TFONDAMENTI:
LOGICA

Prima Parte
[ogica del 1 ordine:

sintassi e semantica

We distinguish between classes and sets. Except in Chs. 10 and 11 (where
the terms “class’” and “set” are assigned a more precise technical meaning),
a class is understood to be an arbitrary collection of objects, while a set
is a class which can be a member of another class. (Another distinguishing
feature of sets is that only they have cardinalities.)

Given n=1 objects x,,...,x,, we write {(x,,...,x,) for the ordered n-tuple
of Xy,....X,. Thus (x,y) is the ordered pair of x and y. By convention, we
put (x)=x (the ordered singleton of x).

A function (map, mapping) is a class f of ordered pairs such that, whenever
(x,y)€f and (x,z)€f, we have y=z. The domain dom(f) of f is the class

{x: for some y, {x,y)€f}
and the range ran(f) of f is the class

{y: for some x, {x,y)€f}.

If A is a class and 7 is a set, we write A’ for the collection of all functions
from I into A. (Notice that this definition implies 4% = {#}=A°) If {4;: i€ I}
i an indexed family of sets, we write [[;c;4; for the collection of all
functions f with domain 7 such that f(i)€ A; for all i€ l. The axiom of
choice asserts that, if each 4,0, then [], 4;=0.

The Principle of Induction (IND)

In order to prove that Vn € w.P(n)

&) Dbasis: prove that P(0)
& induction step: prove that Vm € w. P(m) = P(m + 1)

Course-of-values induction (C-IND)

(Vm € w.[VE <m.Q(k)) = Q(m)]) = Vn € w.Q(n)

IND e equivalente a C-IND

I numeri naturali

Da un punto di vista ingenuo si puo pensare al naturali semplicemente come ad
una sequenza infinita {0,1,2,3,...}.

[naturali sono una struttura NAT = (N, 0; succ) t.c.

assioma 1: 0 e un elemento privilegiato di N detto zero;
assioma 2: succ : N — N e una operazione unaria iniettiva su A;
assioma 3: 0 € Im(succ);

assioma 4: se P C N e valgono le seguenti proprieta:
i) 0 € P;
ii) Vn € N.(n € P = succ(n) € P)
allora P = N.

3.1 Definizioni per induzione

Una prassi usuale in informatica ¢ qualla di dare definizioni per induzione. Il
caso piu semplice e quallo della definizione per induzione di funzioni. Il teorema
seguente ci garantisce che il procedimento di definizione induttivo € buono.

Teorema 3.1.1. Sia h: N x A — A ec € A. FEsiste (ed é unica) una funzione
f:N—= A tc:

1. f(0)=c¢

2. per ognin € N, f(succ(n)) = h(n, f(n)).

Esercizio 3.1.2. Sia h: N x N — N t.c. h(x,y) = succ(x) -y. Per il teorema
appena dimostrato esite un’unica funzione f t.c.:

f(0) =1

f(succ(n))) = h(n, f(n)).

Che funzione e f 7

Dimostrazione

Esistenza di f: sia Q la classe di tutti gli insiemi Z C N x A t.c. (0,c) € Ze
(n,x) € Z= (succ(n),h(n,x)) € Z; chiamiamo soddisfacenti tali insiemi.

E’ immediato osservare che () non € vuoto.

Sia f 'intersezione di tutti gli elementi di Q. L’insieme f ¢ ovviamente soddisfa-
cente ed e contenuto in ogni insieme soddisfacente.

Dimostriamo per induzione che : per ogni n € N esiste esattamente un a € A
t.c. (n,a) € f (ovvero f & una funzione).

caso base: sappiamo che (0,c) € f. Supponiamo che (0,d) € f con d # c.
Allora f —{(0, d)} sarebbe sempre sodisfacente e sarebbe contenuto propriamente
in f, impossibile.

passo induttivo: supponiamo che la proprieta valga per un generico naturale
i, ovvero che esiste unico w t.c. (i,w) € f. Per costruzione di f deve valere che:
(succ(i),h(i,w)) € f. Supponiamo ora che esista un elemento e # h(i,w)
t.c. (succ(i),e) € f. L’insieme f — {(succ(i),e)} e soddisfacente e sarebbe
strettamente contenuto in f, impossibile.

