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Wavelets and Filterbanks
Biorthogonal bases

The dual perspective: from FB to wavelet bases
— Biorthogonal FB

— Perfect reconstruction conditions

Separable bases (2D)

Overcomplete bases

—  Wavelet frames (algorithme a trous, DDWF)

—  Curvelets




Wavelets and Filterbanks

Wavelet side Filterbank side

e Scaling function Perfect reconstruction conditions (PR)
— Design (from multiresolution priors) — Reversibility of the transform

— Signal approximation

Equivalence with the conditions on the
— Corresponding filtering operation wavelet filters

= (Condition on the filter h[n] — Conjugate

. : — Special case: CMFs — Orhogonal
Mirror Filter (CMF)

wavelets

*  Corresponding wavelet families — General case — Biorthogonal wavelets




Wavelets and filterbanks

« The decomposition coefficients in a wavelet orthogonal basis are computed with a fast
algorithm that cascades discrete convolutions with h and g, and subsample the output

* Fast orthogonal WT

[ =Y a,[nlpt -n)EY,
Since {qp(t—n)}nEZ is an orthonormal basis
a,[n] = (f(0), ¢t —n)) = [ (O (t—n)dt = [ (O (n=1)dt = f*@(n)

@(1) = ¢(-1)




Linking the domains

zZ= ejw
f(w) f(e ) > f(Z) SWitc_:hing between the |
f(aH_ﬂ—) f(eJ W+7T) ) f( eJCU) - f( Z) Fourier and the z-domain

f( ~) = f(e_]w)ef(z )
(@)= f-w) < £z

flnl = f(2)= Y ikl
k=—00

-1 : Switching between the time
fln-1]<z " f(z) unitdelay and the z-domain

fl-nl< f (z‘l) reverse the order of the coefficients

(-1)" f[n]< f(-z) negate oddterms




Fast orthogonal wavelet transform

« Fast FB algorithm that computes the orthogonal wavelet coefficients of a discrete signal
a,[n]. Let us define

f(t)= Zao[n]cﬁ(t -n)€Y,
Since {Cﬂ (t - ”l)} 1 1s orthonormal, then
=(f(O),t=n))= [ =@(n)

a;[n]= <f,q0j’n> since ¢, is an orthonormal basis for V
— d[n=(fw,,)

a,[n

* A fast wavelet transform decomposes successively each approximation PV f in the coarser
approximation PV, f plus the wavelet coefficients carried by PW,_/f.

* Inthe reconstruction, PVfis recovered from PV, ,f and PW,_/f for decreasing values of j
starting from J (decomposition depth)




Fast wavelet transform

Theorem 7.7

— At the decomposition

a;lpl= Y hln-2pla;n]=a;=h[2p]

n=—OO

d;alpl= Y gln-2pla;in]=a;*gl2p]

n=—OO

— At the reconstruction

400

a,[p]= 2 Alp-2nla;, [n]+ Eg[l? —2n]d;[n]=a;

(1)

(2)

+17* h[l’l] + 67j+1>X< g[n] (4)

¥[n]

5 E_O; =2 n=_°i o o9 0 o x[p]
x[n]={x(§? nZZpl-?l-l T T T T p X
e e e . VTVT=




3)

p,.lplEV,,, CV,
but

Proof: decomposition (1)
= @,alp1= > (¢,..[p1. ¢,[n])p,[n] (b)

n

1 t=2"""p\ 1 . (t-2'n
. ,@.[n]) = : : dt (a
<¢]+1[p] ¢J[ ]> f\/F(p( 2]_,_1 )\/27]¢ ( ZJ ) ( )
let
_ . . . . t-2"p ¢
VT4 s — DJ 4 j+1 s Jj+1 — D/ 4" -
t'=2"7t-2p—t=2't"+2" " p—=t-2'""p=2't¢ i >
then
t-2""p t'
(p( 2741 )=¢(5)
L(t=2"n . t' t t t' t
- = t'+2p—n v _ _ Lo
w( 2/ ) ¢ v2pmn) QT TP T g TP T SR

replacing into (a)

<¢j+1[p],q0j[n]> =f%¢(%')¢* (tv+2p—n)dt'=<%¢(%),¢(t+2p—n)> =hln-2p]

thus (b) becomes

@,ulpl= > hln=2plp,[n]




