BEER

Current quality assessment:
appearance: color, foam, clarity
taste: sweetness, sourness, saltiness, bitterness
flavor, aroma

Factors affecting chemical composition:
water quality, malt, hop, yeasts
recipe and timing of the brewing process

Motivation:
the relationship of the current quality properties with chemical
composition is  not fully understood

700 J. Agric. Food Chem. 2006, 54, 700706 JOoOURN&L O

AGRICULTURAL AND
FOOD CHEMISTRY

Composition of Beer by 'H NMR Spectroscopy: Effects of
Brewing Site and Date of Production
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Figure 1. 500 MHz 'H NMR spectra of (A) beer A3a, (B) beer B3a, and (C) beer C1a (named according to Table 1): 1, propanol; 2, isobutanol; 3,
isopentanol; 4, ethanol; 5, lactate; 6, alanine; 7, »-butyric acid (GABA); 8, acefate; 9, proline; 10, pyruvate; 11, succinate; 12, dextrins; 13, glucose; 14,
maltose; 15, uridine; 16, cytidine; 17, adenosine/inosine; 18, tyrosine and/or tyrosol; 19, histidine; 20, 2-phenylethanol
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Figure 2. PCA of aliphatic NMR spectral regions (0.5-3.1 ppm). (A) scores scatter plot of PC1 vs PC2 for spectra processed with LB 0.3 Hz; (B) scores
scatter plot of PC1 vs PC2 for spectra processed with LB 10 Hz; (C) PC1 loadings profile corresponding to part A; (D) PC1 loadings profile corresponding
to part B. Site A beers: (#) A1; () A2; (a) A3. Site B beers: (<) B1; (O) B2; (a) B3. Site C beers: (x) C1; (-) C2; (+) C3. Grouping shapes were
drawn manually in the scores scatter plots to aid the eye. Peaks arising from lactic acid, pyruvic acid, and first derivative artifacts are indicated in part

Increased pyruvic acid levels : poor yeast quality
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Figure 3. PCA of sugar NMR spectral regions (3.1-5.8 ppm): (A) scores scatter plot of PC1 vs PC2 for spectra processed with LB 0.3 Hz; (B) scores
scatter plot of PC1 vs PC2 for spectra processed with LB 10 Hz. Site A beers: (#) A1; (W) A2; (a) A3. Site B beers: (<) B1; (O) B2; (a) B3. Site
C beers: (x) C1; (-) C2; (+) C3. Grouping shapes were drawn manually in the scores scatter plots to aid the eye
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Figure 4. PCA of sugar NMR spectral regions (3.1-5.8 ppm). (A) PC1 loadings profile for spectra processed with LB 10 Hz; (B) PC2 loadings profile
for spectra processed with LB 0.3 Hz. The main peaks responsible for variations in positive and negative PC1 and PC2 are indicated and assigned (gic,
glucose; mal, maltose; tre, trehalose).

Linear vs branched dextrins correlate with fine conditions during malting and mashin

ORANGE JUICE

580 J. Agric. Food Chem. 2001, 49, 580-588

Discrimination between Orange Juice and Pulp Wash by 'H Nuclear
Magnetic Resonance Spectroscopy: Identification of Marker

Compounds

Gwénaélle Le Gall, Max Puaud, and Ian J. Colquhoun*®

Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, United Kingdom

According to U.S. Food and Drug Administration (FDA) investigations, some
companies are known to have made millions of dollars selling fraudolent orange
juice

Adulteration may be done by the addition of water, sugars, pulp wash, or other

citrus fruit juices

Pulp wash is a second extract obtained by washing the separated pulp with water
after the first pressing. lts chemical composition is similar to orange juice but
paler, more bitter, and is regarded as lower quality
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Figure 3. PC scores on the first two PC axes (PC4 and PC3)
selected by the stepwise LDA procedure: (A) scores from PCA
of the training set spectra; (B) scores for the validation set
calculated using the training set PC loadings.
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Figure 5. Signal intensity distributions for methyl signal
(3.28 ppm) of DMP, comparison of orange juice (*authentic”)
and pulp wash groups: (A) histograms: (B) box plots showing
medians, confidence intervals (notches), range, and outliers
(+).

