
Systems Design Laboratory

Tra�c Lights

Matteo Zavatteri

Department of Computer Science, University of Verona, ITALY



General Context

Main components:

• Two Red-Green Tra�c Lights.

• A yellow car stream

• A blue car stream

1



Tra�c Lights

Each tra�c light operates in two possible ways:

• Red Light

• Green Light

2



Yellow Car Stream

Left/gone

Bridge

Right

• A stream of single yellow cars going left to right

• When a car has green light, it can enter the bridge

• Once entered the bridge, the car can exit

• Once exited the bridge, the car can proceed disappearing from the right

road segment with a new one appearing on the left

• Beside tra�c light synchronization, there is no control on the

entering/exiting the bridge of a car

3



Blue Car Stream

Right/gone

Bridge

Left

• A stream of single blue cars going right to left

• When a car has green light, it can enter the bridge

• Once entered the bridge, the car can exit

• Once exited the bridge, the car can proceed disappearing from the left road

segment with a new one appearing on the right

• Beside tra�c light synchronization, there is no control on the

entering/exiting the bridge of a car

4



Tra�c Light Automata

• States?

• Transitions?

• Event Controllability?

5



Tra�c Light Automata

Automaton for Tra�c Light 1

R1start G1

green1

red1

States:

• R1 = Tra�c Light 1 is red

• G1 = Tra�c Light 1 is green

Events:

• green
1
= Tra�c Light 1 turns

green

• red1 = Tra�c Light 1 turns red

Automaton for Tra�c Light 2

R2start G2

green2

red2

States:

• R2 = Tra�c Light 2 is red

• G2 = Tra�c Light 2 is green

Events:

• green
2
= Tra�c Light 2 turns

green

• red2 = Tra�c Light 2 turns red
6



Stream of Cars Automata

Stream of Yellow Cars Stream of Blue Cars

• States?

• Transitions?

• Event controllability?

7



Car Stream Automata

Automaton for Yellow Car Stream

{YL,R1}

start

{YL,G1} {YB ,G1}

{YB ,R1}

{YR ,G1}

{YR ,R1}

green1 red1

yellow_enters yellow_exits

yellow_exits

green1 red1 green1 red1

yellow_gone

yellow_gone

• YL: Yellow car is on the left

• YB : Yellow car is on the bridge

• YR : Yellow car is on the right

• R1/G1: Tra�c Light 1 is red/green

Automaton for Blue Car Stream

{BL,R2}

{BL,G2} {BB ,G2}

{BB ,R2}

{BR ,G2}

{BR ,R2}

start

green2 red2

blue_entersblue_exits

blue_exits

green2 red2 green2 red2

blue_gone

blue_gone

• BL: Blue car is on the left

• BB : Blue car is on the bridge

• BR : Blue car is on the right

• R2/G2: Tra�c Light 2 is red/green

Conceptually the states are pairs (Car Position, Tra�c Light Status)

