response of the system to a unit delta function delta(t) 
applied at t=0- and with all the initial conditions zero at t=0-.

• Hint: the delta creates initial conditions at t=0+ and then 
disappears, but it ”generates” energy storage in the system. 
From then on, even though no input is present, the system 
evolves because of these newly created initial conditions. 

• Therefore, the system’s response will be of zero-input kind 
and thus consist of a linear combination of characteristic 
modes for t>0+.



Unit impulse response
• Overall, including t=0, the system response is

ℎ 𝑡 =𝐴.𝛿 𝑡 +characteristic modes terms
ℎ 𝑡 =ℎ0𝛿 𝑡 + 𝑃 𝐷 𝑦0 𝑡 u 𝑡



System response to delayed input

Impulse response h(t)

Input signal delta(t) Output signal y(t)=h(t)

Input signal delta(t-T) Output signal y(t)=h(t-T)

Thanks to the time-invariance property



Zero-state response
• System response to an external input assuming that the 

system is in zero-state
• Method: 

• model the input signal f(t) as a superposition of delayed rectangular 
pulses of different amplitude

• Express the global response as the sum of the responses to these 
pulses

• In the limit where the pulse duration Delta_t tends to zero, each pulse 
tends to a delta having a strength equal to the area under the pulse. 
Then the pulse at the same location will have the amplitude 𝑓 𝑛Δ𝑡 ∆𝑡
and can therefore be represented as 𝑓 𝑛Δ𝑡 ∆𝑡δ 𝑡 − 𝑛Δ𝑡 .



Zero-state response



Zero-state response



Zero-state response



Zero-state response

Convolution integral



Zero-state response and characteristic modes
• The characteristic modes shape the zero-state response 

through the unit impulse response

𝑦 𝑡 = : 𝑓 𝜏 ℎ 𝑡 − 𝜏
<=

>=
𝑑𝜏

ℎ 𝑡 =𝐴.𝛿 𝑡 +characteristic modes terms

h(t)

f(t)

y(t) =

Z +1

�1
f(⌧)h(t� ⌧)d⌧

f(⌧) = 0 for ⌧ < 0



The convolution integral: properties



The convolution integral: properties



The convolution integral: properties



The convolution integral: properties



Zero-state response and causality
• So far we have hypothesized linearity and time-invariance
• However, most signals are also causal, so they are zero 

before t=0. This simplifies the convolution integral limits
• A causal system impulse response function is a causal signal because 

it cannot start before the t=0
• In formulas

• Similarly

• If t<0 there is no interval where the product is different from zero

y(t) =

Z +1

�1
f(⌧)h(t� ⌧)d⌧

f(⌧) = 0 for ⌧ < 0

h(t) = 0 for t < 0 ! h(t� ⌧) = 0 for t� ⌧ < 0 ! for t < ⌧

! f(⌧)⇥ h(t� ⌧) 6= 0 only for 0  ⌧  t



Limits of the convolution integral

• The convolution integral thus becomes

y(t) =

Z t

0
f(⌧)h(t� ⌧)d⌧ for t > 0

0 for t  0

y is causal

This result shows that 
if f(t) and h(t) are both 
causal, the response 
y(t) is also causal



The convolution 
table



Graphical understanding of convolution



Graphical understanding of convolution



The convolution integral: summary



Zero-state response: the everlasting exponential
• Remember that the everlasting exponential is a characteristic 

mode of the system
• Response to the everlasting exponential

y(t) = h(t) ⇤ expst =
Z +1

�1
h(⌧) exps(t�⌧) d⌧ =

= exp

st

Z +1

�1
h(⌧) exp�s⌧ d⌧ = H(s) expst

H(s) =

Z +1

�1
h(⌧) exp�s⌧ d⌧

Transfer 
function of 
the system



Transfer function
H(s) =

output signal

input signal
|
input=everlasting exponential H(s) =

P (s)

Q(s)



Transfer function
• The transfer function is the response of the system when the 

input is the everlasting exponential
• Note: this is not the causal exponential estu(t)

h(t)

