Rotation and translation functions and the molecular

replacement method

Sometimes it may happen that we know the three-dimensional structure of a
molecule and we are interested in solving the same structure in a different
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space group. At other times we have reasons to believe that the conforma-
tion of a protein is quite similar to that of another that has been previously
solved, which is often the case for the same protein from different species.
In all the cases mentioned above, six variables, three rotational and three
translational, will approximately describe the transformation from one set of
coordinates to the other. In fact, if we call X the set of vectorst representing
the atoms of the original molecule and X' the transformed ones, the
transformation is simply described by:

X' =[CIX +1¢ (8.53)

where [C] is a matrix that rotates the coordinates X into the new orientation
and ¢ is a translation vector. Equation (8.53) is illustrated for a two-
dimensional situation in Fig. 8.14, where a ‘molecule’ formed by three point
atoms can be superimposed to an identical molecule in a different
orientation by the translation of a vector ¢, after the rotation of an angle a.

As mentioned in Appendix 5.B (p. 000), the technique of positioning a
molecule or a fragment of known structure in a crystal cell is called
molecular replacement. In principle it is possible to simultaneously search
for the six variables which minimize the difference between F,,, and F_,.,
but in practice this is a very hard task, even for the fastest computer.{ The
solution of the problem was pioneered by Rossmann and Blow,"*" who
explored the possibility of finding the orientation of similar subunits in a
crystal cell without any knowledge about the translation ¢, making use of the
Patterson function. After the correct orientation has been found, a search
for the translation vector can be carried out (a collection of papers on
molecular replacement is found in the book by Rossmann).' Let us first
describe the methodology and the problems connected with the rotation
function.

The first step in molecular replacement: the rotation function

The idea of the rotation function can be easily understood by a simple
two-dimensional example. In Fig. 8.15(a) a ‘molecule’ of three idealized

tIn the following discussion all the rotations will be performed in a Cartesian reference
system. It is assumed that, if required, an appropriate orthogonalization is applied before a
rotation is performed.

$ This statement is becoming untrue, due to growing availability of computing power.
Subbiah and Harrison'**! have shown, in the test case of the human hiuoeompatibilig'anu'nen.
that an exhaustive three-dimensional search at low resolution can be performed. The correct
solution can also be obtained, starting from a random position, using the simulated annealing
approach (see p. 569).

Fig. 8.14. A simplified two-dimensional
illustration of (8.53). In (a) and (b) the same
‘molecule’ is repr d in different positions
with respect to the same reference system. By a
rotation of an angle a and a translation of t, the
object in (a) can be superimposed to that in (b).




Fig. 8.15. An isolated, simplified ‘molecule’ of
three atoms. Its self-convolution is shown in (b):
since atoms are considered as points, it is
everywhere 0, except when two points
superimpose exactly.

Fig. 8.16. (a) A portion of a two-dimensioral
lattice of a molecule identical to that of Fig. 8.15
(the unit cell is dashed). (b) Its corresponding
Patterson map. Circled points indicate self-
vectors. Squared points are cross-vectors close
to the origin: some of the points of Fig. 8.15(b)
accidentally superimpose to them during
rotation, giving rise to false maxima in the
rotation function.
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point atoms is represented isolated, in a orthogonal reference system. Let us
imagine a two-dimensional lattice of similar ‘molecules’ in a different
orientation. In the lattice of Fig. 8.16(a) the unit cell is made by two of such
molecules, related by a twofold axis, denoted by 1 and 2. Maxima of its
idealized Patterson function, shown in Fig. 8.16(b), can be divided in two
categories: those arising from intramolecular vectors, or self-vectors, and
those from intermolecular or cross-vectors. Maxima belonging to the first
class are indicated in the figure by circled points and are confined to a short
distance from the origin. It is easy to see that by a simple rotation of 112°
anti-clockwise the isolated molecule can be superimposed to molecule 1 of
Fig. 8.16(a), after an appropriate translation, or, by a rotation of 292°, to
molecule 2. The self-convolution function of the isolated molecule (Fig.
8.15(b)) can also be superimposed to the Patterson of the crystal if we
perform the same rotation. Let us define a function R(C):

R(C)= J; Pyu(tt) Ppi(Cu) du (8.54)
where C is a matrix that rotates the coordinates of the model molecule with
respect to the reference system of the crystal, P, (u) is the Patterson
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function of the crystal and P_(Cu) is the self-convolution function of the
isolated molecule, rotated by €. The function R(C) will have a maximum
when the peaks of the two functions superimpose, at least partially. The
calculation of function R(C) for all the possible values of the rotational
variables will allow us to determine the orientation of the known molecule
in the reference system of our crystal.

