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Introduction 

• Logic Synthesis performs the translation from 
a high level description (e.g., VHDL) to a RTL 
description and optimizes the latter 
– It may be driven by different cost functions 

• Area 

• Delay, clock speed 

• etc. 

– It leads to implementations meeting the desired 
objectives 
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SIS – Logic Synthesis System (I) 

• SIS is an interactive tool for synthesis and 
optimization of sequential circuits 
– developed by the CAD group of U.C. Berkeley in the 

1990s 

• It produces an optimized net-list preserving the 
sequential input/output behavior 

• It incorporates a set of logic optimization 
algorithms 
– users can choose among a variety of techniques at 

each stage of the synthesis process 
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SIS – Logic Synthesis System (II) 

• Different algorithms for various stages of 
sequential synthesis: 
– State minimization 

– State assignment 

– Node simplification 

– Kernel and cube extraction 

– Technology mapping 

– Retiming 

– Retiming and Resynthesis 
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How to use SIS 
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Design Specification 

• A sequential circuit can be input to SIS in 
several ways allowing SIS to be used at various 
stages of the design process 

• The two most common entry points are 

– Net-list of gates 

– Finite-state machine in state-transition-table form 
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Logic Implementation (Net-list) 

• The net-list description is given in extended 
BLIF (Berkeley Logic Interchange Format) 

• It consists of interconnected single-output 
combinational gates and latches 

– Gates are simple elements that perform logical 
operations 

– Latches store the state 
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State Transition Graph (STG) (I) 

• A state transition table for a finite-state machine is specified 
using the KISS format 

• It is used in state assignment and state minimization 
programs 

• STG 
– States are symbolic 
– The transition table indicates the next symbolic state and output 

bit-vector given a current state and an input bit-vector 
– Don’t care conditions are indicated by a missing transition or by a 

‘-’ in an output bit 
• A present-state/input combination has no explicit next-state/output, or 
• For a present-state/input combination a ‘-’ output stands for either 0 or 

1 
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State Transition Graph (STG) (II) 
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The SIS Synthesis and Optimization 
System – Read the specifications (I) 

• $> sis 
UC Berkeley, SIS 1.3.6 (compiled 2010-11-14 12:35:42) 

sis> 

• sis> help 
– returns a list of all the commands provided by SIS 

• sis> read_blif <file_name> 
– Loads a net-list description 

• sis> read_kiss <file_name> 
– Loads a kiss-style STG description 
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The SIS Synthesis and Optimization 
System – State minimization (I) 

• State minimization works on STGs 

– Degrees of freedom (i.e., unspecified transitions or 
explicit output don’t cares) can be exploited to 
produce a machine with fewer states 

• State minimization looks for equivalent states in 
order to minimize the total number of states 

– Two states are equivalent if they produce the same 
output sequences given the same input sequences 
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The SIS Synthesis and Optimization 
System – State minimization (II) 

• In SIS, the user may invoke the STAMINA 
program to perform state minimization 

– STAMINA is a state minimizer for incompletely 
specified machine 

• sis> state_minimize stamina 

– the input is a STG (kiss format) 

– the original STG is replaced by the one computed 
by STAMINA with (possibly) fewer states 
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The SIS Synthesis and Optimization 
System – State assignment (I) 

• State assignment provides the mapping from a 
STG to a net-list 

• State assignment requires a state transition table 
and computes binary codes for each symbolic 
state 

• Binary codes are used to create a logic level 
implementation 
– substituting the binary codes for the symbolic states, 

it creates a latch for each bit of the binary code 
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The SIS Synthesis and Optimization 
System – State assignment (II) 

• In SIS, the user may invoke either JEDI or  
NOVA programs to perform state assignments 

• sis> state_assign nova 
or 
sis> state_assign jedi 
– the input is a STG (kiss format) 

– returns a state assignment of the STG and a 
corresponding logic implementation (net-list) (blif 
format) 
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The SIS Synthesis and Optimization 
System – Node simplification (I) 

• Node simplification performs two-level 
minimization of the Boolean function 
implemented at a given node 

• It relies on the DC-set due to limited 
controllability and observability of the node 
(satisfiability DCs and observability DCs) 
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The SIS Synthesis and Optimization 
System – Node simplification (II) 