BLACK TEA

White, green, oolong, black tea differ in the fermentation process:
green: unfermented
white: lightly f.
oolong: partially
black: fermented
All derive from Camellia sinensis

Black tea is more oxidized, has stronger flavor, and contains more caffeine
Drinking black tea is associated with reduced cardiovascular risk

During manufacture, enzyme-catalyzed oxidation and partial polymerization of
flavonols occur. As a result, theaflavins (TFs) and thearubigins characteristic of
the black tea taste and color are produced.

Flavonoids constitute 10-12% of dry leaf weight.

The taste differs according to differences in growing environment.
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Characterization of Tea Cultivated at Four Different Altitudes Using
"H NMR Analysis Coupled with Multivariate Statistics

Akiko Ohno,*" Kitaro Oka," Chiseko Sakuma,® Haruhiro Okuda," and Kiyoshi Fukuhara*'

"Division of Organic Chemistry, National Institute of Health Sciences, Setagaya-ku, Tokyo 158-8501, Japan

'Department of Clinical Pharmacology and SCentral Analytical Laboratory, School of Pharmacy, Tokyo University of Pharmacy and Life
Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan

Sri-Lanka tea-planting regions:
RAN (>1900m), UDA (1000-1500m), MEDA (600-1200m), YATA (<600m)
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Figure 1. Representative "H NMR spectrum of black tea from RAN.
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Figure 2. '"H NMR spectrum expansion (2.55—3.35 ppm) of RAN, UDA, MEDA, and YATA.
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Figure 3. COSY and TOCSY (H <= H) correlations for TF and TFG.
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Figure 4. TOCSY (H == H) correlations from the characteristic region of TRG in YATA.

CcoO
OH
] 7.5
Thearubigin 3, 3-digallate (TRG) HO OH
o

S00H
§ YeCooH
1"

OH l8.0

44 42 40 38 36

34 32 30 28 26 24 22 20 18 16

08—

0.3

PLS 2

T

£.6

-1.0 08 06 04 02 00 02 04 06 08 10

PLS1

N RAN
% UDA
4 MEDA
® YATA

Figure 5. PLS-DA score plot derived from the "HNMR spectra of black
teas from RAN (square), UDA (star), MEDA (diamond), and YATA

(circle).
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Figure 7. Different components from RAN, UDA, MEDA, and YATA. These components, identified from "H NMR spectra, are responsible for the
differentiation in the PLS-DA model. (A) TF (2.75 ppm), TFG (2.94 ppm), (B) TRG (354 ppm), theanine (3,19 ppm), and caffeine (3.77 ppm).
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Fig. 1. TH NMR spectra of olive, sunflower and soybean oails. 5, O, L and Ln refer to saturated, oleic, linoleic and linolenic acyl groups

respectively. Signal numbering corresponds with that in

Table 1.
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oL
Table 1. Chemical shift assignments of the "TH NMR signals of the main components of edible oils and fats
Signal Chemical shift (ppm) Functional group Intensity® Authors
1 0.90-0.80 —CH; {acyl group) m Segre and Mannina (1997)
1la 0.823 saturated and oleic (or @-9)
1b 0.839 linoleic (or w-6)
2 1.00-0.90 —CH; (acyl group) v Segre and Mannina (1997)
2a 0.925 linolenic (or @-3)
3 1.40-1.15 —(CHy)y— (acyl group) I Segre and Mannina (1997)
3a 1194 saturatec
3b 1.230 oleic
3c 1.280 linaleic and linolenic
4 1.70-1.50 ~OCO-CH,~CH,— {acyl group) m Segre and Mannina (1997)
4a 1.553 saturated
4b 1.557 oleic
4c 1.567 linoleic and linolenic
5 210-1.90 —CHy~CH=CH- {acyl groups) m Segre and Mannina (1997)
5a 1.948 aleic
5h 1.99 linoleic
5c 1994 and 2.030 linolenic
6 2.35-2.20 —OCO-CH,— lacyl group) m Segre and Mannina (1997)
ba 2219 saturated
6b 2226 oleic
6.c 2238 linoleic and linolenic
— 2388 —QOCO-CH, — (docosahexaenoic acyl groups) v Aursand et al. (1993
7 2.80-2.70 =HC-CHy-CH= (acyl groups) v Segre and Mannina (1997)
7a 2718 linoleic
7b 2754 linolenic
8 4.32-4.10 —CH,OCOR fglyceryl group) m Segre and Mannina (1997)
9 5.26-5.20 =>CHOCOR (glyceryl group) s Segre and Mannina (1997)
10 5.40-5.26 ~CH=CH- (acyl group) m Segre and Mannina (1997)