8



Yellow Car Stream Usecase Example

{YL,R1}

start

{YL,G1} {YB ,G1}

{YB ,R1}

{YR ,G1}

{YR ,R1}

green1 red1

yellow_enters yellow_exits

yellow_exits

green1 red1 green1 red1

yellow_gone

yellow_gone Tra�c Light 1 is red. Yellow car can't enter the bridge

{YL,R1}

start

{YL,G1} {YB ,G1}

{YB ,R1}

{YR ,G1}

{YR ,R1}

green1 red1

yellow_enters yellow_exits

yellow_exits

green1 red1 green1 red1

yellow_gone

yellow_gone Tra�c Light 1 turns green. Yellow car can enter the bridge

{YL,R1}

start

{YL,G1} {YB ,G1}

{YB ,R1}

{YR ,G1}

{YR ,R1}

green1 red1

yellow_enters yellow_exits

yellow_exits

green1 red1 green1 red1

yellow_gone

yellow_gone Tra�c Light 1 stays green. Yellow car enters the bridge

{YL,R1}

start

{YL,G1} {YB ,G1}

{YB ,R1}

{YR ,G1}

{YR ,R1}

green1 red1

yellow_enters yellow_exits

yellow_exits

green1 red1 green1 red1

yellow_gone

yellow_gone Tra�c Light 1 turns red. Yellow car is still on the bridge

{YL,R1}

start

{YL,G1} {YB ,G1}

{YB ,R1}

{YR ,G1}

{YR ,R1}

green1 red1

yellow_enters yellow_exits

yellow_exits

green1 red1 green1 red1

yellow_gone

yellow_gone Tra�c Light 1 stays red. Yellow car exits the bridge

{YL,R1}

start

{YL,G1} {YB ,G1}

{YB ,R1}

{YR ,G1}

{YR ,R1}

green1 red1

yellow_enters yellow_exits

yellow_exits

green1 red1 green1 red1

yellow_gone

yellow_gone Tra�c Light 1 turns green

9



Blue Car Stream Usecase Example

Tra�c Light 2 is red. Blue car can't enter the bridge

{BL,R2}

{BL,G2} {BB ,G2}

{BB ,R2}

{BR ,G2}

{BR ,R2}

start

green2 red2

blue_entersblue_exits

blue_exits

green2 red2 green2 red2

blue_gone

blue_gone

Tra�c Light 2 turns green. Blue car can enter the bridge

{BL,R2}

{BL,G2} {BB ,G2}

{BB ,R2}

{BR ,G2}

{BR ,R2}

start

green2 red2

blue_entersblue_exits

blue_exits

green2 red2 green2 red2

blue_gone

blue_gone

Tra�c Light 2 stays green. Blue car enters the bridge

{BL,R2}

{BL,G2} {BB ,G2}

{BB ,R2}

{BR ,G2}

{BR ,R2}

start

green2 red2

blue_entersblue_exits

blue_exits

green2 red2 green2 red2

blue_gone

blue_gone

Tra�c Light 2 stays green. Blue car exits the bridge

{BL,R2}

{BL,G2} {BB ,G2}

{BB ,R2}

{BR ,G2}

{BR ,R2}

start

green2 red2

blue_entersblue_exits

blue_exits

green2 red2 green2 red2

blue_gone

blue_gone

Tra�c Light 2 turns red.

{BL,R2}

{BL,G2} {BB ,G2}

{BB ,R2}

{BR ,G2}

{BR ,R2}

start

green2 red2

blue_entersblue_exits

blue_exits

green2 red2 green2 red2

blue_gone

blue_gone

Tra�c Light 2 stays red. Blue car is gone (another one appears).

{BL,R2}

{BL,G2} {BB ,G2}

{BB ,R2}

{BR ,G2}

{BR ,R2}

start

green2 red2

blue_entersblue_exits

blue_exits

green2 red2 green2 red2

blue_gone

blue_gone

10



Requirement 1

Requirement 1: Tra�c Lights must not be simultaneously green

• States?

• Transitions?

• Event controllability?

(Recall that once a vehicle has green light, we can't prevent it

from entering the bridge)

11



Requirement 1 - Attempt 1

Requirement 1: Tra�c Lights must not be simultaneously green

{R1,R2}start

{G1,R2} {G1,G2}

{R1,G2}

green1 red1

green2

red2

green2

red2

green1 red1

Step 1:

Tra�c Light 1 ‖ Tra�c Light 2

12



Requirement 1 - Attempt 1

Requirement 1: Tra�c Lights must not be simultaneously green

{R1,R2}start

{G1,R2} {G1,G2}

{R1,G2}

green1 red1

green2

red2

green2

red2

green1 red1

Step 2

Remove the state {G1,G2}

13



Requirement 1 - Attempt 1

Requirement 1: Tra�c Lights must not be simultaneously green

{R1,R2}start

{G1,R2}

{R1,G2}

green1 red1

green2

red2

Correct requirement.

Can we avoid starting from

Tra�c Light 1 ‖ Tra�c Light 2?

14



Requirement 1 - Attempt 2

Requirement 1: Tra�c Lights must not be simultaneously green

1A) Tra�c Light 1 can turn

green only if Tra�c Light 2 is red

1B) Tra�c Light 2 can turn

green only if Tra�c Light 1 is red

15



Requirement 1 - Attempt 2 - Decomposition

Requirement 1: Tra�c Lights must not be simultaneously green

1A) Tra�c Light 1 can turn

green only if Tra�c Light 2 is red

R2start G2

green2

red2

green1

1B) Tra�c Light 2 can turn

green only if Tra�c Light 1 is red

R1start G1

green1

red1

green2

16



Automata for R1 - Summary of Equivalent Versions

Version Automaton Modeling Intuition

Version 1

{R1,R2}start

{G1,R2}

{R1,G2}

green1 red1

green2

red2

From a modi�ed copy of Tra�c Light

1 ‖ Tra�c Light 2

Version 2

R2start G2

green2

red2

green1

From modi�ed copies of Tra�c

Lights 1 and 2 (each in isolation)

