ANALISI MATEMATICA II -TERZO FOGLIO DI ESERCIZI-AA 2015-2016

GIULIA CAVAGNARI

Esercizio 1 (4pt.). Trovare gli estremi liberi delle seguenti funzioni e classificarli:

$$h_1(x,y) = 4x^4 + 4x^2y - 12x^2 - 2xy + 8x + y^2 - 12y + 4,$$

$$h_2(x,y) = 1 + 3x^2 - 6x^2y^2 - 3y^4.$$

Esercizio 2 (9pt). Data la funzione $f(x,y) := x^{10} + \alpha x^8 y + y^4$, se ne determinino i punti critici ed il massimo e minimo assoluto nell'insieme $E := \{(x,y) \in \mathbb{R}^2 : x^{10} + y^4 \le 1\}$ al variare di $\alpha \in \mathbb{R}$.

Esercizio 3 (6pt.).

- (1) Si consideri la funzione $f(x,y) = \frac{x^5}{5} + \frac{x^4}{2} \frac{7x^3}{3} 4x^2 + 12x + e^y y^2$. Si dica quante funzioni y = y(x) da \mathbb{R} in \mathbb{R} sono implicitamente definite da f(x,y) = 0. Per ciascuna di esse, si determinino i punti critici e se ne studi la natura.
- (2) Si consideri la funzione $f(x, y, z) = x^2 + 4xy + 2yz + 3e^y + z^2 3$. Si provi che f(x, y, z) = 0 definisce implicitamente in un intorno dell'origine una funzione y = y(x, z) di classe C^1 soddisfacente a y(0, 0) = 0. Si provi che (0, 0) è punto critico per tale funzione, e se studi la natura.
- (3) Si provi che la relazione $x e^y + y^2 = 0$ definisce implicitamente y = y(x) come funzione di x in un intorno del punto (1,0). Si calcoli

$$\lim_{x \to 1} \frac{y(x) - (x - 1)}{(x - 1)^2}.$$

Esercizio 4 (11pt.). In \mathbb{R}^2 si consideri l'insieme $\Gamma := \{(x,y) \in \mathbb{R}^2 : x^4 + 4x^2y^4 + 2y^2 - 1 = 0\}$.

- (1) Si esprima Γ in coordinate polari piane e si dica se è compatto.
- (2) Si determinino i punti di intersezione di Γ con gli assi, e, ove possibile, si scrivano le equazioni delle rette tangenti a Γ in tali punti. Si dica se Γ definisce implicitamente una funzione y = y(x) in un intorno di essi
- (3) Si consideri la funzione $h(x,y):=x^2+y^2$ e se ne determinino, se esistono, i valori di massimo e minimo assoluti vincolati a Γ .
- (4) Facoltativo: si tracci un grafico qualitativo di Γ .

Consegna entro: mercoledì 11.11.2015

 $E ext{-}mail\ address:$ giulia.cavagnari@unitn.it

Date: 19 ottobre 2015.