H(s)

f(t) = �(t) y(t) = h(t)

F (s) = est Y (s) = H(s)

Impulse 
response

Transfer 
function

Time domain

Frequency 
domain



Total response

• Note that
• For repeated roots the zero-input response needs to be modified
• The cj constants are detetermined by the auxiliary conditions

• There is another way of representing the output that is 
through the natural response and the forced response.

y(t) =
nX

j=1

cje
�jt + f(t) ⇤ h(t)

Zero input Zero state



Natural and forced response: classical representation
• Natural response: contains all the characteristic modes of the 

system
• It may happen that the zero-state response coincides with one of the 

characteristic modes. 
• Forced response: the part of the total response that cannot 

be expressed by characteristic modes
• In this case the initial conditions must be used on the total 

response to obtain the constants cj that appear in the natural 
response

• We will rely on the zero-input/zero-state formulation



System stability
• We consider causal, linear, time-invariant systems
• Key concept: equilibrium state

Stable Neutral Unstable



System stability
• Equilibrium : zero-state
• Let’s assume that the system is in zero-state and we perturb 

it by creating non-zero initial conditions. Then the system is 
stable if it naturally evolves to the zero—state initial condition

• Since the zero-input response of the system is shaped by its 
characteristic modes, the output of a stable system in zero-
input condition must tend to zero as t goes to infinity

h(t)

t=0- t=0+

t



System stability
• The system is (asymptotically) stable if and only if its 

characteristic modes tend to zero as t goes to infinity
• If any of the modes grows without bound the system is 

unstable
• If the zero-input response remains bounded approaching a 

constant or oscillating with a constant amplitude as t → 
infinity then the system is marginally stable

t t



System stability: dependence on characteristic roots
• Assuming n distinct characteristic modes

• Then

• A system is stable if and only if its characteristic roots lie in 
the left half (LHP) of the complex plane
• If any of the roots lie in the right half (RHP) then the system is unstable
• If any of the simple (unrepeated) roots lie on the imaginary axis then 

the system is marginally stable
• Repeated roots do not cause instability unless thay are on the 

imaginary axis (           )

y(t) =
nX

j=1

cje
�jt

lim
t!1

e�jt = 1 if Re{�j > 0}

lim
t!1

e�jt = 0 if Re{�j < 0}

tkej!t



System stability



System stability
y(t) = Ae�t = e�t ⇥ ej!t



System stability



BIBO systems
• In a stable system, a 

bounded input generates 
a bounded output



Response time: the system time constant
• Since y(t)=h(t)*f(t), the width of the output is the sum of the 

widths of the input and the impulse response
• If the input is a delta, the output has a finite width which 

means that the system requires time to fully respond (Th, the 
width of h(t)
• If the input has width Tf, the output has width Tf+Th



System time constant
• The system time constant describes how fast the system is

• The smaller the time constant, the fastest the system
• How to define it?



System time constant
• One possible way is to define it as the height of the 

rectangular pulse with same area than h(t)

• For a system with a single characteristic root

• For a multimodal system, h(t) is a weighted sum of the 
characteristic modes thus Th is a weighted sum of the time 
constants of the characteristic modes of the system

Thh(t0) =

Z +1

�1
h(t)dt ! Th =

R +1
�1 h(t)dt

h(t0)

h(t) = Ae�tu(t)

h(0) = A

Th =
1

A

Z +1

0
e�tdt =

�1

�



Time constant and rise time

Tr=Th



Time constant, filtering and rate of information
• There is a strict connection between the system time 

constant and its filtering properties
• A short time constant means that the system is able to react 

quickly to input variations

• A system with time constant Th behaves as a low-pass filter 
with cut-off frequency Fc=1/Th Hertz

• The system takes Th seconds to fully react to a single 
impulse → in order to avoid interference among impulse 
responses these must be spaced by at least Th seconds

• → the maximum rate attainable by the system cannot exceed 
1/Th pulses/sec.



Time constant and filtering
Fc =

k

Tr


