
SIS – Logic Synthesis System

University of Verona

Dep. Computer Science

Italy

Dott. Luigi Di Guglielmo

Prof. Tiziano Villa

Agenda

• Introduction

• SIS – Logic Synthesis System

• The SIS Synthesis and Optimization System

• Scripting in SIS

• Examples

15/12/2011 2 Design Automation of Embedded Systems

Introduction

• Logic Synthesis performs the translation from
a high level description (e.g., VHDL) to a RTL
description and optimizes the latter
– It may be driven by different cost functions

• Area

• Delay, clock speed

• etc.

– It leads to implementations meeting the desired
objectives

15/12/2011 3 Design Automation of Embedded Systems

SIS – Logic Synthesis System (I)

• SIS is an interactive tool for synthesis and
optimization of sequential circuits
– developed by the CAD group of U.C. Berkeley in the

1990s

• It produces an optimized net-list preserving the
sequential input/output behavior

• It incorporates a set of logic optimization
algorithms
– users can choose among a variety of techniques at

each stage of the synthesis process

15/12/2011 4 Design Automation of Embedded Systems

SIS – Logic Synthesis System (II)

• Different algorithms for various stages of
sequential synthesis:
– State minimization

– State assignment

– Node simplification

– Kernel and cube extraction

– Technology mapping

– Retiming

– Retiming and Resynthesis

15/12/2011 5 Design Automation of Embedded Systems

How to use SIS

15/12/2011 6

Design
specification

read
Technology

independent
optimization

Technology
mapping

Gate-level
optimization

Rewrite in different formats / Read statistics

Formats:
1. blif
2. kiss

1. FSM optimization
2. FSM to logic and reverse
3. Combinational optimization
4. Sequential (gate-level)

optimization

Target
library

1. Retiming
2. (Resynthesis)

Design Automation of Embedded Systems

Design Specification

• A sequential circuit can be input to SIS in
several ways allowing SIS to be used at various
stages of the design process

• The two most common entry points are

– Net-list of gates

– Finite-state machine in state-transition-table form

15/12/2011 7 Design Automation of Embedded Systems

Logic Implementation (Net-list)

• The net-list description is given in extended
BLIF (Berkeley Logic Interchange Format)

• It consists of interconnected single-output
combinational gates and latches

– Gates are simple elements that perform logical
operations

– Latches store the state

15/12/2011 8 Design Automation of Embedded Systems

State Transition Graph (STG) (I)

• A state transition table for a finite-state machine is specified
using the KISS format

• It is used in state assignment and state minimization
programs

• STG
– States are symbolic
– The transition table indicates the next symbolic state and output

bit-vector given a current state and an input bit-vector
– Don’t care conditions are indicated by a missing transition or by a

‘-’ in an output bit
• A present-state/input combination has no explicit next-state/output, or
• For a present-state/input combination a ‘-’ output stands for either 0 or

1

15/12/2011 9 Design Automation of Embedded Systems

State Transition Graph (STG) (II)

15/12/2011 10

st3

st0

st1

st2

st4

01/00

10/00

11/00

10/11

01/00

01/10

11/00

10/10

.i 2

.o 2

.p 8

.s 5

.r st0

01 st0 st1 00

10 st0 st2 00

01 st1 st2 00

10 st1 st3 10

01 st2 st3 10

10 st2 st4 11

11 st3 st0 00

11 st4 st0 00

.e

Design Automation of Embedded Systems

The SIS Synthesis and Optimization
System – Read the specifications (I)

• $> sis
UC Berkeley, SIS 1.3.6 (compiled 2010-11-14 12:35:42)

sis>

• sis> help
– returns a list of all the commands provided by SIS

• sis> read_blif <file_name>
– Loads a net-list description

• sis> read_kiss <file_name>
– Loads a kiss-style STG description

15/12/2011 11 Design Automation of Embedded Systems

The SIS Synthesis and Optimization
System – State minimization (I)

• State minimization works on STGs

– Degrees of freedom (i.e., unspecified transitions or
explicit output don’t cares) can be exploited to
produce a machine with fewer states

• State minimization looks for equivalent states in
order to minimize the total number of states

– Two states are equivalent if they produce the same
output sequences given the same input sequences

15/12/2011 12 Design Automation of Embedded Systems

The SIS Synthesis and Optimization
System – State minimization (II)

• In SIS, the user may invoke the STAMINA
program to perform state minimization

– STAMINA is a state minimizer for incompletely
specified machine

• sis> state_minimize stamina

– the input is a STG (kiss format)

– the original STG is replaced by the one computed
by STAMINA with (possibly) fewer states

15/12/2011 13 Design Automation of Embedded Systems

The SIS Synthesis and Optimization
System – State assignment (I)

• State assignment provides the mapping from a
STG to a net-list

• State assignment requires a state transition table
and computes binary codes for each symbolic
state

• Binary codes are used to create a logic level
implementation
– substituting the binary codes for the symbolic states,

it creates a latch for each bit of the binary code

15/12/2011 14 Design Automation of Embedded Systems

The SIS Synthesis and Optimization
System – State assignment (II)

