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Life is information represented and processed at
molecular level.

It “has born” when molecules were available to represent
and to process information (polymers and membranes).

symbolic calculus (versus numerical/algebraic calculus)
arose in 20° century from Mathematical Logic (formal and
automatic information processing):

1) There exist processes mathematically definable, but
uncomputable. Computation Limits

2) There exist universal computation machines able to
perform any possible. Computation Power



Replication and Universality

* The existence of “universal” computation machines
is based on algorithms of symbolic duplication (a
program is the “mirror” of a machine within another
one). Analogously, biological reproduction
postulates mechanisms of duplication (ds DNA).
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Probability and Information

e Shannon 1948: The Information of an event is a
function of its probability.

* Probability is distribution (space of events).



Probability
crucial in the scienze since 20° century

Cardano e Galileo : De ludo aleae
Pascal e Fermat : Chevalier de Mere
Jacob Bernoulli : urn and Bernoulli process : Ars Conjectandi

De Moivre, Laplace e Bayes : gaussian curve and conditional probability

Gauss : The chance law: errors follow the gaussian curve

French, Russian, Italian Schools (Poisson, Cauchy, Borel, Chebicev, Kolmogorov,
Cantelli, De Finetti): distributions, measure theory, laws of large numbers

Boltzmann (Statistical Mechanics)

English Statisticians (Galton, Pearson, Student, Fisher) Mathematical Statistics



Probability Pitfalls

A pilot has 2% probability of dying in each mission, what is the
probability of dying in 50 missions?

2% x 50 = 100% ERROR !

The same error of the game Chevalier de Meré pointed to Pascal

The pilot has dead at n-th mission iff he survives in all the previous
ones. Summing up from 1 a 49, with p = 0,02 we get:

p+(1-p)p+(1-p)°p +..+(1-p)*¥p =1-(1-p)*° =0,64

(1-p)50 is the probability of surviving up to 50° mission



Modus essendi / Modus conjectandi
 Which way things are?

* Which is the probability that things are
in a given way?



Information Theory

Communication (Hartley, Nyquist, Shannon)

Coding Theory (Fano, Hamming, Reed, Solomon)
Cryptography (Hellman, Rivest, Shamir, Adleman)
Complexity (Kolmogovov, Chaitin) Computation, Chaos
Cybernetics (Wiener, von Neumann, Langton)
Foundations (Brillouin, Bennet, Landauer)

Canonical Quantum Gravity (Wheeler, De-Witt)
Metabiology (Conrad, Chaitin)

Unification via Information (Carlo Rovelli’s books)

Universe’s ultimate mechanism for existence might be
Information: “it from bit” (Wheeler’s last speculation)



Distribution - Information

X variable assuming values with some multiplicities:

n=:n;+ nskns s
n,/n, n,/n ,ny/n, .. are frequencies

PaEs PoR P, L . are probabilities (measures of possibility
of occurring)

Shannon calls (X, p) Source of Information

-Ig p. is the measure of the information of event e with
probability p,



Information Paradoxes

Choice, Uncertainty, Information ???
Section 6 of Shannon’s booklet

(compare to: Learning/lgnorance/Knowledge)

The paradox is intrinsic to the notion of Event
(someting that happens).

The uncertainty of E, before it happens, corresponds to the
loss of uncertainty, that is, its information, when it
happened. Both of them correspond to the number of
events among which it was chosen to happen.



Shannon’s Approach
(Al Kindi’s intuition)

The meaning of a letter in a text is given by its
frequency (Caesar Encoding breakdown)

Shannon — The Mathematical Theory of Communication
(shannon48.pdf)

Cover & Thomas - Information Theory , Wiley, 1991



Boltzmann’s Tomb
The epochal formula




Thermodynamic Entropy

Carnot’s Theorem
A thermodynamic machine between two heat sources:

M (boiler) at temperature T and M_ (condenser) at temperature
T,,withT>T_, taking heat Q from M and

giving heat Q, to M, and transforms Q-Q_ into mechanical work. In
the best efficient machines:

Q, /T, =Q/T

When T, =1 Q, is called entropy (Clausius) denoted by S therefore
5= Q/T is minimum heat that M can release to a condenser at
unitary temperature

(Proof: via reversible machines, automata theory style)
Limit to the efficiency of thermodynamical machines



The Second Principle of
Thermodynamics

In any isolated system (with no energy exchange with the
external world):

AS 2 0
>

S 0

t

v O»n IV

S
S’[+1

St

Where does “>"” come from?

