
CUDD
Colorado University Decision Diagram Package

Software per Sistemi Embedded

Corso di Laurea in Informatica

Davide Bresolin Tiziano Villa

SSE (Lab) CUDD Lesson 3 1 / 21

Outline

1 Introduction

2 CUDD: Basic Architecture

3 Example: Half-Adder

SSE (Lab) CUDD Lesson 3 2 / 21

CUDD

CUDD is the Colorado University Decision Diagram Package.

It is a C/C++ library for creating different types of decision
diagrams:

I binary decision diagrams (BDD);
I zero-suppressed BDDs (ZDD);
I algebraic decision diagrams (ADD)

This lesson is only on the BDD functionality of CUDD

SSE (Lab) CUDD Lesson 3 3 / 21

Acquiring CUDD

You can download CUDD by FTP with anonymous login from
vlsi.colorado.edu

The latest version is 2.5.0

ESD Lab:
I CUDD library and documentation is in
/opt/EDA_software/sse/cudd

I source /opt/EDA_software/start_eda.bash and select
option 19 to setup gcc environment variables

SSE (Lab) CUDD Lesson 3 4 / 21

Including and linking the CUDD library

The CUDD library has two main header files:
I #include<cudd.h> for the C library
I #include<cuddObj.h> for the C++ library

We will use the C library

The package is split into many different libraries:

libcudd.a, libutil.a, . . .

To compile and link a C program that use CUDD:

gcc -o main main.c -lcudd -lutil -lepd -lmtr -lst -lm

SSE (Lab) CUDD Lesson 3 5 / 21

Outline

1 Introduction

2 CUDD: Basic Architecture

3 Example: Half-Adder

SSE (Lab) CUDD Lesson 3 6 / 21

Garbage Collection

CUDD has a built in garbage collection system.

When a BDD is not used anymore, its memory can be reclaimed.

To facilitate the garbage collector, we need to “reference” and
“dereference” each node in our BDD:

I Cudd_Ref(DdNode*) to reference a node
I Cudd_RecursiveDeref(DdNode*) to dereference a node and

all its descendants.

SSE (Lab) CUDD Lesson 3 7 / 21

Complemented arcs

Each node of a BDD can be:
I a variable with two children
I a leaf with a constant value

The two children of a node are referred to as the “then” child and
the “else” child

To assign a value to a BDD, we follow “then” and “else” children
until we reach a leaf:

I the value of our assignment is the value of the leaf we reach

However: “else” children can be complemented:
I when and else child is complemented, then we take the

complement of the value of the leaf:
F i.e., if the value of the leaf is 1 and we have traversed through and

odd number of complement arcs, the value of our assignment is 0.

SSE (Lab) CUDD Lesson 3 8 / 21

Complemented arcs: example

out = x0x1

“then” arcs are solid
normal “else” arcs are dashed
complemented “else” arcs are
dotted

the out arc is complemented:

out = x0 + x1

= x0 + x0x1

 x0

 x1

 out

0xd

0xc

1

SSE (Lab) CUDD Lesson 3 9 / 21

Outline

1 Introduction

2 CUDD: Basic Architecture

3 Example: Half-Adder

SSE (Lab) CUDD Lesson 3 10 / 21

The half-adder circuit6 Sample Program - Half-Adder

6.1 Creating the BDD

1x x2

and1 and2

sum carry

This is a half adder circuit that we will compile into
an OBDD. It has the following truth table:

x1 x2 sum carry

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Listing 5: C++ code to generate the Half-Adder circuit above as an OBDD in Cudd.