Proof: decomposition (2)

Coming back to the projection coefficients
aj+1[p] = <fs ¢j+1,p> = <f,Eh[n _2p]¢j,n> = ffzh[l’l _2p]¢*j,ndt =

= E h[n - 2p]}o [y, @)dt = E h[n - 2p]<f,¢j,,,> = E h[n-2pla,[n] —

a,,[pl=a,*h[2p]

Similarly, one can prove the relations for both the details and the reconstruction formula




Proof: decomposition (3)

Details
Y, €W, OV, =y, , = E<¢j+1,na¢j,n >§0j,n
t =277t-2p —
1
(3bis) <1//,~+1,n,€0,~,n> = <\/§1/f (;),CD(f —n+ 2p)> =g[n-2p|—
l/jj+1,p = Eg[n_zp:kﬂj,n g
<f91/jj+1,n> - Eg[n_zp]<f’(pj,n> —

d,|p]= Zg[n—2p]aj [n]




Proof: Reconstruction

Since W, is the orthonormal complement of V., in V;, the union of the two respective basis is a basis
for V;. Hence

V=V, W, =@, = ; N },; CRT I T

]’l[p — 2n] (see (3) and (3bis), the analogous one for g)

ot (@), @1, )
(@)% 21.0) = 8L - 2n]
thus
Prp = 2P =21y, + Y glp=2nW ),

Taking the scalar product with f at both sides:

a;lpl="> Hp-2nla;[nl+ ¥ glp-2nd; [n]=a, *hn]+d ;,xgln]  cvo

%] = xlp] n=2p
0 n=2p+1




Summary

The coefficients a, | and d;., are computed by taking every other sample of the convolution
of a,with s and & respectively.

The filter A removes the higher frequencies of the inner product sequence a; , whereas g
is a high-pass filter that collects the remaining highest frequencies.

The reconstruction is an interpolation that inserts zeroes to expand a;,, and d;,, and filters
these signals, as shown in Figure.

(fj - E —lz —ﬁ'—(fj.'.] - ﬁ —'42 —-‘—f{'{q.z—"————
(a)
apyy —— Tz h f—@——d; 4y $2 h F—F——q
f I
djy, —> }2 & i }2 8




Filterbank implementation
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Fast DWT

Theorem 7.10 proves that a,., and d., are computed by taking every other sample of the
convolution on a; with 4 and & respectively

The filter h removes the higher frequencies of the inner product and the filter g is a band-
pass filter that collects such residual frequencies

An orthonormal wavelet representation is composed of wavelet coefficients at scales

1<2/ <2’

plus the remaining approximation at scale 2’

[{df J jer? ]




Summary

Analysis or decomposition Synthesis or reconstruction
Clj —»> _

Teorem 7.2 (Mallat&Meyer) and Theorem 7.3 [Mallat&Meyer] :>
A 2 A 2
Vo€R, (ko) +h(o+x) =2
nd

a
h(0)=+2

8(w) = eI (w+m) <> gn] = (=1) " h[1-n]

+

:> The fast orthogonal WT is implemented by a filterbank that is
completely specified by the filter 4, which is a CMF

The filters are the same for every j




Filter bank perspective

—Ls |

Taking h[n] as reference (which amounts to choosing the synthesis low-pass filter) the following
relations hold for an orthogonal filter bank:

h[n]=h[-n]

gln]=(=D)""h[1-n]=(=1)""h[n-1]
gln]=g[-n]=(-1)"""h[-(1-n)]

neglecting the unitary shift, as usually done in applications
gln] = (=) h[-n] = (-1 h[n]
gln]=gl-n]=(-1)"hln]




Finite signals

Issue: signal extension at borders

Possible solutions:

— Periodic extension
= Works with any kind of wavelet
= Generates large coefficients at the borders
— Symmetryc/antisymmetric extension, depending on the wavelet symmetry

» More difficult implementation

= Haar filter is the only symmetric filter with compact support
— Use different wavelets at boundary (boundary wavelets)

— Implementation by [ifting steps




Wavelet graphs

The graphs of ¢ and ¢ are computed numerically with the inverse wavelet trans-
form. If f =, then ag[n] =6[n] and d;[n] =0 for all L<j=<0.The inverse wavelet
transform computes ¢y and (7.111) shows that

NY2 a;nl=d(N " 'n).