R1start G1

green1

red1

green2

Homework: check if the parallel composition of the two automata in Version 2

results in the automaton of Version 1. 17



Problem

Yet, car crashes are not completely avoided even if both

tra�c lights are prevented from turning simultaneously green

Can you spot the problem?

18



An Unforeseen Scenario

Tra�c Light 1 turns green

Yellow car enters the bridge

Tra�c Light 1 turns red

Tra�c Light 2 turns green

Blue car enters the bridge

19



Requirement 2

Requirement 2: A Tra�c Light can turn green only if there is no

car on the bridge coming from the opposite direction

(Yellow car)

Tra�c Light 2 cannot turn green

Tra�c Light 2 can turn green

(Blue car)

Tra�c Light 1 cannot turn green

Tra�c Light 1 can turn green

20



Requirement 2

Requirement 2: A Tra�c Light can turn green only if there is no

car on the bridge coming from the opposite direction

⇓

2A) ... 2B) ...

21



Requirement 2

Requirement 2: A Tra�c Light can turn green only if there is no

car on the bridge coming from the opposite direction

⇓

2A) Tra�c Light 2 can turn

green only if there is no yellow

car on the bridge

. . .

2B) Tra�c Light 1 can turn

green only if there is no blue car

on the bridge

. . .

22



Requirement 2 - Decomposition

Requirement 2: A Tra�c Light can turn green only if there is no

car on the bridge coming from the opposite direction

⇓

2A) Tra�c Light 2 can turn

green only if there is no yellow

car on the bridge

O�start On

yellow_enters

yellow_exits

green2

2B) Tra�c Light 1 can turn

green only if there is no blue car

on the bridge

O�start On

blue_enters

blue_exits

green1

23



Requirement 2

Requirement 2: A Tra�c Light can turn green only if there is no

car on the bridge coming from the opposite direction

⇓

Question: Does R2 in isolation guarantees to avoid car crashes?

24



Is R2 enough to avoid car crashed?

Requirement 2: A Tra�c Light can turn green only if there is no

car on the bridge coming from the opposite direction

Question: Does R2 in isolation guarantees to avoid car crashes?

G‖R2 Description

Tra�c Light 1 turns green

Tra�c Light 2 turns green

Yellow car enters the bridge

Blue car enters the bridge

No! Since R1 does not hold, we can turn green both tra�c lights

before having cars on the bridge (and the problem is still there).
25



Alternative to Requirements 1 and 2: Right or wrong?

Instead of having R1 and R2. Consider this requirement.

Requirement R ′
1,2: There are never a yellow car and a blue car on

the bridge simultaneously.

Does this requirement have the same e�ect on the plant of

requirements 1 and 2 together?

26



Requirements R ′1,2 - Attempt 1

Requirement R ′
1,2: There are never a yellow car and a blue car on

the bridge simultaneously.

Such a requirement should:

• no longer be designed from copies of tra�c lights

• reasonably be designed from the combinations of car positions

27



Requirements R ′1,2 - Attempt 1

Requirement R ′
1,2: There are never a yellow car and a blue car on

the bridge simultaneously.

Step 1: Compute the parallel composition of the car stream automata. Mark all

states.

