
Chapter 4

Selection Statements

Linguaggio Programmazione Matlab-Simulink (2018/2019)

If Statement
 The if statement is used to determine whether or not a statement

or group of statements is to be executed
 General form:

if condition

action

end

 the condition is any relational expression
 the action is any number of valid statements (including, possibly,

just one)
 if the condition is true, the action is executed – otherwise, it is

skipped entirely

Representing true/false concepts
 Note: to represent the concept of false, 0 is used.

To represent the concept of true, any nonzero
value can be used – so expressions like 5 or ‘x’
result in logical true

 This can lead to some common logical errors

 For example, the following expressions are always true
(because the “relational expressions” on the right, 6
and ‘N’, are nonzero so they are true; therefore, it does
not matter what the results of the others are):

number < 5 || 6

letter == ‘n’ || ‘N’

If-else Statements
 The if-else statement chooses between two actions

 General form:
if condition

action1

else

action2

end

 One and only one action is executed; which one
depends on the value of the condition (action1 if it is
logical true or action2 if it is false)

Throwing an error
 MATLAB has an error function that can be used to

display an error message in red, similar to the error
messages generated by MATLAB

if radius <= 0

error('Sorry; %.2f is not a valid radius\n', radius)

else

% carry on

end

Nested if-else Statements
 To choose from more than two actions, nested if-else

statements can be used (an if or if-else statement as the action
of another)

 General form:
if condition1

action1
else

if condition2
action2

else
if condition3

action3
% etc: there can be many of these
else

actionn % the nth action
end

end
end

The elseif clause
 MATLAB also has an elseif clause which shortens the code (and

cuts down on the number of ends)
 General form:

if condition1
action1

elseif condition2
action2

elseif condition3
action3

% etc: there can be many of these
else

actionn % the nth action
end

The “is” functions
 There are many “is” functions in MATLAB that

essentially ask a true/false question, and return logical
1 for true or 0 for false

 isletter returns 1 or 0 for every character in a string –
whether it is a letter of the alphabet or not

 isempty returns 1 if the variable argument is empty, or
0 if not

 iskeyword returns 1 if the string argument is a
keyword, or 0 if not

 isa determines whether the first argument is a
specified bype

Programming Style Guidelines
 Use indentation to show the structure of a script or

function. In particular, the actions in an if statement
should be indented.

 When the else clause isn’t needed, use an if statement
rather than an if-else statement

Chapter 5

Loop Statements & Vectorizing Code

Linguaggio Programmazione Matlab-Simulink (2018/2019)

for loop
 used as a counted loop

 repeats an action a specified number of times

 an iterator or loop variable specifies how many times
to repeat the action

 general form:

for loopvar = range

Action

end

 the range is specified by a vector

 the action is repeated for every value of the loop
variable in the specified vector

for loop examples
 Loop that uses the iterator variable:

>> for i = 1:3

fprintf('i is %d\n', i)

end

i is 1

i is 2

i is 3

 Loop that does not use the iterator variable:
>> for i = 1:3

disp('Howdy')

end

Howdy

Howdy

Howdy

Preallocating a Vector
 Preallocating sets aside enough memory for a vector to

be stored

 The alternative, extending a vector, is very inefficient
because it requires finding new memory and copying
values every time

 Many functions can be used to preallocate, although it
is common to use zeros

 For example, to preallocate a vector vec to have N
elements:

vec = zeros(1,N);

for loop uses
 calculate a sum

 initialize running sum variable to zero

 calculate a product
 initialize running product variable to one

 input from user
 can then echo print the input

 sum values in a vector
 can also use built-in function sum for this

 other functions that operate on vectors: prod,
cumsum, cumprod, min, max,cummin, cummax

For loop application: subplot
 The subplot function creates a matrix (or vector) in a

Figure Window so that multiple plots can be viewed at
once

 If the matrix is m x n, the function call subplot(m,n,i)
refers to element i (which must be an integer in the
range from 1 to m*n)

 The elements in the FW are numbered row-wise

 It is sometimes possible to use a for loop to iterate
through the elements in the Figure Window

Subplot Example
 For example, if the subplot matrix is 2 x 2, it may be

possible to loop through the 4 elements to produce the
4 separate plots

for i = 1:4

subplot(2,2,i)

