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3! The lifting scheme

* New philosophy in Biorthogonal wavelet construction

« Sweldens, ~95

« Both linear and non-linear wavelets
— Integer implementation enabling lossless coding




Biorthogonal basis:why?

FIR orthonormal filters: no symmetry
* (except Haar filter)

FIR biorthogonal filters: symmetry
— linear phase
— better boundary conditions
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Basis oh the Hilbert space

Orthonormal basis:
— {e.},on: family of the Hilbert space

<e, e,>=0

Yn#p

Vx e H, 3Jan)=<x,e>

leqf2=1
X=Zn }\‘(n) en

e
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Basis of the Hilbert space

Riesz bases:

{e }hon: linearly independent

vy e H, 3JA>0and B>0: y=>_A(n)e,
yP/B < X, [A(n)[Z < |y[%/A

rMn)=<y, &>

{e " }nen - dual family

Biorthogonality relationship: < e,, €",>=5(n-p)

y=2,<Y,€ > e,

A=B=1 = orthogonal basis
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Biorthogonal filters nﬁ

e pOpm@n - Sl

— O—

gln]= (-1 "h[1-n] g(z)=z"*h(-z 7}
glnl= (D hL-n] < §(2) =2z Y

—1) —9 perfect reconstruction
—z‘l) _0 alias-free




% Rationale 0

« Goal: Exploit the correlation structure present in most real life signals to build a
sparse approximation

— The correlation structure is typically local in space (time) and frequency

 Basicidea
— Split the signal x in its polyphase components (even and odd samples)

Xe - (X2k )keZ
XO = (X2k+1)keZ

— These two are highly correlated. It is thus natural to use one of them (e.g. the odds) to
predict the other (e.g. the even)

X,'=P(x,) predicted
d=x,—P(x) difference or detail

— The operation of computing a prediction and recording the detail we call lifting step




Lifting steps i

To get a good frequency splitting, the evens are also updated by replacing them with a
smoothed version

Built-in feature of lifting: no matter how P and U are chosen, the scheme is always
invertible and thus leads to critically sampled perfect reconstruction filter banks
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Biorthogonal FB

A(z1) 4@— LP @ h(z)
3z 4®— BP @ 9(z)

FIGURE 3. Discrete wavelet transform (or subband transform): The forward transform
consists of two analysis filters A (low-pass) and g (high-pass) followed by subsampling,
while the inverse transform first upsamples and then uses two synthesis filters A (low-
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pass) and g (high-pass).

§(z) = zh(=z7)

h(z)=-z"g(-2")

(h,9) in the analysis part (h,g) in the synthesis part
h(z*)h(z)+g(z7)g(z)=2 h(z)h(z™Y) + g(2) §(z7!) = 2
h(—z‘l)ﬁ(z)+ g(—z‘l)g(z) -0 h(z)h(—z~ 1) + g(2) G(—2"1) = 0.
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Polyphase representation

Given the biorthoganl filters h and g

h(z)=h, (22)+ z'h, (zz)
h(z)= Z h, 2™ even coefficients
h, (2) = i h, ..z " odd coefficients

Polyphase matrix

| fe(2) 9.(2)
()M (@)=l o

t

PR condition P(Z)F;(Z_l) = |
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Polyphase representation

)

ﬁ[z_l]*

D G

A ®

P(z)

D @

2

fon

FIGURE 4. Polyphase representation of wavelet transform: first subsample into even
and odd, then apply the dual polvphase matrix. For the inverse transform: first apply the

polyphase matrix and then join even and odd.
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— the other way around

The problem of finding a FIR wavelet transform then amounts to finding a matrix

P(z) with determinant =1

Once the matrix is given, the filters follow
— One can show that this corresponds to the biorthogonality relations

§(z) = zh(-z7")
h(z)=-z"g(-z")

Lazy wavelet
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The lifting scheme B

Definition 1. A filter pair (h,g) is complementary if the corresponding polyphase
matrix P(z) has determinant 1

— If (h,g) is complementary, so is (ﬁ,g)