Notiamo infine che la funzione f essendo soddisfacente soddisfa banalmente 1
punti (1.) e (2.) del teorema.

Unicita di f: supponiamo che esistano due funzioni f; e f, verificanti i punti
(1.) e (2.) del teorema. Dimostriamo per induzione che f; = f,.

caso base: f{(0) = f,(0) per definizione. Supponiamo che per un generico na-
turale :L, f] (‘L) = fz(l)
passo induttivo: Applicando il punto due abbiamo che f;(succ(i)) = h(i, f;(i)) =

h(i, fo(1)) = fa(succ(i)). ,

Definition 1.1.1 The language of propositional logic has an alphabet consisting of

proposition symbols : At={p0, p1, P2, . . . } connectives : V, ~, auxiliary
symbols : (,).

Definition 1.1.2 The set PROP of propositions is the smallest set X with the
properties

(i) pi eX(ieN), LeX,

(i) d,peX=, (pvy) € X.

(i) peX= (~d) e X.

Theorem 1.1.6 (Definition by Recursion) Let mappings
Hy: A2 = A ;

H-:A—A

H. :At = A,

then there exists exactly one mapping

F : PROP — A such that

F (p) = Ha(P) for ¢ atomic,

F (@ Vv) =Hu«F (9), F ()

F ((~®)) = HAF (9))

BEGINNING MATHEMATICAL LOGIC

Let us start with an example. Consider the inference

(1)
(2)
(3)

Every tove is slithy

Alice is not slithy

Alice is not a tove

1)
2)

3)

1)
2)

3)

V x . tove(x) D slithy(x)
- slithy(Alice)

- tove(Alice)

V x . T(X) DS(x)

- S(a)

- T(a)

(3) |s9 CONSEQUENCE OF (1) & (2)

We may say that (3) is a consequence of (1) and (2) by virtue of the form - as distinct from the
matter - of these statements. In this connection the words "every" and "not" must be regarded as
part of the form: if they are re-interpreted or replaced by other words, the inference may well
become invalid

We need to construct artificial formal languages whose structure will be perfectly regular.

In dealing with a formal language < we must make a distinction between syntax and
semantics.

First, there is the language that is being discussed; this is called the object language. Then there
i1s the language in which the discussion takes place; this is called the metalanguage. The
distinction between the two is extremely important and must be constantly borne in mind (even
when the two languages happen to coincide)

Structure consists of the following ingredients:
(1) A non-empty class, called the universe or domain of the structure. The
members of this universe are called the individuals of the structure.
(2) Various operations on the universe. These are called the basic operations of
the structure. (optional) O-ary operations are called its designated individuals.
(3) Various relations on the universe. These are called the basic relations of the
structure.

running example: Elementary arithmetic

Elementary arithmetic may be defined as the study of one particular
structure — the elementary structure of natural numbers. It has the set of
natural numbers as universe, two designated individuals (viz. 0 and 1)
and two basic operations (viz. addition and multiplication). Here the
only basic relation is the identity relation.

Suppose we are given a structure U and we want to set up a formal
language . in which statements about Al are to be expressed. What symbols
should # have?

First, we would like . to have symbols that may be used as variables
ranging over the universe of . The need for variables is obvious to anyone
acquainted with mathematics. Variables ranging over the universe of
il are used, e.g., in expressing conditions which individuals of U may
or may not satisfy, and in making general statements about .