YL, R1, BR, R2

YL, R1, BR, G2

green2

YL, G1, BR, R2

green1

red2

YL, G1, BB, G2

blue_enters

YL, G1, BR, G2

green1

red1

green2

YB, G1, BR, R2

yellow_enters

YL, G1, BB, G2

green1

YL, G1, BL, G2

blue_exits

YL, G1, BB, R2
red2

red1

red2

blue_enters YB, G1, BR, G2

yellow_enters

green2

YB, R1, BR, R2
red1

YR, G1, BR, R2

yellow_exits

red1

YL, G1, BB, R2
red2

YL, G1, BL, G2
blue_exits

YB, G1, BB, G2

yellow_enters

blue_gone green1
YL, G1, BL, R2

red2

green2

green1

blue_exits

red2

YR, G1, BR, G2

yellow_exits

blue_enters

YB, R1, BR, G2

red1

green1

YR, R1, BR, R2

yellow_exits
green2

yellow_gone

green2

red1

YR, R1, BB, G2

yellow_gone

YR, G1, BB, G2 green1

YR, R1, BL, G2
blue_exits

YR, R1, BB, R2red2

yellow_gone

red1

YR, G1, BB, R2

red2

YR, G1, BL, G2

blue_exits

yellow_gone

green1

YR, R1, BR, G2

blue_gone

YR, R1, BL, R2

red2

yellow_gone

green2

green1

blue_exits

green2

red1

YR, G1, BL, R2

blue_exits

yellow_gone

red1
red2

blue_gone

yellow_gone

yellow_gone

blue_enters

green1
red2

green2

green1

blue_gone

yellow_gone

blue_gone

green2

red1

YL, G1, BL, R2

yellow_gone

green2

red1

YB, G1, BB, R2
yellow_enters

blue_exits

yellow_gone

red2

blue_enters

red1

blue_gone

red1

YB, G1, BL, G2

yellow_enters

red2

yellow_exits

YB, R1, BB, G2

red1

red2

blue_exits

yellow_gone

green1

green2

blue_gone

green2

green1

green1

red2

yellow_exits

blue_enters

yellow_exits

green1

YB, R1, BB, R2

red2

YB, R1, BL, G2

blue_exits

yellow_exits

green2

YB, G1, BL, R2

blue_exits

red1

blue_gone

yellow_exitsred2

red1

blue_gone

yellow_exits

green2

YB, R1, BL, R2

red1

yellow_exits

green2

green1

blue_exits

blue_gone

yellow_exits

green1

green2

yellow_exits

blue_gone

green1

red2

blue_gone

green2

red1

yellow_enters

6× 6 = 36 states, 132 transitions. Why so big? What kind of composition is it?
28



Requirements R ′1,2 - Attempt 1

Requirement R ′
1,2: There are never a yellow car and a blue car on

the bridge simultaneously.
Usecase 1 Usecase 2 Usecase 3 Usecase 4

Step 2: Find all states where a yellow and a blue car are on the bridge together.

YL, R1, BR, R2

YL, R1, BR, G2

green2

YL, G1, BR, R2

green1

red2

YL, G1, BB, G2

blue_enters

YL, G1, BR, G2

green1

red1

green2

YB, G1, BR, R2

yellow_enters

YL, G1, BB, G2

green1

YL, G1, BL, G2

blue_exits

YL, G1, BB, R2
red2

red1

red2

blue_enters YB, G1, BR, G2

yellow_enters

green2

YB, R1, BR, R2
red1

YR, G1, BR, R2

yellow_exits

red1

YL, G1, BB, R2
red2

YL, G1, BL, G2
blue_exits

YB, G1, BB, G2

yellow_enters

blue_gone green1
YL, G1, BL, R2

red2

green2

green1

blue_exits

red2

YR, G1, BR, G2

yellow_exits

blue_enters

YB, R1, BR, G2

red1

green1

YR, R1, BR, R2

yellow_exits
green2

yellow_gone

green2

red1

YR, R1, BB, G2

yellow_gone

YR, G1, BB, G2 green1

YR, R1, BL, G2
blue_exits

YR, R1, BB, R2red2

yellow_gone

red1

YR, G1, BB, R2

red2

YR, G1, BL, G2

blue_exits

yellow_gone

green1

YR, R1, BR, G2

blue_gone

YR, R1, BL, R2

red2

yellow_gone

green2

green1

blue_exits

green2

red1

YR, G1, BL, R2

blue_exits

yellow_gone

red1
red2

blue_gone

yellow_gone

yellow_gone

blue_enters

green1
red2

green2

green1

blue_gone

yellow_gone

blue_gone

green2

red1

YL, G1, BL, R2

yellow_gone

green2

red1

YB, G1, BB, R2
yellow_enters

blue_exits

yellow_gone

red2

blue_enters

red1

blue_gone

red1

YB, G1, BL, G2

yellow_enters

red2

yellow_exits

YB, R1, BB, G2

red1

red2

blue_exits

yellow_gone

green1

green2

blue_gone

green2

green1

green1

red2

yellow_exits

blue_enters

yellow_exits

green1

YB, R1, BB, R2

red2

YB, R1, BL, G2

blue_exits

yellow_exits

green2

YB, G1, BL, R2

blue_exits

red1

blue_gone

yellow_exitsred2

red1

blue_gone

yellow_exits

green2

YB, R1, BL, R2

red1

yellow_exits

green2

green1

blue_exits

blue_gone

yellow_exits

green1

green2

yellow_exits

blue_gone

green1

red2

blue_gone

green2

red1

yellow_enters

Clearly 4 states. Why?