Theorem 3 (Lifting). Let (h,g) be complementary. Then, any other finite filter gnev(z)
complementary to h is of the form

g™ (z)= g(z)+h(z)s(zz)
where s(z) is a Laurent polynomial. Conversely, any filter of this form is
complementary to h

Proof

P“eW(z):P(z)Ll) S(lz)}—>detP”eW(z):detP(z):1
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proof and consequences
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“Lifted” FB

P(z)

s(z)
|




From Swelden’s paper

Theorem 3 (Lifting). Let (h, g) be complementary. Then any other finite filter g™ complementary to h

is of the form:
9" (2) = g(2) + h(2) s(z°),

where 8(z) is a Laurent polynomial. Conversely any filter of this form is complementary to h.

Proof The polyphase components of h(z) s(z?) are h.(z) s(z) for even and h,(z) s(z) for odd. After
lifting, the new polyphase matrix is thus given by

P (2) = P(z)

1 s(z) ] |

This operation does not change the determinant of the polyphase matrix. |




Analysis FB i
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Towards lossless
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Dual lifting

Teorem 4. Let (h,g) be complementary. Then any other filter h_,(z)
complementary to g is of the form

h™(z)=h(z)+ g(z)t(zz)

where t(z) is a Laurent polynomial. Conversely, any filter of this form is
complementary to g

— New polyphase matrix

vl

— Dual lifting creates anew (§ given by

§"" (z) = g(z)—ﬁ(z)t(z‘z)

NIy




Dual lifting Dlg

_ LP
t(2) t(z) —
G -@-oo—a

Prediction

Prediction steps: the HP coefficients are shaped (lifted) by filtering the LP ones by
the filter t(z)

Update steps: the LP coefficients are shaped by filtering the HP ones by s(z)

One can start from the lazy wavelet and use lifting to gradually build one’s way up
to a multiresolution analysis with particular properties




lifting and dual lifting DT

h(z"1) —@ @ LP @ @—
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The lifting scheme: First a classical subband filter scheme and then lifting

o

FIGURE 5.
the low-pass subband with the help of the high-pass subband.

R(z™Y)

—® | LP T @— hz)
t(z) t(z) ®_..

FIGURE 6. The dual lifting scheme: First a classical subband filter scheme and later

lifting the high-pass subband with the help of the low-pass subband.
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lazy wavalet

The problem of finding an FIR wavelet transform thus amounts to finding a matrix P(z) with deter-
minant one. Once we have such a matrix, P(z) and the four filters for the wavelet transform follow
immediately. From (2) and Cramer’s rule it follows that

Es(zj = 90(3_1}1 -ﬁufz} = _ge:{z_]}r .&e(z] = _ha(z_lj: ﬁa{z] = hfe:[:z_lj-

This implies
~r N =1 ~1 Tla) — o1 -1
glz) =z h(—2z7") and h(z)=—z""g(—27").

The most trivial example of a polyphase matrix is P(z) = I This results in h(z) = H(z] =1
and g(z) = g(z) = z—!. The wavelet transform then does nothing else but subsampling even and odd
samples. This transform 1s called the polyphase transform, but in the context of lifting it 1s often referred
to as the Lazy wavelet transform [44]. (The reason 1s that the notion of the Lazy wavelet can also be used
in the second generation setting. )




Lifted basis functions NI

« Lifting
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does not change — lifting the wavelet through s(z)

« Dual lifting does not change — lifting the basis function through t(z)




Global Lifting
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Cakewalk construction H

lifting (prediction)

+* G)__
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dual lifting (update)
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Every finite wvt can be obtained with a cakewalk starting from
the Lazy wavelet




Lifting theorem i

Theorem 7. Given a complementary filter pair (h,g), then there always exist
Laurent polynomials s,(z) and t,(z) for i=1,...,m and a non-zero constant K so that

CRIEN I )

— The dual polyphase matrix is given by

Every finite filter wavelet transform can be obtained by starting with the lazy
wavelet followed by m lifting and dual lifting steps, followed by a scaling