1 DdNode∗∗ createHalfAdderBDD (DdManager ∗manager)
2 {
3 DdNode ∗x0 = Cudd bddIthVar (manager , 0) ;
4 DdNode ∗x1 = Cudd bddIthVar (manager , 1) ;
5

6 DdNode ∗and1 = Cudd bddAnd(manager , x0 , Cudd Not (x1)) ;
7 Cudd Ref (and1) ;
8

9 DdNode ∗and2 = Cudd bddAnd(manager , Cudd Not (x0) , x1) ;
10 Cudd Ref (and2) ;
11

12 DdNode ∗sum = Cudd bddOr (manager , and1 , and2) ;
13 Cudd Ref (sum) ;
14

15 Cudd RecursiveDeref (manager , and1) ;
16 Cudd RecursiveDeref (manager , and2) ;
17

18 DdNode ∗ carry = Cudd bddAnd(manager , x0 , x1) ;
19 Cudd Ref (car ry) ;
20

21 // There are two BDD roo t s so we re turn both o f them .
22 DdNode ∗∗ outputs = new DdNode ∗ [2] ;
23 outputs [0] = sum ;
24 outputs [1] = carry ;
25

26 return outputs ;
27 }

6

This is a half adder circuit that we
will compile into an OBDD.

It has the following truth table:

x1 x2 sum carry
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

SSE (Lab) CUDD Lesson 3 11 / 21

The DdManager

The DdManager is the central data structure of CUDD:

It must be created before calling any other CUDD function.

It needs to be passed to almost every CUDD function.

To initialize the DdManager, we use the following function:

there is one caveat with CUDD. ”else” children can be complemented. If the else child is complemented, then
when we reach a leaf node, we would take the complement of the value of the leaf. i.e., if the value of the leaf is
1 and we have traversed through and odd number of complement arcs, the value of our assignment is 0. In 5.4.3,
we will discuss how to deal with complement arcs.

5.4 Data Structures

The two most important data structures within CUDD are the DdManager and the DdNode. We will now briefly
discuss each.

5.4.1 DdManager

The DdManager is the central struct of CUDD. Creating this struct is the first thing you do when writing a CUDD
program and it needs to be passed to almost every CUDD api function. It is never necessary to manipulate or
inspect this struct directly, instead we will use the CUDD api. In order to initialize the DdManager, we use the
following function:

Listing 2: The function to initialize the DdManager:

DdManager ∗ Cudd Init (
unsigned int numVars , // i n i t i a l number o f BDD va r i a b l e s (i . e . , s u b t a b l e s)
unsigned int numVarsZ , // i n i t i a l number o f ZDD va r i a b l e s (i . e . , s u b t a b l e s)
unsigned int numSlots , // i n i t i a l s i z e o f the unique t a b l e s
unsigned int cacheSize , // i n i t i a l s i z e o f the cache
unsigned long maxMemory // t a r g e t maximum memory occupat ion . (0 means un l imi t ed)

) ;

Listing 3: For our purposes, we can call Cudd Init like this:

Cudd Init (0 , 0 ,CUDD UNIQUE SLOTS, CUDD CACHE SLOTS, 0) ;

5.4.2 Useful DdManager functions:

• int Cudd ReadSize(DdManager * dd): Returns the number of variables stored in the manager.

• int Cudd ReadNodeCount(DdManager * dd): Returns the number of nodes stored in the manager.
(i.e., many nodes can represent the same variable)

5.4.3 DdNode

The DdNode is the core building block of BDDs. It is defined as follows:

Listing 4: The decision diagram node:

struct DdNode {
DdHalfWord index ; // Index o f the v a r i a b l e reprented by t h i s node
DdHalfWord r e f ; // re f e r ence count
DdNode ∗next ; // next po in t e r f o r unique t a b l e
union {
CUDD VALUE TYPE value ; // f o r cons tant nodes
DdChildren k ids ; // f o r i n t e r n a l nodes
} type ;

} ;

4

SSE (Lab) CUDD Lesson 3 12 / 21

Initializing the DdManager

#include<stdio.h>
#include<cudd.h>

int main() {
DdManager* manager=Cudd_Init(0, 0,

CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS, 0);
if(manager == NULL) {
printf("Error while initalizing CUDD.\n");
return 1;

}

...

return 0;
}

SSE (Lab) CUDD Lesson 3 13 / 21

The DdNode

The DdNode is the core building block of BDDs:

there is one caveat with CUDD. ”else” children can be complemented. If the else child is complemented, then
when we reach a leaf node, we would take the complement of the value of the leaf. i.e., if the value of the leaf is
1 and we have traversed through and odd number of complement arcs, the value of our assignment is 0. In 5.4.3,
we will discuss how to deal with complement arcs.