* |, large; m, medium: s, small; v, variable.

" Signal

only present in fish oils.

NMR-based metabolomics: the concept
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Data pre-processing (NMR)

1 51 101 151 201

Discretise x-axis into n equal sized bins, height = area under intensity
(reduces impact of small variations in chemical shift e.g. due to pH)

Normalise bars for constant total area (removes effect of differences in
concentration across samples)

Remove insignificant regions (e.g. water and urea resonances in urine
spectra)

Fixed vs variable bucketing

77777
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PCA newborns vs adults
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Data pre-treatment (general for metabolomics)

Different data preprocessing steps are applied in order to generate 'clean’ data in the form of normalized peak areas that
reflect the (intracellular) metabolite concentrations. These clean data can be used as the input for data analysis. However,
it is important to use an appropriate data pretreatment method before starting data analysis.

Besides induced biological variation, other factors are also present in metabolomics data:

1. Differences in orders of magnitude between measured metabolite concentrations; for example, the average
concentration of a signal molecule is much lower than the average concentration of a highly abundant compound like ATP.
However, from a biological point of view, metabolites present in high concentrations are not necessarily more important
than those present at low concentrations.

2. Differences in the fold changes in metabolite concentration due to the induced variation; the concentrations of
metabolites in the central metabolism are generally relatively constant, while the concentrations of metabolites that are
present in pathways of the secondary metabolism usually show much larger differences in concentration depending on the
environmental conditions.

3. Some metabolites show large fluctuations in concentration under identical experimental conditions. This is called
uninduced biological variation.

Besides these biological factors, other effects present in the data set are:
4. Technical variation; this originates from, for instance, sampling, sample work-up and analytical errors.

5. Heteroscedasticity; for data analysis, it is often assumed that the total uninduced variation resulting from biology,
sampling, and analytical measurements is symmetric around zero with equal standard deviations. However, this
assumption is generally not true. For instance, the standard deviation due to uninduced biological variation depends on the
average value of the measurement. This is called heteroscedasticity, and it results in the introduction of additional structure
in the data. Heteroscedasticity occurs in uninduced biological variation as well as in technical variation.

The variation in the data resulting from a metabolomics experiment is the sum of the induced variation and the total
uninduced variation. The total uninduced variation is all the variation originating from uninduced biological variation,
sampling, sample work-up, and analytical variation. Data pretreatment focuses on the biologically relevant information by
emphasizing different aspects in the clean data.

20/05/2013
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... data pre-treatment (general for metabolomics)

Class I: Centering

Centering converts all the concentrations to fluctuations around zero instead of around the mean of the metabolite
concentrations. Hereby, it adjusts for differences in the offset between high and low abundant metabolites. It is therefore
used to focus on the fluctuating part of the data, and leaves only the relevant variation (being the variation between the
samples) for analysis. Centering is applied in combination with all the methods described below.
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... data pre-treatment (general for metabolomics)

Class lI: Scaling

Scaling methods are data pretreatment approaches that divide each variable by a factor, the scaling factor, which is
different for each variable. They aim to adjust for the differences in fold differences between the different metabolites by
converting the data into differences in concentration relative to the scaling factor.

There are two subclasses within scaling. The first class uses a measure of the data dispersion (such as, the standard
deviation) as a scaling factor, while the second class uses a size measure (for instance, the mean).