The right-hand side of (8.54) can be Fourier transformed!***! and
reduced, neglecting a constant, to:

R(C)=2 D Fous(p) E(h)*G . (8.55)

F(h) are the Fourier coefficients of the crystal and F,,,(p) the coefficients of
the Fourier transform of the isolated molecule, rotated by C (h, &' are used
here to indicate different terms of (hk/) values, p represents a point in
reciprocal space of a continuous transform). G, ,- is an interference function
whose magnitude depends on A, h’, and the volume used in the integration
of (8.54).

The function R(C) can be evaluated in real space using (8.54) or in
reciprocal space, using (8.55). In both cases the computing time is strongly
dependent on the sampling chosen, which in turn is related to resolution. In
real space P, and P, must be sampled finely enough for the resolution
selected (generally this means a value around 1/2 or 1/3 the d spacing). The
volume of integration is a sphere whose radius depends on the size of the
isolated molecule, and this value determines the steps of the angular
variables used in evaluating R(C). In reciprocal space problems are quite
similar, since F,,(p) is a continuous function, defined over all the
reciprocal space. The isolated molecule can be put in an artificial cell,
generally a cube whose edges can be about two to three times the size of the
molecule, and the continuous function evaluated with a sampling appropri-
ate to the resolution used. In practice, since (8.55) is dominated by large
Fourier coefficients, it is possible to limit the numbers of F(p) used.

A faster but more complex approach in evaluating the rotation function,
the so-called fast-rotation function, has been devised by Crowther."*”! If we
express the Patterson function in terms of spherical polar coordinates,
(r, 6, @), for a rotation C, corresponding to the three angles «,, «,, «;, the
rotation function can be written:

R(C) = f Poyi(r, 8, @)RPyo(r, 6, @)r’sin 6 dr d0 do (8.56)

where RFP,, is P, after a rotation C. Equation (8.56) can be expanded
using Bessel functions, more appropriate to a rotation group than a Fourier
series, well suited for translation operations. The use of Bessel functions
requires a lot of difficult mathematics, outside the scope of this book, but
the final result is that R(C) can be evaluated as a summation of two terms,
one of them independent of the rotation itself. The computation time is
consequently greatly reduced with respect to the use of (8.54) or (8.55).

The rotation matrix C and the choice of variables

Rotation is usually performed with respect to an orthogonal system, making
use of different rotational variables. Quite common are the Eulerian



rotation angles 6,, 6,, and 8,, illustrated in Fig. 2.3(a): 6, is the rotation
angle about the z axis and is positive when the rotation is clockwise looking
from the origin; 8, is a rotation about the new x axis and 6, a rotation about
the new z axis. The matrix C describing such a rotation is given in (2.32b).+
An appropriate rotation for the three angles will cover all the space (see p.
72), but if the Patterson map presents some rotational symmetry, the
rotation function will also have symmetry and a partial rotation will be
sufficient.

The symmetry of the rotation function is a combination of the symmetries
of the two Patterson functions, P, and Prq.'"** The Eulerian angles make
casy to describe the symmetry of the rotation function.* Any triplets of
angles 6,, 6,, and 8, can be considered as a point of a three-dimensional
system, whose unit cell has dimensions 2 in all directions: a rotation « is in
fact equivalent to & + 2. The resulting rotation space groups are some of
those described in the International tables for x-ray crystallography.

A disadvantage in using 8 angles is that when 68, is small, 6, and 6;
represent a rotation about nearly the same axis, and maxima will resemble
strips rather than maxima. The distortion effect can be avoided if a
combination of Eulerian angles is used instead:!*"!

8+=81+93, 9_=61_83 92=82. (8.57)

A different possibility is the use of spherical polar angles, ¢, ¥, and ¥
(Fig. 2.3(b)). Angles @ and  define a spin axis, and a rotation of x around
this axis is performed. Polar angles are very useful when a particular
direction has to be exploited or when a defined rotation has to take place, as
is sometimes the case for self-rotation (see p. 558).