5.4 Data Structures

The two most important data structures within CUDD are the DdManager and the DdNode. We will now briefly
discuss each.

5.4.1 DdManager

The DdManager is the central struct of CUDD. Creating this struct is the first thing you do when writing a CUDD
program and it needs to be passed to almost every CUDD api function. It is never necessary to manipulate or
inspect this struct directly, instead we will use the CUDD api. In order to initialize the DdManager, we use the
following function:

Listing 2: The function to initialize the DdManager:

DdManager ∗ Cudd Init (
unsigned int numVars , // i n i t i a l number o f BDD va r i a b l e s (i . e . , s u b t a b l e s)
unsigned int numVarsZ , // i n i t i a l number o f ZDD va r i a b l e s (i . e . , s u b t a b l e s)
unsigned int numSlots , // i n i t i a l s i z e o f the unique t a b l e s
unsigned int cacheSize , // i n i t i a l s i z e o f the cache
unsigned long maxMemory // t a r g e t maximum memory occupat ion . (0 means un l imi t ed)

) ;

Listing 3: For our purposes, we can call Cudd Init like this:

Cudd Init (0 , 0 ,CUDD UNIQUE SLOTS, CUDD CACHE SLOTS, 0) ;

5.4.2 Useful DdManager functions:

• int Cudd ReadSize(DdManager * dd): Returns the number of variables stored in the manager.

• int Cudd ReadNodeCount(DdManager * dd): Returns the number of nodes stored in the manager.
(i.e., many nodes can represent the same variable)

5.4.3 DdNode

The DdNode is the core building block of BDDs. It is defined as follows:

Listing 4: The decision diagram node:

struct DdNode {
DdHalfWord index ; // Index o f the v a r i a b l e reprented by t h i s node
DdHalfWord r e f ; // re f e r ence count
DdNode ∗next ; // next po in t e r f o r unique t a b l e
union {
CUDD VALUE TYPE value ; // f o r cons tant nodes
DdChildren k ids ; // f o r i n t e r n a l nodes
} type ;

} ;

4
index is a unique index for the variable represented by this node.

I It is permanent: if we reorder variables, the index remains the same
ref stores the reference count for this node.

I It is incremented by Cudd_Ref and decremented by
Cudd_Recursive_Deref

SSE (Lab) CUDD Lesson 3 14 / 21

Create the BDD for sum

DdNode* x1 = Cudd_bddIthVar(manager, 0);
DdNode* x2 = Cudd_bddIthVar(manager, 1);

DdNode* and1;
and1 = Cudd_bddAnd(manager, x1, Cudd_Not(x2));
Cudd_Ref(and1);

DdNode* and2;
and2 = Cudd_bddAnd(manager, Cudd_Not(x1), x2);
Cudd_Ref(and2);

DdNode* sum;
sum = Cudd_bddOr(manager, and1, and2);
Cudd_Ref(sum);

Cudd_RecursiveDeref(manager, and1);
Cudd_RecursiveDeref(manager, and2);

Exercise: write the code for carry

SSE (Lab) CUDD Lesson 3 15 / 21

Restricting the BDD

Restricting a BDD means assigning a truth value to some of the
variables

6.3 Restricting the BDD

Listing 12: This function will restrict BDD to the BDD represented by restrictBy

DdNode ∗ Cudd bddRestrict (
DdManager ∗ manager , // DD manager
DdNode ∗ BDD, // The BDD to r e s t r i c t
DdNode ∗ r e s t r i c tBy) // The BDD to r e s t r i c t by .