If ¢ is regular and N is large enough, we recover a precise approximation of the
graph of ¢ from a;.

Similarly, if /=, then ag[n] =0, do[n] =86[n], and d;[n] =0 for L<j<0.Then
cy|n] is calculated with the inverse wavelet transform and N1/2 ar[n]~ (N n).
The Daubechies wavelets and scaling functions in Figure 7.10 are calculated with
this procedure.




Orthogonal wavelet representation

* Anorthogonal wavelet representation of a;=< f, ¢, ,> 1s composed of wavelet coetficients
of fat scales 2/<2/<=2/ plus the remaining approximation at the largest scale 2/ :

[{dpbi<jsy- ar].

* Initialization

— Let b/n] be the discrete time input signal and let N-! be the sampling period, such that the
corresponding scale is 2F=N-!

— Then: N-I: discrete sample distance

+oo 2L=N-! scale

_ L
=3 vl (=; ”)eﬁ.
/ n= T \

original continuous interpolation function
time signal

discrete time signal




Initialization

following the definition: N-I: discrete sample distance
2L=N-! scale
1 t-2"n
¢L,n \/2—L¢ 2L
1 t—-N'n t—-N'n 1
2= s =N =JN—-g,  =JN — -
N \/T (pL,n @ - % N_1 \/N COL,n

- S b ) g Sl )
)= 1.0 t]\],v)><fﬁ¢>ﬁ[] an)- 100}

=?f(f)W¢(t_N_ln

_ . if f is regular, the sampled values can be considered as a local average in the
U [n] - \/Nf (N n) neighborhood of f(N-'n)

dt by definition, then




The filter bank perspective




Perfect reconstruction FB

* Dual perspective: given a filterbank consisting of 4 filters, we derive the perfect
reconstruction conditions

\ 4

=)

h

@ .

A 4

0Q

* Goal: determine the conditions on the filters ensuring that




PR Filter banks

The decomposition of a discrete signal in a multirate filter bank 1s interpreted as an

expansion in 1>(Z)

since

alll=a,*h[2]]= an [n]h[21-n]= an [n]h[n-21]

n n
+ oo

all]= Z aoln) hin — 20 = (aop[n], h[n—21]),

n=-—w

then

400

dq[l]= Z aoln]gln—201= (ag|n], g[n — 21]).

n=—w

and the signal is recovered by the reconstruction filter
40 400

aoln]= Y ar[l1h[n =201+ Y d[11g[n—21].

J=—w [=—m0

thus

+

e
aoln]= Y (fIk] h[k—ZIDE[n—zf] + > (flRl(glk— 2

dual family of vectors

INeln — 21].

l

points to
biorthogonal
wavelets




The two families are biorthogonal

Theorem 7.13. If i, g, h, and g are perfect reconstruction filters, and their Fourier
transforms are bounded, then {h[n — 2], g[n — 2I]};,cz and {h|[n — 21], g|n — 21]},c7, are
biorthogonal Riesz bases of £2(Z).

Thus, a PR FB projects a discrete time signals over a biorthogonal basis of 1(Z).
If the dual basis is the same as the original basis than the projection is orthonormal.




Discrete Wavelet basis

Question: why bother with the construction of wavelet basis if a PR FB can do the same
casily?

Answer: because conjugate mirror filters are most often used in filter banks that cascade
several levels of filterings and subsamplings. Thus, it is necessary to understand the
behavior of such a cascade

N-1: discrete sample distance
2L=N-! scale

a, [n] = < [, > discrete signal at scale 2-
t-N"n) 1
¢ N—l - ﬁ ¢L,n - )
for depth j-L>0 ij (w) = l_[ 12 w)

ajl1] = ap ;12111 = (arln], ¢;ln—2/7"1) -

L1 = ap 12/~ = aglnl, gyln — 27 711)). (@) =82 o H h(2Pw)




Discrete wavelet basis

For conjugate mirror filters, one can verify that this family is an orthonormal basis of
€°(Z).These discrete vectors are close to a uniform sampling of the continuous time-
scaling functions ¢;(#) = 2712277ty and wavelets Yy(t) = 2712¢(277t). When the
number L —j of successive convolutions increases, one can verify that ¢;[n] and
ln] converge, respectively, to N~1/2 qu(N_l,r-f] and N ~1/2 (pj(N_l;-z],