Translation functions

Once the orientation of a known molecule in an unknown cell has been
found, the next step is the determination of its absolute position. Only when
one molecule is present in space group P1 is this problem non-existent, since
in this case the origin of the crystal cell can be chosen arbitrarily with
respect to all three axes. In all the other cases, when the reference
molecule, exactly oriented, is translated in the unknown cell, symmetry-
related molecules move accordingly and all the intermolecular vectors
change: only when all the molecules in the crystal cell are in the correct
position, the calculated Patterson cross-vectors superimpose to those of the
observed Patterson (intramolecular vectors are insensitive to translation).
Figure 8.17 illustrates the method. Molecule 1 is positioned in the crystal
cell of the unknown structure in the correct orientation: s, is the vector
defining its position with respect to the origin. Since we do not know yet the
correct position of the molecule in the cell, s, is arbitrarily chosen. Molecule
2 is generated by the twofold axis, and its position is defined by vector 5.
The correct solution is shown in Fig. 8.17(a), where the correct origin of
molecule 1 is indicated by s}. As vector s, varies, all the intermolecular
vectors among symmetry-related atoms will change: they will coincide with

+ In Chapter 2 the rotation matrix C is called Rg, for Eulerian angles and R, for spherical
polar angles. _

f The reader must be warned that the Eulerian rotation matrix is not Hermitian, that is
reversing the order of the Patterson functions does not produce the same rotation-equivalent
positions.
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those of Fig. 8.17(a) only when s, =sY, that is when the local origin is
correctly defined with respect to the symmetry element. The determination
of the translation vector is performed by comparing two Patterson maps,
just as before in the rotation case, except that now we are interested in
maximizing the superposition of a different class of peaks. The problem
described above is in practice quite difficult, since the function representing
the superposition is generally very noisy and with many small maxima.
Several translation functions have been proposed, and some of them are
briefly summarized in Appendix 8.B. To illustrate the principles of
translational search, only the T function of Crowther and Blow!*'! will be
described here, following the treatment of Latman.'*! In the case illustrated
in Fig. 8.17, the set of cross-vectors of the calculated Patterson from
molecule 1 to molecule 2 can be written as:

Po(u) = LPI(«")P:(-' +u)dr (8.58)

where p, and p, represent the electron density of the two molecules. If
molecule 1 is now translated, a new vector s, will define its origin. At the
same time molecule 2 will move into the cell, and a new function P;; can be
calculated for every value of s,. Since we are looking at intermolecular
vectors, it is more useful to define the translation as a function of vector
t =s,—s5,, which defines a local origin with respect to a symmetry element.
If P,..(u) is the value of the observed Patterson at point u, the T translation
function is defined as:

T(f) = L Pon(tt)Pia(u, 1) dus. (8.59)

Function T will have a maximum when the two Pattersons superimpose. In
reciprocal space, (8.59) can be written:*"!

T(r)= 2_: Luw(B)F,(h)F{(hA) exp (—2ihe) (8.60)

where F,(h) is the Fourier transform of the model molecule 1 and F,(hA)
the calculated structure factor of molecule 1 after application of symmetry

Fig. 8.17. (a) "Molecules’ 1 and 2 correctly
oriented and positioned with respect to a
mm-‘,’hmmmm
origin to an arbitrary point of molecule 1, and s3
the corresponding one for molecule 2, which is
generated from 1 by twofold rotation. ¢t = s3 -
s? is the translation vector from molecule 1 to 2.
(b) Molecule 1 has been translated (but not
rotated, so that orientation is unchanged).
Molecule 2 has moved accordingly, and now all
vectors defining the molecular positions in the
cell are changed. Only when t = t° the two
models, and consequently cross-vectors of
Patterson maps, superimpose. Determination of
s} from t° is straightforward.



operation A. Looking at Fig. 8.17, since £ =5, — 5,:
T(6) = 3 Luos(h)F.(h)F { (hA) exp [—2ih(s, — 5,)). (8.61)
h

The T function will have a peak at position s,—s5,=¢=53—-s% (or
S — 8, =—#t,). The determination of s from function T is equivalent to
solving a Patterson map with only two atoms in the crystal cell. In general
the T function does not need to be evaluated for the entire cell: if for
example two molecules are related by a screw axis along z, the maximum &,
will have coordinates (2x, 2y, 1/2), that is it will be confined only to section
z=1/2.