Scaling based on data dispersion

Scaling methods tested that use a dispersion measure for scaling were autoscaling, pareto scaling, range scaling, and
vast scaling (Table 1). Autoscaling, also called unit or unit variance scaling, is commonly applied and uses the standard
deviation as the scaling factor. After autoscaling, all metabolites have a standard deviation of one and therefore the data is
analyzed on the basis of correlations instead of covariances, as is the case with centering.

Pareto scaling is very similar to autoscaling. However, instead of the standard deviation, the square root of the standard
deviation is used as the scaling factor. Now, large fold changes are decreased more than small fold changes, thus the
large fold changes are less dominant compared to clean data.

Scaling based on average value

Level scaling falls in the second subclass of scaling methods, which use a size measure instead of a spread measure for
the scaling. Level scaling converts the changes in metabolite concentrations into changes relative to the average
concentration of the metabolite by using the mean concentration as the scaling factor. The resulting values are changes in
percentages compared to the mean concentration. As a more robust alternative, the median could be used. Level scaling
can be used when large relative changes are of specific biological interest, for example, when stress responses are
studied or when aiming to identify relatively abundant biomarkers.

20/05/2013

14



... data pre-treatment (general for metabolomics)

Class lll: Transformations

Transformations are nonlinear conversions of the data like, for instance, the log transformation and the power
transformation (Table 1). Transformations are generally applied to correct for heteroscedasticity, to convert multiplicative
relations into additive relations, and to make skewed distributions (more) symmetric. In biology, relations between
variables are not necessarily additive but can also be multiplicative. A transformation is then necessary to identify such a
relation with linear techniques.

Since the log transformation and the power transformation reduce large values in the data set relatively more than the
small values, the transformations have a pseudo scaling effect as differences between large and small values in the data
are reduced. However, the pseudo scaling effect is not determined by the multiplication with a scaling factor as for a 'real’
scaling effect, but by the effect that these transformations have on the original values. This pseudo scaling effect is
therefore rarely sufficient to fully adjust for magnitude differences. Hence, it can be useful to apply a scaling method after
the transformation. However, it is not clear how the transformation and a scaling method influence each other with regard
to the complex metabolomics data.

A transformation that is often used is the log transformation (Table 1). A log transformation perfectly removes
heteroscedasticity if the relative standard deviation is constant. However, this is rarely the case in real life situations. A
drawback of the log transformation is that it is unable to deal with the value zero. Furthermore, its effect on values with a
large relative analytical standard deviation is problematic, usually the metabolites with a relatively low concentration, as
these deviations are emphasized. These problems occur because the log transformation approaches minus infinity when
the value to be transformed approaches zero.

A transformation that does not show these problems and also has positive effects on heteroscedasticity is the power
transformation (Table 1). The power transformation shows a similar transformation pattern as the log transformation.
Hence, the power transformation can be used to obtain results similar as after the log transformation without the near zero
artifacts, although the power transformation is not able to make multiplicative effects additive.

c 2
-2
D O; ] Effect of data pretreatment on the
I e, l original data. Original data of
08 ! experiment G2 (A), and the data

1 after centering (B), autoscaling (C),

E oy pareto scaling (D), range scaling

9 (E), vast scaling (F), level scaling
° (G), log transformation (H), and
F power transformation (1).

Peak area (Units as result from data pretreatment)
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FIG. 2 (a) Simulated data of (r4,y4) for camera A. The
signal and noise variances 055001 and 75,4 are graphically
represented by the two lines subtending the cloud of data. (b)
Rotating these axes finds an optimal p* where the variance
and SNR are maximized. The SNR is defined as the ratio of
the variance along p* and the variance in the perpindicular
direction.
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FIG. 3 A spectrum of possible redundancies in data from the
two separate recordings ry and r2 (e.g. r4,yg). The best-fit
line ro = kry is indicated by the dashed line.
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Visualisation of a data table

Xy=age Xp=glucose X,=body mass index

Xy =glucose
X X3 X3

eoo oo

=R="

X =age

Figure 6.1. Each row (e.g. object or observation) in a K-dimensional data table (here with K =3
variables, designated ¥y, x,, x;) can be represented as a point in a K-dimensional space (here one point
in a three-dimensional space). The coordinates for each object in this multi-dimensional space are
given by its three variables, that is a multivariate profile. A data table with N rows then corresponds
to a swarm of points. Points that are close to each other have more similar properties than points that
lie far apart.