The factor N ~1/2 normalizes the £%(Z) norm of these sampled functions. If £ — j =
4,then ¢y[n] and i [n] are already very close to these limit values. Thus, the impulse
responses (;bj[?i‘] and d{;[n] of the filter bank are much closer to continuous time-
scaling functions and wavelets than thev are to the original conjugate mirror filters
h and g. This explains why wavelets provide appropriate models for understanding
the applications of these filter banks. Chapter 8 relates more general filter banks to
wavelet packet bases.




Perfect reconstruction FB

Theorem 7.7 (Vetterli) The FB performs an exact reconstruction for any input signal 11f

(alias free)

Matrix notations
() =L( gw+) )
g ()] A@)\-h(w+r)
Aw) = h(w)g(w +7) - h(w+7) ()

When all the filters are FIR, the determinant can be evaluated, which yields simpler
relations between the decomposition and the reconstruction filters.




Changing the sampling rate

* Downsampling

* Upsampling




Subsampling: proof
= y[0]+y[1] +y[2]e'j2“’+...=
[ ] [ ] [4]e‘j2‘”+...%
thus

j/(Za)) =...x[0]+x[2]e‘j2“’ +x[4]e‘j4‘” +...

f(w)

but

x[l]e'j“’ + x[l]e'j(“’*”) =0— %(x[l]e'j‘” + x[l]e'j(“’*”)) =0

x[2]e‘j2“’ = %(x[Z]e_ﬂw + x[2]e_j2(“’+”))

thus

§(20) = ..x[0]+ 2 (x[1]e +x[1]e m)%(x[z]e 204 2[2]e 0 ) 4.2




Perfect Reconstruction conditions

4
=

@

a

S

d

Qe

ik,
o

0,(20) - %( ()i ()+a, (wm)/i(wm))
since h and g are real

hn]— h(w)

H-n] = h{n] = h(@) = h(-w) = " (@)

thus, replacing in the first equation

a,2w) = %(ao (0)h" () +a, (w+m)0 (a)+Jr))
Similarly, for the high-pass branch

Ak

d1(2w)=%(a0(w)§*(w)+ao(w+7r)g (0+7))

a,(w) = &I(Za))h:(a)) +d 20)g(o)




Perfect Reconstruction conditions

Putting all together

Gy (@) = &, 20)h(0) +d,20)F() -

- %(“o (a))fz* (a)) +a, (a) + .777)};* (a) + n))}:t(a))
+%(a0 (a))iQ* (a))+a0 (w+n)§*(w+n))§(a)) A
50 () = l(l; (a))l;(a)) +g (w)é(a)))ao (a)) + l(}; (a) + Jt)fz(a)) +g (a) + n)§(w))a0 (a) + J'L’)
2 =1 2 =0 (alias-free)
h (w)ii(a))f g (a)) g(w)=2 Matrix notations
ﬁ*(a)+ﬂ)};(a))+§*(a)+ﬂ)§(a))=0 (alias free) i*(w) _ 2 éfa)wr)
§*(w) A(w) (— h(a)+ﬂ))

Aw) = h(w)g(w +7) - h(w+7)8(w)




PR filters

 Theorem 7.8. Perfect reconstruction filters also satisfy

hA*(a))i;(a)) +h (w+n)fz(w +)=2

Furthermore, if the filters have a finite impulse response there exists a in R and [/ in Z such
that

$(w)=e"h" (w+7)

AooN L =il . o
g(w)=ae h (w+) =110 g(w)=eh (w+m)

é_*(a)) =le—l(21+1)a)h’\*(a)+ﬂ;) |:>
a Correspondingly

gln]=(=1)"h[1-n]

gln]=(=1)""h[1-n]

» Conjugate Mirror Filters:

S

=h%




Proof

Givenhand 4 and setting a=1/ and /=0 in (2) the remaining filters are given by the following
relations

g(w) = e_iwi[*(a) +7)

§(a)) e (w+7)

3)

= The filters # and j; are related to the scaling functions ¢ and ~ via the corresponding two-scale relations,
as was the case for the orthogonal filters (see eq. 1).