Il

Next, we expect £ to have symbols that may be used to denote the
various basic operations of . Such symbols are called function symbols.
More specifically, a symbol designed to denote an n-ary operation is
called an n-ary function symbol. In particular, if 2 has designated individuals
then .Z should have symbols for denoting them. Such symbols are called
individual constants or, more briefly, just constants. Since designated
individuals are regarded as 0-ary operations, constants are to be regarded
as O-ary function symbols.

Using variables and function symbols, we can construct expressions
called terms. Roughly speaking, terms are the nounlike expressions of .Z.

For example, in a formal language suitable for elementary arithmetic
we should have variables, say Xx,y, etc., intended to range over the set
N of natural numbers; and function symbols, say 0,1,4,%, intended to
denote the numbers zero and one and the operations of addition and
multiplication, respectively. Then x, 1, 14-x, 0Xy, ((1+x)x(y+1))+0]
are some of the terms we can form.

Of course, different interpretations can be applied to one and the same
language. For example, the language described in the preceding paragraph
can be re-interpreted by letting its variables range over some arbitrary
non-empty class and letting 0,1,4-,% denote two arbitrarily chosen members.
of that class and two arbitrarily chosen binary operations on it.

But suppose we have fixed one particular interpretation for a formal
language %, by means of a structure . Then those terms of £ that do
not contain variables will denote individuals of U. A term containing
variables will not denote any particular individual, but will assume various
individuals as values, depending on which individuals are assigned as
values to the variables.

For example, in the particular language described above (taken with
its originally intended interpretation) the term 14-1 denotes the natural
number two, while the term (14-1)Xx-4y has as value the number obtained
by adding whatever number is assigned as value to y, to twice the number

that happens to be assigned as value to x.
13

Variables and function symbols alone do not suffice for formulating
in # statements about a structure U. For this, ¥ must have symbols
that can be used to denote the basic relations of U. A symbol designed
to denote an n-ary relation is called an n-ary predicate symbol.

If — as is usually the case — the identity relation is one of the basic
relations of U, then £ needs to have a predicate symbol to serve as a
name for it. It is convenient to earmark one particular symbol, =, for
this role.!

1) 1=1x1, n —true
sentences

2) 14-0=1x0, — false

3) X+Xx=xXX,

4) x4-x=y.

Formulas (3) and (4) are not sentences; they do not express propositions,
but conditions regarding the values which may be assigned to the variables

14

N
We would like negation to be expressible in #. Thus, for any formula

o of £ we want .# to have a formula —la (read: “not & or ““it is not the
case that &’’) which will be true whenever « is false, and false whenever

a is true. (Thus a and —a always have opposite truth values.)

_ J
4)

Next, we want the conjunction and to be expressible in .. Thus, for
any two formulas a, p we need a formula a AP (read: “a and f”°) which
will be true iff both & and P are true.

VAN

Similarly, we want .# to have, for any formulas o and B, a formula
L aVvp (read: “a or B°) which is false iff both & and B are false.?

(" Further, we want % to be capable of expressing conditional statements.
Therefore, for any formulas a, B of ¥ there should be in ¥ a formula
a—> P (read: “a implies B or “if a, then P”). This formula will be false

__ iff a is true but B is false.?)

r A

Finally, & should have, for any formulas & and B a formula aep
(read: “a iff p*’) which is true whenever a and B have the same truth values
and false whenever their truth values are different.

_ J
15

We could satisfy all these demands by requiring % to have five logical
symbols, called connectives, viz. =1, A, V, -, ©.

oo P (a=>PB)A(B—>a)

aAP (e=> 1)

(

~

The last demand we shall make on £ is that for any formula o and
any variable x, % should have a formula yxa (read: “for every [value of]

X o”’) and a formula Jxa (read: “for some [value of] x, &”).

J

vx(x=xxx) false

Ix(x=XxXX) true

Vx(xXy=z) satisfied if we assign to y and z the value 0

xo 1VxTla

BASIC SYNTAX
first-order language £

The symbols of & are:
(a) An infinite sequence of (individual) variables, namely

vl,V2,V3,... .

