CUDD
Colorado University Decision Diagram Package

Software per Sistemi Embedded
Corso di Laurea in Informatica

Davide Bresolin Tiziano Villa

SSE (Lab) CUDD Lesson 3 1/21



Outline

@ Introduction
e CUDD: Basic Architecture

e Example: Half-Adder

SSE (Lab) CUDD

Lesson 3

2/21



CUDD

@ CUDD is the Colorado University Decision Diagram Package.

@ ltis a C/C++ library for creating different types of decision
diagrams:
» binary decision diagrams (BDD);
» zero-suppressed BDDs (ZDD);
» algebraic decision diagrams (ADD)

@ This lesson is only on the BDD functionality of CUDD

SSE (Lab) CUDD Lesson 3

3/21



Acquiring CUDD

@ You can download CUDD by FTP with anonymous login from
vlsi.colorado.edu

@ The latest version is 2.5.0
@ ESD Lab:
» CUDD library and documentation is in
/opt/EDA_software/sse/cudd

» source /opt/EDA_software/start_eda.bash and select
option 19 to setup gcc environment variables

SSE (Lab) CUDD Lesson 3 4/21



Including and linking the CUDD library

@ The CUDD library has two main header files:

» #include<cudd.h> for the C library
» #include<cuddObij.h> for the C++ library

@ We will use the C library
@ The package is split into many different libraries:
libcudd.a, libutil.a, ...

@ To compile and link a C program that use CUDD:

gcc —-o main main.c -lcudd -lutil -lepd -lmtr -1lst —-1m

SSE (Lab) CUDD Lesson 3 5/21



o Introduction

e CUDD: Basic Architecture

Q Example: Half-Adder

«0>» «F>» « Tr» « > = Q>



Garbage Collection

@ CUDD has a built in garbage collection system.

@ When a BDD is not used anymore, its memory can be reclaimed.

@ To facilitate the garbage collector, we need to “reference” and
“dereference” each node in our BDD:
» Cudd_Ref (DdNodex) to reference a node
» Cudd_RecursiveDeref (DdNodex) to dereference a node and
all its descendants.

SSE (Lab) CUDD Lesson 3 7/21



Complemented arcs

@ Each node of a BDD can be:

» a variable with two children
» a leaf with a constant value

@ The two children of a node are referred to as the “then” child and
the “else” child

@ To assign a value to a BDD, we follow “then” and “else” children
until we reach a leaf:

» the value of our assignment is the value of the leaf we reach

@ However: “else” children can be complemented:

» when and else child is complemented, then we take the
complement of the value of the leaf:

* j.e., if the value of the leaf is 1 and we have traversed through and
odd number of complement arcs, the value of our assignment is 0.

SSE (Lab) CUDD Lesson 3 8/21



Complemented arcs: example

@ out = XpXi out

@ “then” arcs are solid

@ normal “else” arcs are dashed x0
@ complemented “else” arcs are
dotted
x1
@ the out arc is complemented:
out = Xg + X4
= 70 + XoX1 1

SSE (Lab) CUDD Lesson 3

9/21



o Introduction

e CUDD: Basic Architecture

© Example: Half-Adder

«0>» «F>» « Tr» « > = Q>



The half-adder circuit

h This is a half adder circuit that we

will compile into an OBDD.

It has the following truth table:

andl and2

X1 Xz | sum carry
0 0

0 O
0 1 1 0
1 0 1 0
1 1 0 1

SSE (Lab) CUDD Lesson 3 11/21



The bDdManager

The DdManager is the central data structure of CUDD:
@ It must be created before calling any other CUDD function.

@ It needs to be passed to almost every CUDD function.

To initialize the DdManager, we use the following function:

DdManager * Cudd_Init (
unsigned int numVars, // initial number of BDD wvariables (i.e., subtables)
unsigned int numVarsZ, // initial number of ZDD wvariables (i.e., subtables)
unsigned int numSlots, // initial size of the unique tables
unsigned int cacheSize, // initial size of the cache
unsigned long maxMemory // target mazimum memory occupation.(0 means unlimited)
);

SSE (Lab) CUDD Lesson 3 12/21



Initializing the DdManager

#include<stdio.h>
#include<cudd.h>

int main() {

DdManager* manager=Cudd_Init (0, O,
CUDD_UNIQUE_SLOTS,

CUDD_CACHE_SLOTS, 0);
if (manager == NULL) {

printf ("Error while initalizing CUDD.\n");
return 1;

return O;

SSE (Lab) CUDD Lesson 3

13/21



The DdNode

The DdNode is the core building block of BDDs:

struct DdNode {
DdHalfWord index; // Index of the wvariable reprented by this node
DdHalfWord ref; // reference count
DdNode *next ; // mext pointer for unique table
union {
CUDD_VALUE.TYPE value; // for constant nodes
DdChildren kids; // for internal nodes
} type;
b

@ index is a unique index for the variable represented by this node.
» It is permanent: if we reorder variables, the index remains the same
@ ref stores the reference count for this node.