How this relates to Newton Mechanics where
laws are equations?



Time irreversibility as probabilistic
consequence of complexity

Boltzmann: S of Carnot is proportional to the
logarithm of the number W of microstates of the
thermodynamical macrostate.

GAS
Microstate = position and speeds of all molecules

Let n be the number of particles and k their classes of
velocities:



S =klg W (***)

* W=n!/n/!n,!...n/!

n.= number of particles with velocity in the interval
i (the whole range of velocity is split in k intervals)

* From Stirling lIgnl= nlgn
* lgW=nlgn-(n,lgn;+n,lgn, ....+n Ign,)

* S=—k(n,lgn;+n,lgn, ....+n lgn )+ C



The impossible theorem

H-Theorem (Boltzmann)
H=2n lgn

H is the discrete microscopic version of
thermodynamical entropy (apart: the sign and
additive, multiplicative costants).
H-Theorem (1872) in aisolated system:

Hi{b) = o HitEl



From Boltzmann to Shannon

H (X, p) = - 2, p(x) Ig p(x)

Shannon 1948

Entropy Th. H. is completely characterized by 3
conditions:

Continuity in p,

Maximum in p=1/n,

Additivity of choices:

REL 2 1/3i3/6) =H(1/2 ; 1/2)+ 12 H(2/3, 1/3)



The additivity of Choices




Shannon Game (abridged version)

Let X be a discrete random variable and ask
someone, knowing the distribution of X, to guess a
xalue x of X, by using the optimal dichotomy
strategy (choosing equi-probable intervals): x < x,
or not? with P(x < x,) = P(x > x,, (Yes/Not answers).

The minimum number of questions that, in
average, is sufficient for guessing correctly x
coincides with the entropy H(X) of the variable X.



* Hand H, are essentially the same thing (von
Neumann: suggested the name), En-tropos
(internal verse)

* From inf =-Ig p. follows that:

H. is average information of the source S = (X, P)



Double Entropies
(X, p), (Y,q)

* H(XxY) =-%,, p(x)aly) g p(x)aly) product /independent joint
* H(XAY) =-2,, pra(xy) Ig pra(x,y) joint
* Very often H(X . Y) is denoted simply by H(X, Y)

p.q requires joint variables (each marginal of an s(x, y), i. e. :

p(x) = Z,s(x, y)
aly) = 2,s(x, y)

that is, x and y have the same dependence set,
for ex., height/weight over a population of individuals



Conditional Entropy

* HX |Y) =-%,, paa(xy) lg pla(x,y) conditional
pla(x,y) = p.a(x, y) / aly) conditional probability

* H(X |y) =-2,pla(xy) Ig pla(xy)
* H(X |Y) = Z,q(y) H(X]y)




Joint and Conditional Entropies

* H(X.Y)=H(Y)+ H(X]Y)

* H(Y » X) = H(X) + H(Y|X)



Mutual Information

(X, Y) = H(X) = H(X|Y)

Is the information that a source gains with
respect to another source, that is, the difference
of its average information minus the mean of its
information conditioned to the values emitted

by Y.



Mutual Information and Entropies

(X, Y) = H(X)=H(X] Y)
= H(Y) = H(Y|X)
= H(X) + H(Y) = H(X 1 Y)

H(X A Y) = H(X]Y) = H(Y[X)

Mutual information is symmetric, Zero-diagonal
(that is, I(X,X) = 0), it is not triangular.

Last two equations follow from the joint/
conditional entropies relationships.



Mutual information

(X, Y) = DIV(X.Y , X x Y)

Sender X === Channel ===> ReceiverY

Noise alters data along the channel

What is the information amount that can pass
correctly?