(b) For each natural number n, a set of n-ary function symbols.

(¢) For each positive natural number n, a set of n-ary predicate symbols.
For at least one n this set must be non-empty.

(d) The connectives = (negation) and = (implication).

(¢) The universal quantifier V.

Thé»O-ary function s&mbois (if any) are called (individual) constants..

If ¥ has the special binary predicate =, we say that % is a language
with equality. We stipulate that if £ has at least one function symbol that
is not an individual constant, then & must be a language with equality.*

18

The variables, the connectives, the universal quantifier and = are called
logical symbols. They are assumed to be the same in all first-order languages
(or, in the case of =, in all first-order languages with equality). The
function symbols and the predicate symbols other than = are called
extralogical symbols|and may differ from one language to another.

A finite (possibly empty) sequence of .#-symbols is called an Z-string.

We shall only be interested in two kinds of strings, called terms and
formulas.

L-terms

P-terms are Z-strings formed according to the following two rules:
(1) Any Z-string consisting of (a single occurrence of) a variable is

an Z-term.
(2) If f is an m-ary function symbol of ¥ and t,,...,t, are ¥-terms,

then ft,...t, is an Z£-term.
Notice that, for n=0, (2) says that any constant i1s a term. In a term

ft,...t, formed according to (2), t,,...,t, are called arguments of f.

By the|degree of complexity |of a term t (briefly degt) we mean the total
number of occurrences of function symbols in t.

20

F-formulas

- P-formulas are L-strings formed according to the following four rules:

(1) If P is an n-ary predicate symbol of ¥ and t,,...,t, are Z-terms,
then Pt,...t, is an Z-formula.

(2) If o 1s an #-formula, then so is —a.

(3) If « and P are Z-formulas, then so is —->ap.

(4) If o is an #-formula and x 1s a variable, then ¥x« is an #-formula.

A formula Pt,...t, formed according to (1) is called an atomic formula;
the terms t,,...,t, here are the arguments of P. An atomic formula whose
predicate symbol is = is called an equation and its first and second
arguments are called its left-hand side and right-hand side, respectively.

The|degree of complexity|of a formula a (briefly deg) is the sum obtained
by adding up 2 for each occurrence of = and 1 for each occurrence of

=1 and VY in a.

21

If s is a term (or formula) and R,T are strings such that RST is again a term
(or formula, respectively), then s is said to be a subterm (or subformula,
respectively) of RST. If moreover R is non-empty' then s is a proper subterm
(or subformula, respectively) of RST.

22

Notational conventions

(a) Boldface lower-case Roman letters from the end of the alphabet
(especially “x’’, “y’’, “z’’) are used as syntactic variables ranging over
the variables of a first-order language.

(b) As syntactic variables ranging over function symbols we use
“f”, “g” and “h”.

(c) As syntactic variables ranging over constants we use “a”’, “b” and “‘c”.

(d) As syntactic variables ranging over predicate symbols we use
“P”, “Q” and “R”.

(e) As syntactic variables ranging over terms we use “r’, “s” and “t”.

(f) Boldface lower-case and upper-case Greek letters are used as syntactic

variables ranging over formulas and sets of formulas, respectively.

5.1. DEFINITION.
(@) (r==s)=4 =Ts.
(b) (rs) =4 T1T=S).
© (@ - B) =g >ab.
(d) @A B) =41~ TIP).
© (@V B =g« (0> P).
) (@ B)=4(@— B AB—>w).
(8) Jxa =4 TTVXTI0.

29

priority order “e7”, “=57, “v”, “A

The ranges of “=1”°, “¥¥’’ and “3”’ are to be as short as possible.

aAPp=>vEe T1a>PBvy is {[(aAB)=>v]e[TTa=>(BVY)]}

JxaABvy is [(TxaAp) vyl

association to the right

a—=BAY> B>y is a=>{(BAY)—>(B—>7)}

24