The prediction and update steps are found by factorization of the polyphase matrix




Analysis

Implementation
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Integer wavelet transform

Analysis Synthesis
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Lazy wavelet
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Fully in-place implementation

Odd samples are used to predict even samples and viceversa
— The original memory locations can be overwritten
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Summary i

« Biorthogonal (FIR) wavelets

« Perfect reconstruction ensured for any signal extension at borders
« Faster, fully in-place implementation

« Reduced computational complexity

* Non-linear lifting

« All operations within one lifting step can be done entirely parallel while the only
sequential part is the order of the lifting operations

« Allows wavelets mapping integers to integers, important for hardware
implementation and lossless coding

« Allows for adaptive wavelet transforms (i.e. wavelets on the sphere)




Application: Object-based coding ﬁ
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Appendix

Laurent polynomials

[sweldens paper]




Filters and Laurent polynomials B
poly | -
A filter h is a linear time invariant operator and is completely determined by its impulse response:
{hi € R | k € Z}. The filter h is a Finite Impulse Response (FIR) filter in case only a finite number of
filter coefficients hy are non-zero. We then let £y (respectively ke) be the smallest (respectively largest)
integer number k for which hy is non-zero. The z-transform of a FIR filter A is a Laurent polynomial
h(z) given by

ke
h(z) =Y hyzF.

b=k

In this paper, we consider only FIR filters. We often use the symbol A to denote both the filter and the
associated Laurent polynomial h(z). The degree of a Laurent polynomial h is defined as

b = ke — Ky

So the length of the filter is the degree of the associated polynomial plus one. Note that the polynomial
zP seen as a Laurent polynomial has degree zero, while as a regular polynomial it would have degree p.
In order to make consistent statements, we set the degree of the zero polynomial to —oc.

The set of all Laurent polynomials with real coefficients has a commutative ring structure. The sum
or difference of two Laurent polynomials is again a Laurent polynomial. The product of a Laurent
polynomial of degree [ and a Laurent polynomial of degree " is a Laurent polynomial of degree [ + 1.
This ring is usually denoted as R[z, z71].




Laurent polynomials RlE

Within a ring, exact division is not possible in general. However, for Laurent polynomials. division
with remainder is possible. Take two Laurent polynomials a(z) and b(z) # 0 with |a(z)| = |b(z)|, then
there always exists a Laurent polynomial ¢(z) (the quotient) with |g(z)| = |a(z)| — |b(z)|. and a Laurent
polynomial r(z) (the remainder) with |r(z)| < |b(z)| so that

a(z) = b(z) q(z) + r(z).
We denote this as (C-language notation):
q(z) =a(z) /b(z) and r(z)=al(z)%b(z).
If |b(z)| = 0 which means b(z) is a monomial, then r(z) = 0 and the division is exact. A Laurent poly-
nomial is invertible if and only if it is a monomial. This is the main difference with the ring of (regular)
polynomials where constants are the only polynomials that can be inverted. Another difference is that

the long division of Laurent polynomials is not necessarily unique. The following example illustrates
this.




Laurent polynomials

Example 1. Suppose we want to divide a(z) = 27! + 6 + z by b(z) = 4 + 4 z. This means we have to
find a Laurent polynomial g(z) of degree 1 so that r(z) given by

r(z) = a(z) — b(2) q(2)

is of degree zero. This implies that b(2) g(z) has to match a(z) in two terms. If we let those terms be the
term in z~* and the constant then the answer is g(z) = 1/4 (2~ + 5). Indeed,

r(z)=(z"+6+2)—(d+42)(1/427" +5/4) = —42.

The remainder thus is of degree zero and we have completed the division. However if we choose the two
matching terms to be the ones in z and 27!, the answer is ¢(2) = 1/4 (z=! + 1). Indeed,

r(z)=(z7'+6+2)—(4+42)(1/42z71 +1/4) = 4.

Finally, if we choose to match the constant and the term in z, the solution is ¢(z) = 1/4 (52z~"' + 1) and
the remainder is r(z) = —4 271,
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