Entropic Divergence

DIV (X, Y) = 2,y ey P(X) I8 [p(x) /aly) ]

Mean information difference between distributions
(Kullback , Leibler 1951).

How applying this definition to the case of genomic
distributions?

We need joint variables!



H theorem is an information theory theorem

1) Maxwell already proved that velocities reach normal
Distribution (as a consequence of cause normalization).

2) Elastic collisions guarantee that variance of speed
distribution remains constant

(Pytagorean game keeps variance distribution constant).

3) The Gaussian curve is the distribution having maximum
Entropy within the class of distributions with a given variance.

%k %k %k %k %k %k k %
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SECOND PART

(Information Sources and Codes)



From Information Sources to
Encoding and Transmission

* Variable values become “Digital Data” via
Codes

e Encoded Data are transmitted with a second

encoding, channel encoding for reducing error
transmission



Codes

c: C > D surjective

C strings over A (encodings or codewords, C and ¢ will be
often identified). D set of data

Only 1 datum corresponds to a codeword corresponds

Two code-words can encode the same datum (genetic
code). A code is redundant if C is injective

(non redundant otherwise)



Types of codes
(recovering codewords from a stream)

* Univocal: any string is factorizable in only one
way by means of codewords of C

* |[nstantaneous or prefix-free: no encoding is
prefix of an other encoding

* Auto-delimitative: any code-word w includes
the specification of its length (a prefix of w
tells the length of w)

* Fixed length



Kraft Norm

Let k be the alphabet size

C code over the alphabet

ICI =y (D] k‘|X|

XeC



McMillan — Kraft Theorems

* Th. McMillan : C univocal iff |C| £1

* Th. C univocal =»
exists C’ istantaneous t. c. |C|=|C’]
(Proof by construction)



Let C be code of a source (X, P)

Le = 2,cc |w|p(w)
L. is the average length of C

Cis optimal if no C" exists with L. < L.



First Shannon Theorem

H(XI p) = LC

No code of a source can reach an average
encoding length smaller than the entropy of the
source



Logarithm Lemma



X X=qi/pi

* In qi/pi Sqi/pi L

* and multiplying both members by p, and summing we have:
i Zpi In qi/piSZpi(qi/pi—l)SO

* whence:

* 2p Inqg/p, <0

* 2pIng, - Zp;Inp, <0

* 2p Ilng, -Zp; Inp, <0

2p; Ing, £ 2q, Inq

o2 p-Intglt =-2 gilpe. =i



First Th. Proof

* H(A, p) =-%,c, p(a) log, p(a)

-2, ea—P(a) log, q(a)

-3, A P(a) log k<@l /ff C ff

-2, caP(a)(log k=|c(a)| - log, //C//)

i =_zaEA p(a) |ng k—lc(a)l % zaeA p(a) |ng // C//
* =3 cp(a) |c(a)] - log M/ C/l

I | I VAN

Therefore if C univocal // C// €1 whence
- log /[ C// =K >0, that is:

H(A,p) < L.+ K
whence:
H(A,p) < L



Typical sequences

* A sequence is typical for a source (X, p) if the
the frequency of any symbol in the sequence
coincides with its probabiliy p in the source

 Th: The number of typical sequences of length
n of (X, p) is 2""X) and the probability that a
sequence of length n is typical for (X, p) is

° 2'nH(X)



The number of Typical Sequences

* logp(a) = log(p,NPt -p, NP2 -.cccp_NPM) (N s the length)
whence

* logp(a) = Np,log p, +Np, log p, +-+Np_log ..,
= _NH

Therefore
= plaks?
* Typical = 2NH

REMARK
We are speaking of simple information sources



Shannon’s 2° Th.

The theorem provides conditions to transmit
with error probability tending to zero, avoiding
transmission errors (autocorrecting codes).