29



Alternative to Requirements 1 and 2: Right or wrong?

Requirement R ′
1,2: There are never a yellow car and a blue car on

the bridge simultaneously.
Usecase 1 Usecase 2 Usecase 3 Usecase 4

Step 3: Remove those illegal states.

YL, R1, BR, R2

YL, R1, BR, G2

green2

YL, G1, BR, R2

green1

red2

YL, G1, BB, G2

blue_enters

YL, G1, BR, G2

green1

red1

green2

YB, G1, BR, R2

yellow_enters

YL, G1, BB, G2

green1

YL, G1, BL, G2

blue_exits

YL, G1, BB, R2
red2

red1

red2

blue_enters YB, G1, BR, G2

yellow_enters

green2

YB, R1, BR, R2
red1

YR, G1, BR, R2

yellow_exits

red1

YL, G1, BB, R2
red2

YL, G1, BL, G2
blue_exits

blue_gone green1
YL, G1, BL, R2

red2

green2

green1

blue_exits

red2

YR, G1, BR, G2

yellow_exits

YB, R1, BR, G2

red1

green1

YR, R1, BR, R2

yellow_exits
green2

yellow_gone

green2

red1

YR, R1, BB, G2

yellow_gone

YR, G1, BB, G2 green1

YR, R1, BL, G2
blue_exits

YR, R1, BB, R2red2

yellow_gone

red1

YR, G1, BB, R2

red2

YR, G1, BL, G2

blue_exits

yellow_gone

green1

YR, R1, BR, G2

blue_gone

YR, R1, BL, R2

red2

yellow_gone

green2

green1

blue_exits

green2

red1

YR, G1, BL, R2

blue_exits

yellow_gone

red1
red2

blue_gone

yellow_gone

yellow_gone

blue_enters

green1
red2

green2

green1

blue_gone

yellow_gone

blue_gone

green2

red1

YL, G1, BL, R2

yellow_gone

green2

red1

blue_exits

yellow_gone

red2

blue_enters

red1

blue_gone

red1

YB, G1, BL, G2

yellow_enters

red2

yellow_gone

green1

green2

blue_gone

green2

green1

green1

red2

yellow_exits

YB, R1, BL, G2

YB, G1, BL, R2

blue_gone

yellow_exitsred2

red1

blue_gone

yellow_exits

green2

YB, R1, BL, R2

red1

blue_gone

yellow_exits

green1

green2

yellow_exits

blue_gone

green1

red2

blue_gone

green2

red1

yellow_enters

Final requirement: 32 states, 112 transitions.

30



Alternative to Requirements 1 and 2: Right or wrong?

Question: G‖R1‖R2 ≡ G‖R ′
1,2?

G‖R1‖R2 G‖R ′1,2 Description

Tra�c Light 1 turns green

Yellow car enters the bridge

Tra�c Light 1 turns red

Yellow car exits the bridge

Tra�c Light 2 turns green

Blue car enters the bridge

Blue car exits the bridge

Disabled by R1 Tra�c Light 1 turns green

Wrong! G‖R1‖R2 6≡ G‖R′
1,2. The problem is that R1 does not hold in R′

1,2.