» It is incremented by cudd_Ref and decremented by
Cudd_Recursive_Deref

SSE (Lab) CUDD Lesson 3 14/21



Create the BDD for sum

DdNode*x x1 = Cudd_bddIthVar (manager, O0);
DdNodex* x2 Cudd_bddIthVar (manager, 1);

DdNode* andl;
andl = Cudd_bddAnd (manager, x1, Cudd_Not (x2));
Cudd_Ref (andl) ;

DdNodex and2;
and2 = Cudd_bddAnd (manager, Cudd_Not (x1), x2);
Cudd_Ref (and2) ;

DdNode* sum;
sum = Cudd_bddOr (manager, andl, and2);
Cudd_Ref (sum) ;

Cudd_RecursiveDeref (manager, andl);
Cudd_RecursiveDeref (manager, and2);

Exercise: write the code for carry

SSE (Lab) CUDD Lesson 3

15/21



Restricting the BDD

@ Restricting a BDD means assigning a truth value to some of the

variables

DdNode * Cudd_-bddRestrict (
DdManager * manager, // DD manager
DdNode * BDD, // The BDD to restrict
DdNode * restrictBy) // The BDD to restrict by.

@ BDD is the original BDD to restrict
@ restrictBy is the truth assignment of the variables:
» AND of variables and complemented variables

@ the function returns the restricted BDD

SSE (Lab) CUDD Lesson 3

16/21



Print the truth table of the Half-adder

DdNode #*restrictBy;
restrictBy = Cudd_bddAnd (manager, x1, Cudd_Not (x2));
Cudd_Ref (restrictBy);

DdNode xtestSum;

testSum = Cudd_bddRestrict (manager, sum, restrictBy);
Cudd_Ref (testSum) ;

DdNode xtestCarry;

testCarry = Cudd_bddRestrict (manager, carry, restrictBy);
Cudd_Ref (testCarry);

printf("xl = 1, x2 = 0: sum = %d, carry = %d\n",
1 - Cudd_IsComplement (testSum),
1 - Cudd_IsComplement (testCarry));

Cudd_RecursiveDeref (manager, restrictBy); EX.eI‘CISe.
Cudd_RecursiveDeref (manager, testSum); write the COde fOI’ the
Cudd_RecursiveDeref (manager, testCarry); complete truth table

SSE (Lab) CUDD Lesson 3 17/21



Print the BDD: graphviz

@ The function Cudd_bumpDot dumps the BDD to a file in GraphViz
format

@ The .dot file can be converted to a PDF by the command dot:

dot -0 —-Tpdf half_ adder.dot

SSE (Lab) CUDD Lesson 3 18/21



Print the BDD: C code

charx inputNames|[2];

inputNames[0] = "x1";
inputNames[1l] = "x2";
charx outputNames|[2];
outputNames[0] = "sum";
outputNames[1l] = "carry";

DdNode* outputs[2];

outputs[0] = sum;
Cudd_Ref (outputs[0]);
outputs[l] = carry;

Cudd_Ref (outputs[1]);
FILEx f = fopen("half_adder.dot", "w");

Cudd_DumpDot (manager, 2, outputs, inputNames,

Cudd_RecursiveDeref (manager, outputs([0]);
Cudd_RecursiveDeref (manager, outputs[1l]);
fclose (f);

SSE (Lab) CUDD

outputNames,

Lesson 3

£);

19/21



Variable reordering

@ The order of variables can have a tremendous effects on the size
of BDDs
@ CUDD provides a rich set of tools for reordering BDDs:

» Automatic reordering (using heuristics) when the number of nodes
in the BDD passes a certain threshold

» Manual reordering using different heuristics

» Manual reordering with a user-specified variable order

The function Cudd_shuffleHeap is used to define the variable order:

int Cudd_ShuffleHeap (
DdManager * manager, // DD manager
int * permutation // required wvariable permutation

)

SSE (Lab) CUDD Lesson 3 20/ 21



Exercise: play with the variable order!

@ Create the BDD for the function xq x> + X3X4 + X5Xg

@ Try the following variable orders and compare the results:
X1 < Xo< Xz < X4 < X5 < Xp
> X1 < Xz < X5 < Xo< Xq4 < Xp

HINTS
@ int Cudd_ReadPerm(manager, x2->index) returns the
position of variable x2 in the order
@ int Cudd_ReadNodeCount (manager) returns the number of
nodes in the BDD

SSE (Lab) CUDD Lesson 3 21/21



	Introduction
	CUDD: Basic Architecture
	Example: Half-Adder