Transmission Rate

Given a Transmission fixed length code where
are transmitted M different messages with

codewords of length n,

is given by (M < n)

R =
whence, for a binary al

the transmission rate R

g M/n

ohabet 2"R = M



Capacity

The capacity C of a channel X = Y conecting a
Sender Source to a Receiver source:

C = max. I(X, Y)

Where S is the set of possible sources definable

over X (or the possible probability distributions
definable over variable X)



2°Th: fR<CE—=20 for n—> oo

Consider X-typical and Y-Typical (binary alphabet)
o X oY

| @
2 H(X] 2 H(XIY)

S 2 W=2 HXIY) /2 H(X) = 2-|(X,Y)

£ 1 = mutual information

_ @

W is the average probability that a X-typical transmits a Y-
typical. The probability of error is: the number of wrong
messages M -1 (all possible messages minus the correct one)
multiplied by the average probability W:

(27R-1)W < 2w < 2nR 2l < gnRpnes iR S0



Informational Genomics

An information source (X, p) is a discrete probability distribution
(Shannon 1948)

Let X be a variable varying along genome components (positions,
segments, strings, ...)

How many times X;=a ?
p(a) = the frequency of the event X; = a

(Xg, p) is a Genomic Information Source GIS extracted from G

I(x) = 1/log,p(a) = - log,p(a) is the information quantity of a

E(Xe) = Z,p(x) 1(X)

mean information of (X, p)



Infogenomics
An Informational Approach analogous to Genomes
(ENCODE)

e Distributions

* Dictionaries

* |Indexes

* Elongation

* Segmentation

* Representation

* Entropies and related notions
* Recurrence

e Randomness

* Para/Meta/lper-Genomes



* I[mportant genomic distribution are based on
genomic dictionaries on genomes, in
particular, D, (G).

e Using the distribution of k-mers we define
E.(G) (win D) by:

E(G) = 2, p(w) Ig p(w)



Inf,(w) = - log,(prob(w))
E(G) = - 2,e0(6), [|=k Prob(w)Inf(w)
k-Entropy is the mean information of a genome as

information source of k-mers.

We computed Empirical Entropy

for any word length, and for all Human chr.
(k= 18, E, = 24 ; k=200 E, = 25 1)



Algorithmic basis of k-mer frequency computation

Bonnici V, Manca V - IGTools, J. of Bioinformatics and Proteomics, 2015

o Suffix trees ST
e Suffix arrays SA
* Enanched SA ESA
e N-extended ESA NESA
Weiner 73
McCreight 76
Ukkonen 95
Farach 97

Manber & Myers 90

Abouelhoda, Kurtz, Ohlebusch 2004
Kurtz et a. 2008



Genomic Distributions

Multiplicity (how many times words of D occur)
coMultiplicity (how many words have a given m-plicity)
Segment-Multiplicity (w.r.t. D and a segment length)
Segment-coMultiplicity (w.r.t. D and a segment length)
Segment-Lexicality (w.r.t. D and a segment length)

RDD (how many times a mer recurrs at a given distance)
Repeat-Length (how many repeats of a given length)

Duplex-dist (how many duplexesat a given distance)
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Information Correlation and RDD in Genomes

Trifonof et al. : DNA correlation periodicities, 1980

Shepherd : DNA periodicities in coding regions, 1981

Eigen et al. : periodicity in Transfer-RNA, 1981

Fickett :1982 non min. RDD periodicity in coding regions, 1982
Li : Mutual information in DNA Strings, 1990

Herzel et al. : Measuring DNA correlations, 1990

Li internal correlation in DNA, 1997

Herzel-Weiss-Trifonof : 10-11 Periodicity, 1999

Afreixo : 1-RDD min. 2009

Bastos : 2-RDD min. 2011

Carpena et al. RDD in keywords finding (non DNA), 2009-2013
Computational Chemistry 2014



Important classes of k-mers
e Repeats 3i,j,i’,j’ GIi, j]l =GIi’, j'] with i#’, j#}

 Duplexes 3!i,j,i’,j’ G[i, jl = G[i’, ] i#i’, j#]
often correctly parenthesized: no ([ ) ]

* Hapaxes =13 i,j,i’,j’ G[i,jl=GIi’,j] iz, jzf

* Creodes 1k >0 GIi, j]=G[’, '] = GIi, j+k]=GIi’,j’ +k]
G[j+1, j+k] with the maximum k is called Creode-tail



