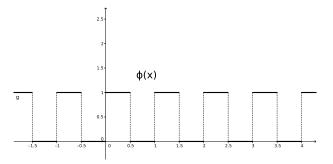


Master's Program in Applied Mathematics Written test of Functional Analysis February 5, 2014

Solve some of the following problems. Justify your conclusions. Time: 120 min.

Pb 1. Consider the 1-periodic function $\varphi : \mathbb{R} \to \mathbb{R}$ whose restriction to [0, 1] is $\mathbf{1}_{[0, 1/2]}(x)$.



Study the strong and weak convergence in $L^2([0,1])$ of the sequence $\varphi_n(x) = \varphi(nx)$.

Pb 2. Let $Y = \{(x_n) \in \ell^6 : x_1 = x_3 = x_5 = \dots = 0\}$ and let $\varphi \in Y'$. Prove that there is a unique linear extensions $\Phi : \ell^6 \to \mathbb{R}$ of φ with $\|\Phi\|_{(\ell^6)'} = \|\varphi\|_{Y'}$.

Pb 3. Let $\{K_n\}_{n\in\mathbb{N}}$ be a sequence of nonempty, closed and convex subsets of an Hilbert space H such that $K_n \supseteq K_{n+1}$ for all $n \in \mathbb{N}$. Assume that $K_{\infty} := \bigcap_{n\in\mathbb{N}} K_n$ is nonempty: prove that it is a closed, convex set. Denote by $\pi_j : H \to K_j$ the projection map for $j \in \mathbb{N} \cup \{\infty\}$. Prove that for every $x \in H$ we have $\lim_{n\to\infty} \pi_n(x) = \pi_{\infty}(x)$. (HINT: The sequence $||x - \pi_n(x)||$ is non-decreasing and bounded. Apply the parallelogram law to the vectors $x - \pi_n(x)$ and $x - \pi_m(x)$ (m > n) to deduce that $\{\pi_j(x)\}_{j\in\mathbb{N}}$ is a Cauchy sequence in H...)

Pb 4. Prove that the operator $T: C([0,1]) \to \ell^1$ defined by

$$(T(f))_n := a_n \int_0^{\frac{1}{n}} f(x) dx, \quad f \in C([0,1]),$$

is compact whenever $\{\frac{a_n}{n}\} \in \ell^1$.

Pb 5. Prove that the set $C = \{f \in C^1([0,1]) : f(0) = 0, ||f'||_{L^8(0,1)} \le 1\}$ is contained in the Hölder space $C^{0,\frac{7}{8}}(0,1)$. Then justify why C is relatively compact in C([0,1]).

Pb 6. Consider the linear functional $T : W^{1,2}([0,1]) \to \mathbb{R}$ such that T(u) = u(0)whenever $u \in W^{1,2}([0,1])$ (*u* the absolutely continuous representative). Prove that $T \in (W^{1,2}([0,1]))'$. Consider then the map $S : W^{1,2}([0,1]) \to L^2([0,1])$ defined by (Su)(x) := u(0) + u'(x). Is S linear, continuous, compact?