2.8 Natural Deduction

We extend the system of section 1.5 to predicate logic. For reasons similar
to the ones mentioned in section 1.5 we consider a language with connectives
A,—, L and V. The existential quantifier is left out, but will be considered
later.

We adopt all the rules of propositional logic and we add

Vxp(zx)
vi 2&)_ yp Yze(z)
Vrp(z) e(t)
where in VI the variable r may not occur free in any hypothesis on which

¢(x) depends, i.e. an uncancelled hypothesis in the derivation of ¢(x). In VE
we, of course, require ¢ to be free for .

VI has the following intuive explanation: if an arbitrary object x has the
property ¢, then every object has the property . The problem is that none of
the objects we know in mathematics can be considered “arbitrary”. So instead



of looking for the “arbitrary object” in the real world (as far as mathemat-
ics is concerned), let us try to find a syntactic criteria. Consider a variable
r (or a constant) in a derivation, are there reasonable grouns for calling »
“arbitrary” ? Here is a plausible suggestion: in the context of the derivations
we shall call > arbitrary if nothing has been assumed concerning r. In more
technical terms, z is arbitrary at its particular occurrence in a derivation if
the part of the derivation above it contains no hypotheses containing r free.

We will demonstrate the necessity of the above restrictions, keeping in
mind that the system at least has to be sound, i.e. that derivable statements
should be true.

Restriction on VI: [z =0]
Vr(x = 0)
r=0—-YVr(zx=0)
Vr(zr =0— Vz(z =0))
0=0—-Vz(z=0)
The V introduction at the first step was illegal.
So 0 =0— Vz(xr = 0), but clearly |~ 0 = 0 — Vx(z = 0) (take any
structure containing more than just 0).
Restriction on VE: Vx-Vy(z = y)]
~Vyly = y)
Vr-vy(r =y) — ~Vyly = y)

The ¥ elimination at the first step was illegal.
Note that y is not free for r in =Vy(r = y). The derived sentence is clearly
not true in structures with at least two elements.

We now give some examples of derivations. We assume that the reader has
by now enough experience in cancelling hypotheses, so that we will not longer
indicate the cancellations by encircled numbers.

VzVye(z, y)] VE Vz(e(x) A ¢(z))] Vz(p(z) A ¢(z))]
Yyp(z,y) Vi @(z) A d(z) wl(z) Ad(z)
el(z,y) - () ¥(z)
Yrp(z,y) VI Vrp(r) Yry(z)
Yyvz(p(z,y) Vxp(z) A Vry(z)

VaVyp(z,y) — Vyvre(r,y) Vz(p A ) — Vzp AVry



Let = & FV(y)

[Vx(p — ¥(z))] Vie

@ — U(z) ]
VI Vxp 7
Vzy(z) . e
¢ — Va(z) N

Vz(p — ¥(z)) — (¢ — Vz(¥(z))

In the righthand derivation VI is allowed, since = & FV(yp), and VE is ap-
plicable.

Note that ¥I in the bottom left derivation is allowed because » & FV (),
for at that stage ¢ is still (part of) a hypothesis.

The reader will have grasped the technique behind the quantifier rules: re-
duce a Vxy to ¢ and reintroduce ¥V later, if necessary. Intuitively, one makes the
following step: to show “forall z...z...” it suffices to show “...z...” for an
arbitrary x. The latter statement is easier to handle. Without going into fine
philosophical distinctions, we note that the distinction “forall z ...z...”" -
“for an arbitrary x ...x...”" is embodied in our system by means of the
distinction. “quantified statement” — “ free variable statement”.

2.9 Adding the Existential Quantifier

Let us introduce dry as an abbreviation for —=Vr—y (Theorem 2.5.1 tells us
that there is a good reason for doing so). We can prove the following:

Lemma 2.9.1 (i) ¢(t)+ 3zp(x) (t free for = in @)

(ii) Ip(z) F ¥ = I',dzp(x) F ¥
if = is not free in ¢ or any formula of I'.

Proof. (i) ¥z ()] VE
—p(t) e(t) L
1
_
“Vr—p(zx)

so p(t) b dxp(x)



(ii)

—RAA 0

Explanation. The subderivation top left is the given one; its hypotheses are
in I'U {p(x)} (only ¢(z) is shown). Since ¢(z) (that is, all occurrences of it)
is cancelled and x does not occur free in I' or v, we may apply V1. From the
derivation we conclude that I', 3xp(x) - 9.

We can compress the last derivation into an elimination rule for 3:

[l

Irplx) ¢
7 iF

with the conditions: x is not free in v, or in a hypothesis of the subderivation
of ¢, other than ().

This is easily seen to be correct since we can always fill in the missing
details, as shown in the preceding derivation.

w(t
By (i) we also have an introduction rule: #(t) dI  for t free for = in .
3z ¢(z)
Eramples of derivations.
, 3
[Vz(p(z) — 9 - 1
p(z) — ¢ [e(z)]
— E
Frp(z)? "
3E, x ¢ FV(¥)
v
dzrp(z) — ¢
I3

Vz(p(z) — ) — Qrp(z) — )



[e(z)]' [W(z)]'

drp(x) dzy(z)
[p(z) ve(@)]?  3rp(r)vIzg(z)  Fre(r) v Ird(z)
V
Bz(p(z) v ¥(x))]° Arp(z) v 3zv(r) - l
2

dry(z) v IzY(T)
32(p(z) v ¥(z) — 3rp(z) VIzvl(z)

We will also sketch the alternative approach, that of enriching the language.

Theorem 2.9.2 Consider predicate logic with the full language and rules for
all connectives, then - drp(x) « —Vr—p(x).

Proof. Compare 1.6.3. O

It is time now to state the rules for ¥ and 3 with more precision. We want
to allow substitution of terms for some occurrences of the quantified variable

in (VE) and (JF). The following example motivates this.

Vr(r = x) VE
7 g
Jy(z =y))

The result would not be derivable if we could only make substitutions for all
occurrences at the same time. Yet, the result is evidently true.
The proper formulation of the rules now is:

Y
v —£_ VE —XF _
Vrp wlt/z]

]
o[t/ T b
AL

T

with the appropriate restrictions.