% create plot i

end

Plot 1 Plot 2

Plot 3 Plot 4

Nested for loops
 A nested for loop is one inside of (as the action of) another for

loop

 General form of a nested for loop:

for loopvarone = rangeone outer loop

% actionone:

for loopvartwo = rangetwo inner loop

actiontwo

end

end

 The inner loop action is executed in its entirety for every
value of the outer loop variable

while loop
 used as a conditional loop

 used to repeat an action when ahead of time it is not known how
many times the action will be repeated

 general form:
while condition

action

end

 the action is repeated as long as the condition is true

 an infinite loop can occur if the condition never becomes false
(Use Ctrl-C to break out of an infinite loop)

 Note: since the condition comes before the action, it is possible
that the condition will be false the first time it is evaluated and
therefore the action will not be executed at all

while loop application: error-
checking
 with most user input, there is a valid range of values

 a while loop can be used to keep prompting the user, reading
the value, and checking it, until the user enters a value that is in
the correct range

 this is called error-checking

 general form of a while loop that error-checks:

prompt user and input value

while value is not in correct range

print error message

prompt user and input value

end

use value

Example: Prompt for radius
radius = input('Enter the radius of a circle: ');

while radius <= 0

radius = input('Invalid! Enter a positive radius: ');

end

area = pi * radius ^ 2;

fprintf('The area is %.2f\n', area)

While loop example (Practice 5.6)
% Error checks until the user enters n positive integers

n = 4;

for i = 1:n

inputnum = input('Enter a positive integer: ');

num2 = int32(inputnum);

while num2 ~= inputnum || num2 < 0

inputnum = input('Invalid! Enter a positive integer: ');

num2 = int32(inputnum);

end

fprintf('Thanks, you entered a %d \n',inputnum)

end

for loops and vectors
 for loops can be used to accomplish the same task for

every element in a vector

 general form of for loop that iterates through a vector:

for i = 1:length(vectorvariable)

do something with vectorvariable(i)

end

 if the purpose of the loop is to create a vector variable,
it is much more efficient to preallocate the variable
before the loop (note: the length must be known)

Nested for loops and matrices
 nested for loops can be used to accomplish the same task for every

element in a matrix
 one loop is over the rows, and the other is over the columns
 general form of nested for loop that iterates through a matrix:

[r c] = size(matrixvariable)
for row = 1:r

for col = 1:c
do something with matrixvariable(row,col)

end
end

 Note: this nested loop iterates through the matrix row-by-row; by
reversing the for statements it would instead iterate column-by-
column

Use MATLAB wisely!!
 Using for loops with vectors and matrices is a very

important programming concept, and is necessary
when working with many languages

 However… Although for loops are very useful in
MATLAB (e.g., for the subplot function), they are
almost NEVER necessary when performing an
operation on every element in a vector or matrix!

 This is because MATLAB is written to work with
matrices (and therefore also vectors), so functions on
matrices and operations on matrices automatically
iterate through all elements – no loops needed!

Vectorizing
 The term vectorizing is used in MATLAB for re-

writing code using loops in a traditional programming
language to matrix operations in MATLAB

 For example, instead of looping through all elements
in a vector vec to add 3 to each element, just use scalar
addition:

vec = vec + 3;

Efficient Code
 In most cases, code that is faster for the programmer to

write in MATLAB is also faster for MATLAB to execute

 Keep in mind these important features:

 Scalar and array operations

 Logical vectors

 Built-in functions

 Preallocation of vectors

Preallocation Question
 Preallocation can speed up code, but in order to

preallocate it is necessary to know the desired size.
What if you do not know the eventual size of a vector
(or matrix)? Does that mean that you have to extend it
rather than preallocating?

Preallocation Answer
 If you know the maximum size that it could possibly

be, you can preallocate to a size that is larger than
necessary, and then delete the “unused” elements. In
order to do that, you would have to count the number
of elements that are actually used. For example, if you
have a vector vec that has been preallocated, and a
variable count that stores the number of elements that
were actually used, this will trim the unnecessary
elements:

 vec = vec(1:count)

Operations on Vectors & Matrices
 Can perform numerical operations on vectors and

matrices, e.g. vec + 3

 Scalar operations e.g. mat * 3

 Array operators operate term-by-term or element-by-
element, so must be same size

 Addition + and subtraction -

 Array operators for any operation based on
multiplication require dot in front .* ./ .\ .^