Sequencing = Dictionary (of Reads) 2 G
Repeats give ambiguity in reconstructing G

* Gli, j] and G[j+1, k] are contiguous strings in G
* GJi, j] and G[i+k, m] k-overlap if
i+k <jand GJ[i+k, j] is their overlapping string

 Arepeat G[i, j] =GJi’, '] longer than k gives k-

overlappings determining positions (i+k) and

(j’+k) as k-crossing pairs

awBwy =2 awywf

Distances between Duplexes or Hapaxes can
remove ambiguity



Other classes of k-mers

Gliy, jJisMemerif Ji,, 03,10, ,15,03,1s"
i G[i1; J1] = G[izr Jz] T G[i3, J3] = G[i4, J4]
- {G[j,;+1], G[j,*+1], G[j;+1], G[j,+1]} ={A, C, G, T}
- {Glj;+2], Glj,*+2], Glj;+2], Glj,+2]} #{A, C, G, T}

moreover it is not proper suffix or prefix of a k-mer with
this property and any of its substring has this property.

A memer is a maximal maximally elongable k-mer.

If wis a memer, thenw is arepeatandforallx=A,C, G, T,
WX occurs in G, and also the same property holds for all its

prefixes.



- Minimal Nullomers (shortest non-occurring k-mers)
- Tandems w---w’ (and poly-tandems)

(with length and/or structure constraints for ---)

Anti-Creodes (creodes w.r.t. right-left elongation)
Twin-creodes (creodes+anticreodes)

- Double creodes (duplexes that are also creodes)

Free creode tails (occurring without creodes)

- Proper creode tails (occurring only after creodes)



Other classes of k-mers

Gliy, jJisMemerif Ji,, 03,10, ,15,03,1s"
i G[i1; J1] = G[izr Jz] T G[i3, J3] = G[i4, J4]
- {G[j,;+1], G[j,*+1], G[j;+1], G[j,+1]} ={A, C, G, T}
- {Glj;+2], Glj,*+2], Glj;+2], Glj,+2]} #{A, C, G, T}

moreover it is not proper suffix or prefix of a k-mer with
this property and any of its substring has this property.

A memer is a maximal maximally elongable k-mer.

If wis a memer, thenw is arepeatandforallx=A,C, G, T,
WX occurs in G, and also the same property holds for all its

prefixes.



- Minimal Nullomers (shortest non-occurring k-mers)
- Tandems w---w’ (and poly-tandems)

(with length and/or structure constraints for ---)

Anti-Creodes (creodes w.r.t. right-left elongation)
Twin-creodes (creodes+anticreodes)

- Double creodes (duplexes that are also creodes)

Free creode tails (occurring without creodes)

- Proper creode tails (occurring only after creodes)



Coverage

The coverage of a dictionary D can be considered
w.r.t. to single positions or to the whole genome

* How many elements of D pass for a given
position?

(at most k if k is the max length of k-mers in D)

 Which is the fraction of positions k of G where
are placed words of D (i £k <j s.t. GJi,j]isin D)?



Basic Genomic Indexes

— LG Logarithmic Length (base 4)

— LX k k-Lexical Multiplicity (how many times k-mers occur
in average)

— MFL Minimal Forbidden Length (MCL = MFL -1)

— MRL Maximum Repeat length:

all the strings of length MRL+1 are hapaxes of G

— MHL Minimum Hapax length:
all the strings of length MRL-1 are repeat of G

— COV Coverage percentage (w.r.t. a dictionary)
— PCV Positional coverage (w.r.t. a dictionary)
— E,(G) Empirical k-Entropy -

— ED(G_1, G_2) k-Entropic Divergence 2>
— Max/min/average length and cardinality of any k-mer class