• In SIS, the user may invoke the ESPRESSO 
program to perform node simplification 

• sis> full_simplify 

– the input is a net-list (blif or PLA format) 

– returns a minimized net-list (blif format) 

• SIS decomposes multiple output functions into single 
output functions and represents them separately 
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The SIS Synthesis and Optimization 
System – Node Restructuring 

• A logical network can be modified by 

– Creating new nodes 

– Deleting nodes 

– Creating new connections 

– Deleting connections 

• A particular case of node restructuring is node 
creation by extracting a factor from one or 
more nodes 
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The SIS Synthesis and Optimization 
System – Kernel (I) 

• The extraction of new nodes that are factors of existing 
nodes is a form of division that may be performed in the 
Boolean or algebraic domain 

• Algebraic techniques: sum-of-products are treated as 
standard polynomials 
– look for expressions that are observed many times in the nodes 

of the network and extract such common expressions 
– The extracted expression is implemented only once and the 

output of that node replaces the expression in any other node 

• Current algebraic techniques used in SIS are based on cube-
free divisors called kernels 
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The SIS Synthesis and Optimization 
System – Kernel (II) 

• An expression f is cube-free if no cubes divides 
the expression evenly 

– ab + c is cube free 

– ab+ac or abc are not cube free 

• The primary divisors of an expression are 
obtained by dividing the expression by cubes 

• The kernels of an expression are the cube-free 
primary divisors of the expression 
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The SIS Synthesis and Optimization 
System – Kernel (III) 

• adf+aef+bdf+bef+cdf+cef+g = (a+b+c)(d+e)f+g 
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The SIS Synthesis and Optimization 
System – Kernel (IV) 

• In SIS, the user may invoke the command 
fast_extract, i.e., fx, to perform kerneling 

• sis> fx 

– the input is a net-list (blif format) 

– extracts common expressions among the nodes 
and rewrites the nodes of the network in terms of 
common expressions (blif format) 
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The SIS Synthesis and Optimization 
System – Technology mapping (I) 

• A tree-covering algorithm is used to map 
arbitrary complex logic gates into cells available 
in a technology library 

• Technology mapping consists of two phases: 
– Decomposing the logic to be mapped into a network 

of 2-input NAND gates and inverters 

– Covering the network by patterns that represent the 
possible cells in the library 

• During the covering stage the area or the delay of the circuit 
is used as an optimization criterion 
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The SIS Synthesis and Optimization 
System – Technology mapping (II) 

• In SIS, the user may invoke the command rlib 
and map to select a library for the technology 
mapping and perform the mapping, 
respectively 

• sis> rlib <library_name> 
sis> map 
– the input is a net-list (blif format) 

– map complex logic gates into cells of the chosen 
technology library (genlib format) 
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The SIS Synthesis and Optimization 
System – Retiming (I) 

• Retiming is an algorithm that moves registers 
across logic gates to minimize 
– Cycle time, or 

– Number of registers, or 

– Number of registers subject to a cycle-time constraint 

• It operates on synchronous edge-triggered 
designs 

• The sequential I/O behavior of the circuit is 
maintained 
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The SIS Synthesis and Optimization 
System – Retiming (II) 

• In SIS, the user may invoke the command 
retime to perform the retiming of the circuit 

• sis> retime 

– the input is a net-list (blif format) 

– Add more latches, or re-position the latches, to 
reduces the clock period 

• Generally used to reduce the cycle time of the circuit 
by adding latches 
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The SIS Synthesis and Optimization 
System – Retime and Resynthesis (I) 

• Retiming finds optimal register positions without 
altering the computational logic functions at each node 

• Combinational techniques work inside latches 
boundaries 

• Given a sequential circuit,  these concepts can be 
combined 
– Identify the largest subcircuits that can be retimed moving 

registers to boundaries of the subcircuits 
– After retiming, standard combinational techniques are 

used to minimize the internal combinational logic 
– Finally, the registers are retimed back into the circuit to 

minimize cycle time or the number of registers used 
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The SIS Synthesis and Optimization 
System – Retime and Resynthesis (II) 