Useful Efficient functions
 Keep in mind these useful functions:

 sum, prod, cumsum, cumprod, min, max

 any, all, find

 diff

 “is” functions including isequal

 checkcode: can check code in both scripts and
functions for inefficiencies; same as information in
Code Analyzer Reports

Timing Code
 The functions tic and toc are used to time code

 Be careful; other processes running in the background will have an effect so
should run multiple times and average
>> type fortictoc

tic
mysum = 0;
for i = 1:20000000

mysum = mysum + i;
end
toc

>> fortictoc
Elapsed time is 0.090699 seconds.
>>

 There is also a Profiler that will generate detailed reports on execution
times of codes

Common Pitfalls
 Forgetting to initialize a running sum or count variable

to 0 or a running product to 1

 Not realizing that it is possible that the action of a
while loop will never be executed

 Not error-checking input into a program

 Forgetting that subplot numbers the plots rowwise
rather than columnwise.

 Not taking advantage of MATLAB; not vectorizing!

Programming Style Guidelines
 Use loops for repetition only when necessary

 for statements as counted loops

 while statements as conditional loops

 Do not use i or j for iterator variable names if the use
of the built-in constants i and j is desired.

 Indent the action of loops

 Preallocate vectors and matrices whenever possible
(when the size is known ahead of time).

 If the loop variable is just being used to specify how
many times the action of the loop is to be executed,
use the colon operator 1:n

Exercises
 Write a for loop that will print a column of five *’s.

 Write a function mymatmin that finds the minimum
value in each column of a matrix argument and returns
a vector of the column minimums.

 Write a script avenegnum that will repeat the process
of prompting the user for negative numbers, until the
user enters a zero or positive number. Instead of echo-
printing them, however, the script will print the
average (of just the negative numbers). If no negative
numbers are entered, the script will print an error
message instead of the average.

Exercises
 Write a function that imitates the cumprod function.

Use the method of preallocating the output vector.
(Hint: use help cumprod first).

 Create a function matrowsum to calculate and return a
vector of all of the row sums of a matrix, instead of
column sums (sum function in Matlab returns the
column sums)

 Implement vectorized versions of the previous
functions and scripts that includes tic toc commands
to test the efficency of the code.

Chapter 6

MATLAB Programs

Linguaggio Programmazione Matlab-Simulink (2018/2019)

Types of Functions
 Categories of functions:

 functions that calculate and return one value

 functions that calculate and return more than one value

 functions that just accomplish a task, such as printing,
without returning any values

 They are different in:

 the way they are called

 what the function header looks like

 All are stored in code files with the extension .m

Generic Function Definition
 All function definitions consist of:

 The function header

 The reserved word function

 Output arguments and the assignment operator (only if the
function returns value(s)

 Function name and input arguments

 A block comment describing the function

 The body of the function which includes all statements,
including putting values in all output arguments, if
there are any

 end

Functions that Return >1 Value
 General form of a function that returns more than one

value; it has multiple output arguments in the header

 The output arguments are separated by commas

function [output arguments] = functionname(input arguments)
% Comment describing the function
Statements here; these must include putting values in all
of the output arguments listed in the header
end

functionname.m

Calling the function
 Since the function is returning multiple values

through the output arguments, the function call
should be in an assignment statement with
multiple variables in a vector on the left-hand side
(the same as the number of output arguments in
the function header) in order to capture all of
them

 Otherwise, some will be lost

Example Function Call
 For example, if the function header is:

function [x,y,z] = fnname(a,b)

 This indicates that the function is returning 3 things, so a
call to the function might be (assuming a and b are
numbers):

[g,h,t] = fnname(11, 4.3);

 Or using the same names as the output arguments (it
doesn’t matter since the workspace is not shared):

[x,y,z] = fnname(11, 4.3);

 This function call would only get the first value returned:
result = fnname(11, 4.3);

A function tworan that returns two
random integers, each in the range from
10 to 20

function [ranx, rany] = tworan

ranx = randi([10,20]);

rany = randi([10,20]);

end

tworan.m

Example Function call:

[x, y] = tworan

A function tworanb that receives two
integer arguments a and b and returns
two random integers, each in the range
from a to b

function [ranx, rany] = tworanb(a,b)

ranx = randi([a,b]);

rany = randi([a,b]);

end

tworanb.m

Example Function call:

[x, y] = tworanb(5, 50)

Functions that do not return anything
 A function that does not return anything has no

output arguments in the function header, nor does it
have the assignment operator

 The statements in the body would typically display or
plot information from the input arguments

function functionname(input arguments)
% Comment describing the function
statements here

end

functionname.m

Calling a function with no output
 Since no value is returned, the call to such a function is

a statement

 For example, if this is the function header:
function fnname(x,y)

 A call to the function might look like this:
fnname(x,y)

 This would NOT be a valid call; since the function is
not returning anything, there is no value to assign:

result = fnname(x,y); % Invalid!