Genomic Chromatic lines

Refresh -'f g - : ' Refresh

—— — - e - - = R — ——
w 4 h 1 - : h 1
From 16,185,838 16,543,468

16,596,527

To 16,238,897




k 100

Start

=< 100000 =

w 4 h 1
[_J multiplicity
LJ LCP

Score tollerance

0.30

Row tollerance

10

sC MSA

] Remove Gaps

k 100

Start

< 1000000 =

w 4 h 1
[_J multiplicity
UJ LCP

Score tollerance
0.30
Row tollerance

10

MSA

sC

_J Remove Gaps

go AGAAAGAAAGAAAGAAAGAAAGAAAGAAAGAAAC - <+

= === = —= = = e

go GTGTGTGTGGTGTGTGTGGTGTGTGTGCGGGTG

===

k 100

Start

- 1000000 =

w 4 h

|_J multiplicity
LJ LCP

Score tollerance

0.30

Row tollerance

10

SG MSA

L_J Remove Gaps

99

k 100

Start

< 1000000 =

w 4 h

_J multiplicity
LJ LCP

Score tollerance
0.30
Row tollerance

10

Lij MSA

|_J Remove Gaps go CTCTCTCTCTCTCTCACACACACACACACACACCC =< <+ i
roOADEs



k 100

Start

< 100000 =

w 4 h 1 '
[_J multiplicity
LJ LCP

Score tollerance

0.30
Row tollerance

10 |

MSA

SC

[_J Remove Gaps

k 1100

Start

| < | (1000000 [ = |

w 4 h 1
[_J multiplicity
J Lcp

Score tollerance
(L

i
Row tollerance

0.30

10

MSA

sC

|_J Remove Gaps

k 100

Start

< 1000000 =

'h

[_J multiplicity
LJ LCP

Score tollerance

0.30

Row tollerance

10

MSA

SC

[_J Remove Gaps

go AGATCACAAGTTCAGGAGATCGAGATCATCCTGC < <+

k 100

Start

< 10000 =

4 h 1

w

[_J multiplicity
LJ LCP

Score tollerance

0.30

Row tollerance

10

MSA

[ T =

SsC

go Al - <+
GTGTTAGCCAGAATGGTCTTGATCTCCTGACCTC

|_J Remove Gaps

rFOADE

go v CGACAGAGCCAGACTCTGTCTCAAAAAAAAAAAGAC < <+ i



Bio-bit: a measure of biological information

Bio-bit(G)

provides a comparison between G and
Rand s, by revealing the degree of anti-chaos
present in G.



Biobit
The information that, in the average m-words

of G (for suitable m) gain in diverging from
random genomes of the same length.

Boltzmann&Shroedinger&Wiener’s
Neghentropy.



Biobit
The information that, in the average m-words

of G (for suitable m) gain in diverging from
random genomes of the same length.

Boltzmann&Shroedinger&Wiener’s
Neghentropy.
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biobit(G)

The formula is not simple to explain,
a mixing of: empirical entropy, logisti map,
RND, KL divergence, ...



biobit is anti-entropic,

rather than neghentropic

genome complexity relates to a balance between
order and disorder in systems genomes.
Order is related
with functions (for maintaining life),
Disorder with their evolving capacity
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Open Problems

 Quantum Physics
— State = vector in Hilbert Space (over Complex field)
— Measurement = Hermitian Operator
— Preparation
— Superposition
— Entanglement

* Quantum Information
— Interactive Information Source
— Mutual information as primitive notion?
— Informational Reconstruction of Quantum Physics
— Informational state



Information Dynamics

* You cannot know as things are when
observation changes the dynamics you are
observing

 The only information you can get comes from
an interaction with a source

* New informational concepts could provide
coherent principles for guantum cases



Double Quantum Sources

Input Information Source
O o e o o ® 0@

Measures alter the state, @ Measure operations on S

Because when a variable
is discovered other

are modified Measurements of S
(indetermination).

Inaccessible states of S

Output Information Source

Operations change the probability of
Output source. The accessible state of

S is only the informational state given by
a double intertwined source.



Analogy with living states

In many cases you can know what is inside a cell
only by destroying it by missing a part of its
complete state.

A general approach to the informational
recontruction of inaccessible states could define
coherent methodology for describing complex
natural systems at different levels.