• In SIS, retiming and resynthesis is not 
implemented yet 

– It is available in recent synthesis systems 
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USING THE SIS ENVIRONMENT 
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mark1: the running example 

• Synchronous synthesis example 

– the example chosen is mark1 

• provided in the MCNC benchmark set 

– the specification is given in the KISS format 

• copy it from: 

~ldg/lectures/daes20112012/lesson02/lesson-example 

• File: mark1.kiss2 
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Synthesis and optimizations 

• SIS provides scripts for performing logic 
network optimizations 

– The standard script 

– The standard script.rugged 

– The standard script.delay 

• Such scripts derive from the experience of SIS 
developers 
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The standard scripts 
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The standard script 

• sis> source script 

– Extracts iteratively common cubes and factors, 
resubstitutes them in the node functions, and 
collapses nodes whose literal-count savings is 
above a threshold 

– The result is a circuit with a significant 
improvement in the number of literals 
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The standard script (I) 

• # start script 
• sweep 

– Successively eliminates all the single-input nodes and 
constant nodes from the current network 

• eliminate -1 
– Eliminates all the nodes in the network whose value is 

less than or equal to a chosen threshold 
– Value of a node 

• Number of literal saved in the literal count for the network 
by leaving the node in the network 

•  -1: node used only once 
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The standard script (II) 

• simplify 
– Minimizes the SOP representation of logic function at each 

node 

• resub -a 
– Substitutes expressions using the algebraic division  

• gkx -abt 30 
– Extracts multi-cube divisors from the network 

• -a: generates all kernels of all functions in the network when building 
the kernel-intersection table 

• -b: chooses the best kernel intersection as the new factor at each step 
of the algorithm 

• -t threshold: sets a threshold such that divisors are extracted only 
when their value exceeds the threshold 
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The standard script (III) 

• gcx -bt 30 
– Extracts common cubes from a network and re-

expresses the network in terms of these cubes 
• -b: choose the best cube at each step when examining 

possible cubes to be extracted 
• -t threshold: sets a threshold such that only a cube with a 

value greater than the threshold will be extracted 

• decomp -g * 
– Decomposes all the nodes in the node list 

• -g: use the best algebraic decomposition for the nodes 

• # end script 
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The standard script.rugged 

• sis> source script.rugged 

– Extracts factors using fx, and quickly reduces the 
size of the circuit; full_simplify is used for 
powerful node minimization 
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The standard script.rugged (I) 

• # start script.rugged 
• simplify -m nocomp 

– simplifies each node in the network 
• -m nocomp: invoke the full minimization procedure but does 

not compute the complete offset 

• full_simplify -m nocomp 
– simplifies each node in the network (larger DC set) 

• -m nocomp: invoke the full minimization procedure but does 
not compute the complete offset 

• # end script.rugged 
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The standard script.delay 

• sis> source script.delay 

– Targets performance optimization 
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The standard script.delay (I) 

• # start script.delay 

• sis> decomp -q 
– Decomposes all the nodes in the network 

• -q: quick decomp algorithm is used which extracts out 
an arbitrary kernel 

• sis> tech_decomp -o 2 
– Decomposes all the nodes in the current network 

into AND or OR gates 
• -o: OR gates with 2 fanins will be used 
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The standard script.delay (II) 

• sis> resub -a -d 
• -d: directs resub not to use the complement of a given node 

in algebraic resubstitution 

• sis> reduce_depth -b -r 
– command used to improve the speed of a network 

before technology mapping 
• -b: performs clustering under the duplication ratio 2 

• -r: limits the duplication of logic 

• sis> red_removal 
– performs sequential redundancy removal 
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The standard script.delay (III) 

• sis> map -n 1 –AFG -p 
– This command will produce a minimum delay circuit 

• -n 1: better tree-covering algorithm 

• -A: recovers area after fanout optimization at little delay 
cost 

• -F: performs fanout optimization 

• -G: recovers area after fanout optimization at no cost in 
delay by resizing all gates in the network 

• -p: ignores the delay information and forces the arrival times 
and required times to be all 0 

• # end script.delay 
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References – U.C. Berkeley 

• More SIS infos are available at 
http://embedded.eecs.berkeley.edu/pubs/do
wnloads/sis/index.htm 

– Documentation 

– Examples 
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