Other types of translation functions have been developed, and some of
the more commonly used in protein crystallography are summarized in
Appendix 8.B. A general review on translation functions is reported by
Beurskens et al.!>!

Self-rotation and self-translation functions: improving the
electron density maps

Sometimes more than one molecule is present in the crystallographic
asymmetric unit. If we assume that they are identical, or at least very
similar, we can take advantage of the independent information present in
the structure factors. In fact, if we are able to identify the non-
crystallographic symmetry elements relating the independent molecules, the
electron density map can be averaged and substantially improved. The
presence of three molecules in the asymmetric unit has allowed the solution
of the structure of the haemaglutinin of the influenza virus using only SIR
phases.[*l

The self-rotation function is very similar to the general rotation function
defined in (8.54):

R(C) = J; P,(u)U(u)P\(Cu) du (8.62)

where P,(Cu) is the P,(u) Patterson function rotated by matrix C, and U(u)
is a function which is 1 inside a sphere and 0 elsewhere. The function U is
necessary since both Patterson maps extend to all space, but we are
interested only in the superposition of self-vectors, confined to a region
around the origin of the cell. The sphere defined by U generally has a
diameter slightly larger than the maximum supposed molecular dimension.

The choice of polar rotation angles is quite common for self-rotation and
deserves a brief comment. Quite often the non-crystallographic symmetry is
represented by a rotation axis, in a direction different from the crystal-
lographic ones. In that event, the use of polar angles reduces the search for
the position of the axis from a three-dimensional problem to a two-
dimensional one: a twofold axis, for example, will correspond to a rotation
of 180° around the polar axis x, and a two-dimensional map (calculated for
@ from 0° to 360°, y from 0° to 360°, and x = 180°) will show the presence of
the axis. A clear example of that is presented by Evans et al."*")

The definition of the translational component of the non-crystallographic
symmetry represents the last and possibly the more difficult step. Let us for
example assume that the direction of a twofold non-crystallographic axis is



known. It has been shown'* that only the component of the translation
vector £ in the direction of the axis can be determined precisely. The other
component of vector ¢, that is that perpendicular to the axis, is intrinsically
an imprecise parameter, unless the molecular structure is perfectly known,
which is not the case. In general, the self-translation function (analogous to
the T function previously described) is used to detect the existence of a
translational component of a rotational symmetry.

The steps and the possible different pathways described in the previous
paragraphs for the solution of a crystal structure of a macromolecule are
summarized in the scheme reported in Fig. 8.18.
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Practical hints in molecular replacement

It is difficult to underestimate the importance that nowadays the molecular
replacement holds in protein crystallography: as explained in the intro-
duction, the number of possible folds of globular proteins is somehow
limited and it is expected than in a short period all the possible folds (or
a large majority of them) will be known. At that point it should be possible,
at least in principle, to solve the structure of any new crystal by molecular
replacement, assuming a model similar enough is available. But here comes
the most tricky question: how similar the starting model has to be to the
actual structure for the method being successful? There 1s no unambiguous
answer to this question, except that based on practice and previous
experiences: it is said among crystallographer that if the unknown model
presents an identity in primary sequence of more than about 60 per cent
with the unknown one, it is expected that the method will be successful. But
of course, there are a lot of cases where a smaller similarity has not pre-
vented the achievement of the correct solution.

It is needless to say that, for very difficult cases. special tricks can be used.
One of them is represented by the possibility of testing, with very fast
computing programs, a very large number of possible solutions. It has for
example, been found that quite often the correct orientation for the rotation
function corresponds to a peak which is quite far from the maximum, but
not lower than the 50 per cent of the highest maxima of the correlation
function. So the possibility of fast testing of several solutions with different
parameters, as with the software AmoRe,!'' YV is important in itself.

Another quite successful tool in molecular replacement is represented
by the so-called PC-refinement (Patterson-correlation refinement),t''
particularly useful in the presence of macromolecules made up by flexible
parts or domains: every solution of the rotation function, before trans-
lation, undergoes a special optimization, where the model is divided in
parts and each of them is refined separately in order to maximize the
correlation.

The steps and the possible different pathways described in the previous
paragraphs for the solution of a crystal structure of a macromolecule are
summarized in the scheme reported in Fig. 9.44.