Switching to the z-domain

g(z) = 2_1}7(—2_1
HOEERC

Signal domain

gln] = (-1)"""h[1-n]
gln] = ()" h[1-n]




Biorthogonal filter banks

A 2-channel multirate filter bank convolves a signal a, with

a low pass filter h[n] = h[-n]
and a high pass filter gln]=g[-n]

and sub-samples the output by 2 ar[n] = ag * h[2n]

di[n]=ag*g[2n]

A reconstructed signal g, is obtained by filtering the zero-expanded signals with a dual low-pass h [1]
and high pass filter g[n]

doln] = @ * h[n] +dy * [n]

xlp] n=2p

y["]d[n]:{o n=2p+1

Imposing the PR condition (output signal=input signal) one gets the relations that the different filters
must satisfy (Theorem 7.7)




Revisiting the orthogonal case (CMF)

—Ls |

Taking h [1n] = h[—-n] as reference (which amounts to choosing the analysis low-pass filter) the
following relations hold for an orthogonal filter bank:

Z [n] = h[_n] <~ h[n] = }_l [-n] synthesis low-pass (interpolation) filter:
reverse the order of the coefficients

gln]=(-D)"h1-n] negate every other sample




Orthogonal vs biorthogonal PRFB

\ 4

\ 4

h=}  Biorthogonal PRFB

l;*(a))ii(a)):l-};*(a)+n)}:z(a)+n) =2

g(w)=eh’ (w+)
g(w)=e"h" (w+m)

In the signal domain
gln]=(=1)"h[1-n]
glnl=(=1)""h[1-n]

=}  Orthogonal PRFB

2

SN

=2

(0+7)




Fast BWT

Two different sets of basis functions are used for analysis and synthesis
ajln]=a; *@[2'1]
djaln]=a; = gl2n]

a;[n]=a;y *h[n]+d .+ 0]

PR filterbank ey
glnl= (=1 " h[l-n]

gln] = (- h[1-n]

e o ne =

. o

ag[n] = ap[n]




Be careful with notations!

In the simplified notation where

—  h[n] is the analysis low pass filter and g/n/ is the analysis high pass filter, as it is the case in most of the
literature;

— the delay factor is not made explicit;

The relations among the filters modify as follows

§ é
o
e

gln]=(-D"" Z[n] The high pass filters are obtained
by the low pass filters by negating
g[n]=(-1)""h[n] the odd terms




Biorthogonal bases

Orthonormal basis

{e,}en: basis of Hilbert space
Ortogonality condition <¢, €,>=0  Vn=p
Vy € H,

There exists a sequence

Aln] = <y,en> :
y= E)L[n]en

e |>=1 ortho-normal basis

nL’
eP

Bi-orthogonal basis

{e,} en: linearly independent

VyeH, 3JA>0andB>0:

/1[n]=<y,en>:
o s <
B <4 A

Biorthogonality condition:

<enﬂgp> = é[n - p]

y= ;<f,@’n>en - ;<f,en>5n

A=B=1 = orthogonal basis




Biorthogonal bases

If » and & are FIR
2 +o0 ]’l~(2_pw) 2 R +0 E(Z_pa))

(D(w)=1p1 5 D(0), CI)(a))=p=l 5

Though, some other conditions must be imposed to guarantee that ¢* and @*tilde are FT of

finite energy functions. The theorem from Cohen, Daubechies and Feaveau provides sufficient
conditions (Theorem 7.10)

The functions ¢ and ¢ satisfy the biorthogonality relation
((0),@(t=n))=d[n]

The two wavelet families {1,1}_ }

and {z];_ } are Riesz bases of L*(R)

(j.m)EZ? (j.n)EZ?