The following is code to restrict a BDD to a set of assignments to its inputs. It takes a node to restrict and a
map of assignments to inputs. The key of the map is the index of the variable to assign and the value is whether
to assign it to true or to false. The function returns the original BDD restricted to the assignment.

Listing 13: This function uses restrict to test the BDDs created in listing 5

void t e s t (DdManager∗ manager , DdNode ∗∗node)
{

DdNode ∗x0 = Cudd bddIthVar (manager , 0) ;
DdNode ∗x1 = Cudd bddIthVar (manager , 1) ;

const int SIZE=4;
DdNode∗ r e s t r i c tBy [SIZE] ;
DdNode∗ testSum [SIZE] ;
DdNode∗ t e s tCarry [SIZE] ;

// Re s t r i c t by the f o l l ow i n g ass ignments
r e s t r i c tBy [0] = Cudd bddAnd(manager , Cudd Not (x0) , Cudd Not (x1)) ; // x1=0 and x2=0
r e s t r i c tBy [1] = Cudd bddAnd(manager , Cudd Not (x0) , x1) ; // x1=0 and x2=1
r e s t r i c tBy [2] = Cudd bddAnd(manager , x0 , Cudd Not (x1)) ; // x1=1 and x2=0
r e s t r i c tBy [3] = Cudd bddAnd(manager , x0 , x1) ; // x1=1 and x2=1

for (int i =0; i<SIZE ; i++) {

Cudd Ref (r e s t r i c tBy [i]) ; // Reference r e s t r i c tBy

// Now r e s t r i c t by the new func t i on s
testSum [i] = Cudd bddRestrict (manager , node [0] , r e s t r i c tBy [i]) ;
t e s tCarry [i] = Cudd bddRestrict (manager , node [1] , r e s t r i c tBy [i]) ;

Cudd RecursiveDeref (manager , r e s t r i c tBy [i]) ; // c l ean up r e s t r i c tBy
}

c e r r << ” (x1=0, x2=0): sum = ” << 1−Cudd IsComplement (testSum [0])
<< ” Carry = ” << 1−Cudd IsComplement (te s tCarry [0]) << endl
<< ” (x1=0, x2=1): sum = ” << 1−Cudd IsComplement (testSum [1])
<< ” Carry = ” << 1−Cudd IsComplement (te s tCarry [1]) << endl
<< ” (x1=1, x2=0): sum = ” << 1−Cudd IsComplement (testSum [2])
<< ” Carry = ” << 1−Cudd IsComplement (te s tCarry [2]) << endl
<< ” (x1=1, x2=1): sum = ” << 1−Cudd IsComplement (testSum [3])
<< ” Carry = ” << 1−Cudd IsComplement (te s tCarry [3]) << endl ;

for (int i =0; i<SIZE ; i++) {
Cudd RecursiveDeref (manager , testSum [i]) ;
Cudd RecursiveDeref (manager , t e s tCarry [i]) ;

}
}

9

BDD is the original BDD to restrict
restrictBy is the truth assignment of the variables:

I AND of variables and complemented variables

the function returns the restricted BDD

SSE (Lab) CUDD Lesson 3 16 / 21

Print the truth table of the Half-adder

DdNode *restrictBy;
restrictBy = Cudd_bddAnd(manager, x1, Cudd_Not(x2));
Cudd_Ref(restrictBy);

DdNode *testSum;
testSum = Cudd_bddRestrict(manager, sum, restrictBy);
Cudd_Ref(testSum);
DdNode *testCarry;
testCarry = Cudd_bddRestrict(manager, carry, restrictBy);
Cudd_Ref(testCarry);

printf("x1 = 1, x2 = 0: sum = %d, carry = %d\n",
1 - Cudd_IsComplement(testSum),
1 - Cudd_IsComplement(testCarry));