• In SIS, the user may invoke either JEDI or
NOVA programs to perform state assignments

• sis> state_assign nova
or
sis> state_assign jedi
– the input is a STG (kiss format)

– returns a state assignment of the STG and a
corresponding logic implementation (net-list) (blif
format)

15/12/2011 15 Design Automation of Embedded Systems

The SIS Synthesis and Optimization
System – Node simplification (I)

• Node simplification performs two-level
minimization of the Boolean function
implemented at a given node

• It relies on the DC-set due to limited
controllability and observability of the node
(satisfiability DCs and observability DCs)

15/12/2011 16 Design Automation of Embedded Systems

The SIS Synthesis and Optimization
System – Node simplification (II)

• In SIS, the user may invoke the ESPRESSO
program to perform node simplification

• sis> full_simplify

– the input is a net-list (blif or PLA format)

– returns a minimized net-list (blif format)

• SIS decomposes multiple output functions into single
output functions and represents them separately

15/12/2011 17 Design Automation of Embedded Systems

The SIS Synthesis and Optimization
System – Node Restructuring

• A logical network can be modified by

– Creating new nodes

– Deleting nodes

– Creating new connections

– Deleting connections

• A particular case of node restructuring is node
creation by extracting a factor from one or
more nodes

 15/12/2011 18 Design Automation of Embedded Systems

The SIS Synthesis and Optimization
System – Kernel (I)

• The extraction of new nodes that are factors of existing
nodes is a form of division that may be performed in the
Boolean or algebraic domain

• Algebraic techniques: sum-of-products are treated as
standard polynomials
– look for expressions that are observed many times in the nodes

of the network and extract such common expressions
– The extracted expression is implemented only once and the

output of that node replaces the expression in any other node

• Current algebraic techniques used in SIS are based on cube-
free divisors called kernels

15/12/2011 19 Design Automation of Embedded Systems

The SIS Synthesis and Optimization
System – Kernel (II)

• An expression f is cube-free if no cubes divides
the expression evenly

– ab + c is cube free

– ab+ac or abc are not cube free

• The primary divisors of an expression are
obtained by dividing the expression by cubes

• The kernels of an expression are the cube-free
primary divisors of the expression

15/12/2011 20 Design Automation of Embedded Systems

The SIS Synthesis and Optimization
System – Kernel (III)

• adf+aef+bdf+bef+cdf+cef+g = (a+b+c)(d+e)f+g

15/12/2011 21

Kernel Cokernel

a+b+c df, ef

d+e af, bf, cf

(a+b+c)(d+e) f

(a+b+c)(d+e)f+g 1

Design Automation of Embedded Systems

The SIS Synthesis and Optimization
System – Kernel (IV)

• In SIS, the user may invoke the command
fast_extract, i.e., fx, to perform kerneling

• sis> fx

– the input is a net-list (blif format)

– extracts common expressions among the nodes
and rewrites the nodes of the network in terms of
common expressions (blif format)

15/12/2011 22 Design Automation of Embedded Systems

The SIS Synthesis and Optimization
System – Technology mapping (I)

• A tree-covering algorithm is used to map
arbitrary complex logic gates into cells available
in a technology library

• Technology mapping consists of two phases:
– Decomposing the logic to be mapped into a network

of 2-input NAND gates and inverters

– Covering the network by patterns that represent the
possible cells in the library

• During the covering stage the area or the delay of the circuit
is used as an optimization criterion

15/12/2011 23 Design Automation of Embedded Systems

The SIS Synthesis and Optimization
System – Technology mapping (II)

• In SIS, the user may invoke the command rlib
and map to select a library for the technology
mapping and perform the mapping,
respectively

• sis> rlib <library_name>
sis> map
– the input is a net-list (blif format)

– map complex logic gates into cells of the chosen
technology library (genlib format)

15/12/2011 24 Design Automation of Embedded Systems

The SIS Synthesis and Optimization
System – Retiming (I)

• Retiming is an algorithm that moves registers
across logic gates to minimize
– Cycle time, or

– Number of registers, or

– Number of registers subject to a cycle-time constraint

• It operates on synchronous edge-triggered
designs

• The sequential I/O behavior of the circuit is
maintained

15/12/2011 25 Design Automation of Embedded Systems

The SIS Synthesis and Optimization
System – Retiming (II)

• In SIS, the user may invoke the command
retime to perform the retiming of the circuit

• sis> retime

– the input is a net-list (blif format)

– Add more latches, or re-position the latches, to
reduces the clock period

• Generally used to reduce the cycle time of the circuit
by adding latches

15/12/2011 26 Design Automation of Embedded Systems

The SIS Synthesis and Optimization
System – Retime and Resynthesis (I)

• Retiming finds optimal register positions without
altering the computational logic functions at each node

• Combinational techniques work inside latches
boundaries

• Given a sequential circuit, these concepts can be
combined
– Identify the largest subcircuits that can be retimed moving

registers to boundaries of the subcircuits
– After retiming, standard combinational techniques are

used to minimize the internal combinational logic
– Finally, the registers are retimed back into the circuit to

minimize cycle time or the number of registers used

15/12/2011 27 Design Automation of Embedded Systems

The SIS Synthesis and Optimization
System – Retime and Resynthesis (II)