(w 9, )=oln=-nlolj- 1

Any f € Lz(R) has two possible decompositions in these bases

DXV D VR




Summary of Biorthogonality relations

* Aninfinite cascade of PR filter banks (4, g),(% , 2 )yields two scaling functions and two wavelets

whose Fourier transform satisfy

b20)-Li(o)bo) - (p(é}zmnw(t_n) 0




Properties of biorthogonal filters

Imposing the zero average condition to v in equations (iii) and (iv)

W(0)=W(0)=0 — £(0)=2(0)=0
replacing into the relations (3) (also shown below)

(@) =eh (w+) g(w)=eh (w+m)—>h' ()= h(m)=0

Furthermore, replacing such values in the PR condition (1)

B (@)h(@)+ & (@)§(@) =2 - k' (0)h(0) =2

It is common choice to set

A" (0) = h(0) =2




Biorthogonal bases

If the decomposition and reconstruction filters are different, the resulting bases 1s non-
orthogonal

The cascade of J levels i1s equivalent to a signal decomposition over a non-orthogonal bases

o =2t o -2

The dual bases 1s needed for reconstruction




Example: bior3.5

Dec. low-pass filter bior3.5

0.5
0 Q@ (O 0) &
Il
-0.5 : :
5 10 15
Rec. low-pass filter bior3.5
0.8
0.6
Q@
0.4
0.2 T T
0 n
0 5 10 15

Dec. high-pass filter bior3.5

15

05
0 | f
-0.5
-1 . .
0 5 10
Rec. high-pass filter bior3.5
1
0.5
o) Q T P [OXA)
) ) <L 0]
-0.5
-1 L
0 5 10

15




Example: bior3.5

Transfer modulus for dec. filters Transfer modulus for rec. filters

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4

One biorthogonality condition

0 0.2 0.4 0.6 0.8 1
[fit(Log)fft(Loy) + fit(Hi)fft(Hip)| = 2

0.6 0.8 1




10

1

a

-1

o

bior1.3

bior2.2

1

0

bior2.6

10

1

a

-1

! |
-

bior3.1

Biorthogonal bases

a

a

2 4 6
5 10
2 4

6

bior1.5

bior2.4

bior2.8

bior3.3




Biorthogonal bases

100 ; 4 1
50 2
0 a 0 0
) 2
100 ! o 1
a 1 2 0 1 2 a 2 4 6 2 4 6

bior3.1 bior3.3

1

0 5 10 0 5 10 0 5 10

bior3.5 bior3.7

2
1 05 1 1
0 0
1 ’ 0
- -05
-2 -1
5

10 15 0 2 4 6 8 ] 2 4 6 e

bior3.9 biord.4

10
1
1 1
1
0 a 0 0
05
1 .
5

10 0 5 10 15 0 5 10 15

bior5.5 bior6.8




CMEF : orhtogonal filters

PR filter banks decompose the signals in a basis of /°(Z). This basis is orthogonal for Conjugate
Mirror Filters (CMF).

[Smith&Barnwell,1984]: Necessary and sufficient condition for PR orthogonal FIR filter banks, called
CMFs

— Imposing that the decomposition filter h is equal to the reconstruction filter h~, eq. (1) becomes
};*(a))lz(a)) + fz*(a) +Mh(w+m)=2 (1) =

B (0)h(w)+h' (0 +7)h(w+7)=2 —

(@) +|h(w+ ) =2

—  Correspondingly Z[ = hn]
nj=nn

g[n] = gln] = (-1 k1 -n]




Summary

PR filter banks decompose the signals in a basis of /°(Z). This basis is orthogonal for Conjugate
Mirror Filters (CMF).

[Smith&Barnwell,1984]: Necessary and sufficient condition for PR orthogonal FIR filter banks, called
CMFs

— Imposing that the decomposition filter % is equal to the reconstruction filter 4, eq. (1) becomes
h (wh(w)+h (w+m)h(w+m7)=2—
Ak A Ak A
h (wh(w)+h (0+7)h(w+mx)=2—

|h(w) |* + | h(w+x) =2
—  Correspondingly

h[n] = h[n]
g[n] = gln] = ()" k1 - n]




Properties

Support
— h, Ji are FIR — scaling functions and wavelets have compact support
Vanishing moments

— The number of vanishing moments of ¥ is equal to the order P of zeros of 7, in . Similarly, the
number of vanishing moments of ¢ is equal to the order p of zeros of / in m.

Regularity

— One can show that the regularity of W and ¢ increases with the number of vanishing moments
of ¥, thus with the order p of zeros of / in m. Viceversa, the regularity of ¥ and & increases
with the number of vanishing moments of ¥, thus with the order P of zeros of J; in .

Symmetry

— It 1s possible to construct both symmetric and anti-symmetric bases using linear phase filters

* [n the orthogonal case only the Haar filter is possible as FIR solution.