A function prttworan that prints two
random integers, each in the range
from 10 to 20

function prttworan

fprintf(‘One is %d\n’, randi([10,20]))

fprintf(‘The other is %d\n’, randi([10,20]))

end

prttworan.m

Example Function call:

prttworan

A function prttworanb that receives two
integer arguments a and b and prints
two random integers, each in the range
from a to b

function prttworanb(a,b)

fprintf(‘One is %d\n’, randi([a,b]))

fprintf(‘The other is %d\n’, randi([a,b]))

end

prttworanb.m

Function call:

prttworanb(5,50)

Notes on Functions
 You do not always have to have input arguments to a function. If

you do not, you can have (both in the function header and in the
function call) empty (), or you can just leave them out

 The function header and function call have to match up:

 the name has to be the same

 the number of input arguments must be the same

 the number of variables in the left-hand side of the assignment
should be the same as the number of output arguments

 if there are no output arguments, the function call is a statement

 Functions that return values do not normally print them, also –
that is left to the calling function/script

Subfunctions
 When one function calls another, the two functions can be stored in

the same code file with the same name as the primary function

 The subfunction can only be called by the primary
function

primary function header

primary function body includes call to subfunction

end

subfunction header

subfunction body

end

primary.m

Example: Modular outline
 In a modular program, a script calls functions

 Given the following script (where x,y,z are 3 things)

[x,y,z] = getinputs;

result = calcstuff(x,y,z);

displayit(x,y,z, result)

 With just that information, we can write the
corresponding function headers (not the definitions,
just the headers)

Example function headers
 function [x,y,z] = getinputs

 function result = calcstuff(x,y,z)

 function displayit(x,y,z, result)

Types of Errors
 Syntax errors: mistakes in language e.g. missing quote

at the end of a string

 Run-time (or execution-time) errors: errors that are
found during execution of a script or function, e.g.
referring to an element in a vector that does not exist

 Logical errors: mistakes in reasoning e.g. using an
expression like (0 < x < 10)

Debugging Methods
 There are several methods that can be used to find

errors:
 Tracing: using the echo statement which will show all

statements as executed

 Using MATLAB’s Editor/Debugger

 Set breakpoints so values of variables/expressions can be
examined at various points
 dbstop sets a breakpoint

 dbcont continues execution

 dbquit quits debug mode

Code Cells and Publishing
 Code in scripts can be broken into sections called code

cells

 You can run one code cell at a time

 Code cells are created with comments that start with
two %%

 Code in code cells can also be published in HTML
format with plots embedded and with formatted
equations

 Do this from the Publish tab in the Editor

Exercises
 Write a function perimarea that calculates and returns

the perimeter and area of a rectangle. Pass the length
and width of the rectangle as input arguments.

 Write a function that receives a vector as an input
argument and prints the individual elements from the
vector in a sentence format.

 Write a function that will prompt the user for a string
of at least one character, loop to error-check to make
sure that the string has at least one character, and
return the string.

Exercises
 For a right triangle with sides a, b, and c, where c is the

hypotenuse and θ is the angle between sides a and c,
the lengths of sides a and b are given by:

a = c * cos(θ)

b = c * sin(θ)

Write a script righttri that calls a function to prompt the
user and read in values for the hypotenuse and the angle
(in radians), and then calls a function to calculate and
return the lengths of sides a and b, and a function to
print out all values in a sentence format.

Exercises
 Modify the readradius function to error-check the

user’s input to make sure that the radius is valid. The
function should ensure that the radius is a positive
number by looping to print an error message until the
user enters a valid radius.

Exercises
 The following script is bad code in several ways. Use

checkcode first to check it for potential problems,
and then use the techniques described in this section
to set breakpoints and check values of variables.

debugthis.m

for i = 1:5

i = 3;

disp(i)

end

for j = 2:4

vec(j) = j

end

