Calcolo Numerico per Informatica – 27/06/2016

Tempo: 150 minuti

Completare, in STAMPATELLO la propria anagrafica:

MATRICOLA	COGNOME	NOME

L'esame ha <u>otto</u> esercizi. Gli esercizi hanno difficoltà differenti. Ogni esercizio ha associato un punteggio indicativo.

Le soluzioni degli esercizi vanno svolte su uno o più fogli a quadretti. Riportare su ogni foglio la propria anagrafica. Le <u>soluzioni</u> devono essere <u>chiare</u>, ordinate, giustificate. Eseguire le operazioni, quando necessario, usando almeno 6 o 7 cifre decimali.

Esercizio 1 (3,0 punti) Siano $x=0.9,\ y=0.5,\ z=0.4$ numeri reali. Sia $\mathbb{F}(10,1,-2,2)$. Calcolare $S=x+y+z,\ S_1=(x\oplus y)\oplus z,\ S_2=x\oplus (y\oplus z)$ e commentare i risultati ottenuti.

Esercizio 2 (5,0 punti) Il metodo di Newton genera le seguenti iterate:

Indicare, ragionevolmente, a quale radice ξ converge il metodo. Determinandone l'ordine del metodo e la molteplicità della radice ξ . Calcolare una stima della costante asintotica dell'errore ed una stima dei valori assoluti degli errori $e_4 = \xi - x_4$ ed $e_5 = \xi - x_5$.

Esercizio 3 (5,0 punti) Illustrare geometricamente il metodo della tangente fissa facendo riferimento alla funzione

$$f(x) = x^2 - 1$$

assumendo $x_0 = 2$. Stabilire se il metodo converge partendo da $x_0 = 2$. In caso affermativo, calcolare le prime tre iterate x_1, x_2, x_3 , la costante asintotica dell'errore ed una stima del numero di iterazioni necessarie per avere $|e_k| < 10^{-6} \cdot |e_0|$.

Esercizio 4 (5,0 punti) Si considerino i nodi distinti x_0 , x_1 ed x_2 con $x_0 < x_1 < x_2$. Sapendo che il polinomio di Lagrange associato al nodo x_0 è

$$L_0(x) = \frac{1}{2} \cdot (x^2 - x)$$

calcolare gli altri due nodi x_1 e x_2 e scrivere l'espressione di Lagrange del polinomio di interpolazione per i punti (x_k, y_k) , k = 0, 1, 2 essendo $y_k = f(x_k)$ con $f(x) = x^4 + 2x$.

Esercizio 5 (5,0 punti) Calcolare la retta di regressione ai minimi quadrati associata ai punti (-2,1), (-1,0), (0,2), (1,1). Verificare che la retta di regressione passa per il baricentro dei punti dati.

Esercizio 6 (5,0 punti) Applicare il metodo dei trapezi composto al calcolo dell'integrale

$$I = \int_0^2 x^2 \, dx$$

usando m=2 e m=4 intervalli. Usare questi due valori per ottenere una stima migliore dell'integrale. Commentare i risultati ottenuti.

Esercizio 7 (5,0 punti) Dire per quali valori di $\alpha \in \mathbb{R}$ il metodo iterativo $\mathbf{x}^{(k+1)} = E\mathbf{x}^{(k)} + \mathbf{q}$ è convergente per ogni scelta del punto iniziale $\mathbf{x}^{(0)}$ essendo

$$E = \begin{pmatrix} \frac{1}{3} & \alpha \\ \alpha & \frac{1}{3} \end{pmatrix} \qquad , \qquad \mathbf{q} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Posto $\alpha = 1/3$, determinare $\mathbf{x} \in \mathbb{R}^2$ a cui converge il metodo iterativo e stimare il numero di iterazioni necessarie per avere un errore, in norma, inferiore a 1/10000 dell'errore iniziale (ossia $\|\mathbf{e}^{(k)}\|/\|\mathbf{e}^{(0)}\| < 10^{-4}$).

Esercizio 8 (3,0 punti) Scrivere una function Matlab che, usando dei cicli, calcola il valore massimo del vettore \mathbf{x} . La funzione ha in ingresso \mathbf{x} ed in uscita il valore massimo xmax.