• In SIS, retiming and resynthesis is not
implemented yet

– It is available in recent synthesis systems

15/12/2011 28 Design Automation of Embedded Systems

USING THE SIS ENVIRONMENT

15/12/2011 29 Design Automation of Embedded Systems

mark1: the running example

• Synchronous synthesis example

– the example chosen is mark1

• provided in the MCNC benchmark set

– the specification is given in the KISS format

• copy it from:

~ldg/lectures/daes20112012/lesson02/lesson-example

• File: mark1.kiss2

15/12/2011 30 Design Automation of Embedded Systems

Synthesis and optimizations

• SIS provides scripts for performing logic
network optimizations

– The standard script

– The standard script.rugged

– The standard script.delay

• Such scripts derive from the experience of SIS
developers

15/12/2011 31 Design Automation of Embedded Systems

The standard scripts

15/12/2011 32

script

script.rugged
script.delay

Design Automation of Embedded Systems

The standard script

• sis> source script

– Extracts iteratively common cubes and factors,
resubstitutes them in the node functions, and
collapses nodes whose literal-count savings is
above a threshold

– The result is a circuit with a significant
improvement in the number of literals

15/12/2011 33 Design Automation of Embedded Systems

The standard script (I)

• # start script
• sweep

– Successively eliminates all the single-input nodes and
constant nodes from the current network

• eliminate -1
– Eliminates all the nodes in the network whose value is

less than or equal to a chosen threshold
– Value of a node

• Number of literal saved in the literal count for the network
by leaving the node in the network

• -1: node used only once

15/12/2011 34 Design Automation of Embedded Systems

The standard script (II)

• simplify
– Minimizes the SOP representation of logic function at each

node

• resub -a
– Substitutes expressions using the algebraic division

• gkx -abt 30
– Extracts multi-cube divisors from the network

• -a: generates all kernels of all functions in the network when building
the kernel-intersection table

• -b: chooses the best kernel intersection as the new factor at each step
of the algorithm

• -t threshold: sets a threshold such that divisors are extracted only
when their value exceeds the threshold

15/12/2011 35 Design Automation of Embedded Systems

The standard script (III)

• gcx -bt 30
– Extracts common cubes from a network and re-

expresses the network in terms of these cubes
• -b: choose the best cube at each step when examining

possible cubes to be extracted
• -t threshold: sets a threshold such that only a cube with a

value greater than the threshold will be extracted

• decomp -g *
– Decomposes all the nodes in the node list

• -g: use the best algebraic decomposition for the nodes

• # end script

15/12/2011 36 Design Automation of Embedded Systems

The standard script.rugged

• sis> source script.rugged

– Extracts factors using fx, and quickly reduces the
size of the circuit; full_simplify is used for
powerful node minimization

15/12/2011 37 Design Automation of Embedded Systems

The standard script.rugged (I)

• # start script.rugged
• simplify -m nocomp

– simplifies each node in the network
• -m nocomp: invoke the full minimization procedure but does

not compute the complete offset

• full_simplify -m nocomp
– simplifies each node in the network (larger DC set)

• -m nocomp: invoke the full minimization procedure but does
not compute the complete offset

• # end script.rugged

15/12/2011 38 Design Automation of Embedded Systems

The standard script.delay

• sis> source script.delay

– Targets performance optimization

15/12/2011 39 Design Automation of Embedded Systems

The standard script.delay (I)

• # start script.delay

• sis> decomp -q
– Decomposes all the nodes in the network

• -q: quick decomp algorithm is used which extracts out
an arbitrary kernel

• sis> tech_decomp -o 2
– Decomposes all the nodes in the current network

into AND or OR gates
• -o: OR gates with 2 fanins will be used

15/12/2011 40 Design Automation of Embedded Systems

The standard script.delay (II)

• sis> resub -a -d
• -d: directs resub not to use the complement of a given node

in algebraic resubstitution

• sis> reduce_depth -b -r
– command used to improve the speed of a network

before technology mapping
• -b: performs clustering under the duplication ratio 2

• -r: limits the duplication of logic

• sis> red_removal
– performs sequential redundancy removal

15/12/2011 41 Design Automation of Embedded Systems

The standard script.delay (III)

• sis> map -n 1 –AFG -p
– This command will produce a minimum delay circuit

• -n 1: better tree-covering algorithm

• -A: recovers area after fanout optimization at little delay
cost

• -F: performs fanout optimization

• -G: recovers area after fanout optimization at no cost in
delay by resizing all gates in the network

• -p: ignores the delay information and forces the arrival times
and required times to be all 0

• # end script.delay

15/12/2011 42 Design Automation of Embedded Systems

References – U.C. Berkeley

• More SIS infos are available at
http://embedded.eecs.berkeley.edu/pubs/do
wnloads/sis/index.htm

– Documentation

– Examples

15/12/2011 43 Design Automation of Embedded Systems

http://embedded.eecs.berkeley.edu/pubs/downloads/sis/index.htm
http://embedded.eecs.berkeley.edu/pubs/downloads/sis/index.htm