Cudd_RecursiveDeref(manager, restrictBy);
Cudd_RecursiveDeref(manager, testSum);
Cudd_RecursiveDeref(manager, testCarry);

Exercise:
write the code for the
complete truth table

SSE (Lab) CUDD Lesson 3 17 / 21

Print the BDD: graphviz

The function Cudd_DumpDot dumps the BDD to a file in GraphViz
format

The .dot file can be converted to a PDF by the command dot:

dot -O -Tpdf half_adder.dot

SSE (Lab) CUDD Lesson 3 18 / 21

Print the BDD: C code

char* inputNames[2];
inputNames[0] = "x1";
inputNames[1] = "x2";
char* outputNames[2];
outputNames[0] = "sum";
outputNames[1] = "carry";

DdNode* outputs[2];
outputs[0] = sum;
Cudd_Ref(outputs[0]);
outputs[1] = carry;
Cudd_Ref(outputs[1]);

FILE* f = fopen("half_adder.dot", "w");

Cudd_DumpDot(manager, 2, outputs, inputNames, outputNames, f);

Cudd_RecursiveDeref(manager, outputs[0]);
Cudd_RecursiveDeref(manager, outputs[1]);
fclose(f);

SSE (Lab) CUDD Lesson 3 19 / 21

Variable reordering

The order of variables can have a tremendous effects on the size
of BDDs
CUDD provides a rich set of tools for reordering BDDs:

I Automatic reordering (using heuristics) when the number of nodes
in the BDD passes a certain threshold

I Manual reordering using different heuristics
I Manual reordering with a user-specified variable order

The function Cudd_ShuffleHeap is used to define the variable order:

The final parameter is the minimum number of nodes that must be in the BDD in order to reorder. This
prevents the cost of reordering small enough BDDs.

6.2.2 Automatic Reordering

Alternatively, ordering can be triggered automatically when the number of nodes in the BDD passes a certain
threshold. The following is the functions used for dynamic reordering (it is tuned off by default):

Listing 7: Function to turn on automatic reordering of variables.

Cudd AutodynEnable (
DdManager ∗ manager , // DD manager
Cudd ReorderingType method , // method used f o r reorder ing

)

The parameters passed are the same as for Cudd ReduceHeap.

Listing 8: Function to turn on automatic reordering of variables.

Cudd AutodynEnable (
DdManager ∗ unique , // DD manager
Cudd ReorderingType method , // method used f o r reorder ing

)

6.2.3 Other useful reordering functions

Listing 9: A function to order variables according to a specified order as opposed to a heuristic.

int Cudd ShuffleHeap (
DdManager ∗ manager , // DD manager
int ∗ permutation // requ i r ed v a r i a b l e permutat ion

)

The permutation is an array of positions in the order. The value of the ith slot in the array represents the position
of the variable with index i.

Listing 10: A function to return the position in the order of the ith variable.

int Cudd ReadPerm(
DdManager ∗ manager , // DD manager
int i // The v a r i a b l e to g e t the p o s i t i o n o f

)

Listing 11: A function to return the variable index of the variable currently at position pos.

int Cudd ReadInvPerm(
DdManager ∗ manager , // DD manager
int pos // The po s i t i o n o f the v a r i a b l e index to ge t

)

8

SSE (Lab) CUDD Lesson 3 20 / 21

Exercise: play with the variable order!

Create the BDD for the function x1x2 + x3x4 + x5x6

Try the following variable orders and compare the results:
I x1 < x2 < x3 < x4 < x5 < x6
I x1 < x3 < x5 < x2 < x4 < x6

HINTS
int Cudd_ReadPerm(manager, x2->index) returns the
position of variable x2 in the order
int Cudd_ReadNodeCount(manager) returns the number of
nodes in the BDD

SSE (Lab) CUDD Lesson 3 21 / 21

	Introduction
	CUDD: Basic Architecture
	Example: Half-Adder