PCA
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Figure 6.2. A principal component analysis (PCA) model approximates the variation in a data table
by a low dimensional model plane. This medel plane represents a two-dimensional projection of the
multi-dimensional data and provides a score plot, where the relation among the observations or samples
in the data table is visualized, for example if there are any groupings, trends or outliers. The loadings
plot describes the influence of the variables and the relation among them. An important feature is that
directions in the score plot correspond to directions in the loading plot, and vice versa.
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Table 5.2 Case study 2

Element  Group  Meling  Boiling) Density Oxidation  Electronegativity
point point (mgfem’) number
(K) K
Li 1 45369 1615 534 1 0.98
Na 1 371 1156 970 1 093
K 1 3365 1032 8360 1 0.82
Rb 1 3125 961 1530 1 0.82
Cs 1 3016 944 1870 1 0.79
Be 2 1550 3243 1800 2 1.57
Mg 2 924 1380 1741 2 1.31
Ca 2 1120 1760 1540 2 1
Sr 2 1042 1657 2600 2 0.95
F 3 535 85 1.7 -1 398
C1 3 172 238.5 32 =1 316
Br 3 2659 331.9 3100 =1 296
1 3 386.6 4574 4940 =1 266
He 4 09 42 0.2 o 0
Ne 4 245 27.2 0.8 a 0
Ar 4 837 874 1.7 0 0
Kr 4 1165 120.8 35 o 0
Xe 4 1612 166 55 0 0
Zn 5 692.6 1180 7140 2 L6
Co 5 1765 3170 8900 3 18
Cu 5 1356 2868 8930 2 1.9
Fe 5 1808 3300 7870 2 13
Mn 5 1517 2370 7440 2 L5
Ni 5 1726 3005 8900 2 18
Bi 6 5444 1837 9780 3 202
Pb 6 60061 2022 11340 2 18
TI 6 577 1746 11850 3 1.62
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Figure 5.9 Scores plot of the first two PCs for case study 2
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Figure 5.12 Loadings plot for case study 2

PCA

Cluster analysis

Table 5.4 Simple example for cluster analysis; six objects (1-6) and
seven variables (A-G)

Objects Variables

A B C D E F G
1 0.9 0.5 0.2 1.6 L5 0.4 1.5
2 0.3 0.2 0.6 0.7 0.1 0.9 0.3
3 0.7 0.2 0.1 09 0.1 0.7 0.3
4 0.5 0.4 1.1 1.3 0.2 1.8 0.6
5 1.0 0.7 2.0 22 0.4 3.7 1.1
6 0.3 0.1 0.3 0.5 0.1 0.4 0.2
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Table 5.5 Correlation matrix for the six objects in Table 5.4

1 2 3 4 5 6
1 1
2 —0.338 |
3 0.206 0.587 1
4 —0.340 0.996 0.564 1
5 —0.387 0.979 0.542 0.990 1
6 —0.003 0.867 0.829 0.832 0.779 1
CA
Table 5.6  First step of clustering of data from Table 5.5, with the
new correlation coefficients indicated as shaded cells, using nearest
neighbour linkage
1 2 and 4 3 5 6
1 1
2and 4 —0.338 1
3 0.206 0.587 I
5 —0.387 0.990 0.542 1
6 —0.003 0.867 0.829 0.779 1
CA
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Figure 5.18  Dendrogram for data in Table 5.4, using correlation coefficients as similarity measures
and nearest neighbour clustering

CA

Discriminant analysis

Figure 5,19 Bivariate classification where no measurement alone can distinguish groups
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Figure 5.21 Projections where it is not possible to unambiguously classify objects

DA

Centre class A
A

"
X

..o *l
L]

Centreclass B

Figure 5.23

Class distance plot using two-dimensional information about centroids
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