Homework: �nd other usecases (i.e., executions, traces) violating R1.
31



Essentiality of R ′1,2

Requirement R ′
1,2: There are never a yellow car and a blue car on

the bridge simultaneously.
Usecase 1 Usecase 2 Usecase 3 Usecase 4

YL, R1, BR, R2

YL, R1, BR, G2

green2

YL, G1, BR, R2

green1

red2

YL, G1, BB, G2

blue_enters

YL, G1, BR, G2

green1

red1

green2

YB, G1, BR, R2

yellow_enters

YL, G1, BB, G2

green1

YL, G1, BL, G2

blue_exits

YL, G1, BB, R2
red2

red1

red2

blue_enters YB, G1, BR, G2

yellow_enters

green2

YB, R1, BR, R2
red1

YR, G1, BR, R2

yellow_exits

red1

YL, G1, BB, R2
red2

YL, G1, BL, G2
blue_exits

blue_gone green1
YL, G1, BL, R2

red2

green2

green1

blue_exits

red2

YR, G1, BR, G2

yellow_exits

YB, R1, BR, G2

red1

green1

YR, R1, BR, R2

yellow_exits
green2

yellow_gone

green2

red1

YR, R1, BB, G2

yellow_gone

YR, G1, BB, G2 green1

YR, R1, BL, G2
blue_exits

YR, R1, BB, R2red2

yellow_gone

red1

YR, G1, BB, R2

red2

YR, G1, BL, G2

blue_exits

yellow_gone

green1

YR, R1, BR, G2

blue_gone

YR, R1, BL, R2

red2

yellow_gone

green2

green1

blue_exits

green2

red1

YR, G1, BL, R2

blue_exits

yellow_gone

red1
red2

blue_gone

yellow_gone

yellow_gone

blue_enters

green1
red2

green2

green1

blue_gone

yellow_gone

blue_gone

green2

red1

YL, G1, BL, R2

yellow_gone

green2

red1

blue_exits

yellow_gone

red2

blue_enters

red1

blue_gone

red1

YB, G1, BL, G2

yellow_enters

red2

yellow_gone

green1

green2

blue_gone

green2

green1

green1

red2

yellow_exits

YB, R1, BL, G2

YB, G1, BL, R2

blue_gone

yellow_exitsred2

red1

blue_gone

yellow_exits

green2

YB, R1, BL, R2

red1

blue_gone

yellow_exits

green1

green2

yellow_exits

blue_gone

green1

red2

blue_gone

green2

red1

yellow_enters

Can we simplify it?

32



Requirement R ′1,2 - Attempt 2

Requirement R ′
1,2: There are never a yellow car and a blue car on

the bridge simultaneously.
Usecase 1 Usecase 2 Usecase 3 Usecase 4

{YO� ,BO� }start

{YOn,BO� } {YOn,BOn}

{YO� ,BOn}

yellow_enters yellow_exits

blue_enters

blue_exits

blue_enters

blue_exits

yellow_enters yellow_exits

Step 1: Concurrent behavior of

�on/o� bridge� automata

33



Requirement R ′1,2 - Attempt 2

Requirement R ′
1,2: There are never a yellow car and a blue car on

the bridge simultaneously.
Usecase 1 Usecase 2 Usecase 3 Usecase 4

{YO� ,BO� }start

{YOn,BO� } {YOn,BOn}

{YO� ,BOn}

yellow_enters yellow_exits

blue_enters

blue_exits

blue_enters

blue_exits

yellow_enters yellow_exits

Step 2: Remove the illegal state

{YOn,BOn}

34



Requirement R ′1,2 - Attempt 2

Requirement R ′
1,2: There are never a yellow car and a blue car on

the bridge simultaneously.
Usecase 1 Usecase 2 Usecase 3 Usecase 4

{YO� ,BO� }start

{YOn,BO� }

{YO� ,BOn}

yellow_enters yellow_exits

blue_enters

blue_exits

Correct. Can we avoid starting

from the concurrent behavior of

�on/o� bridge� automata?

35



Requirement R ′1,2 - Attempt 3 - Decomposition

Requirement R ′
1,2: There are never a yellow car and a blue car on

the bridge simultaneously.
Usecase 1 Usecase 2 Usecase 3 Usecase 4

R′
1,2A) A yellow car can enter the bridge

only if there is no blue car on it

. . .

R′
1,2B) A blue car can enter the bridge

only if there is no yellow car on it

. . .

36



Requirement R ′1,2 - Attempt 3

Requirement R ′
1,2: There are never a yellow car and a blue car on

the bridge simultaneously.
Usecase 1 Usecase 2 Usecase 3 Usecase 4

R′
1,2A) A yellow car can enter the bridge

only if there is no blue car on it

BO�start BOn

blue_enters

blue_exits

yellow_enters

R′
1,2B) A blue car can enter the bridge

only if there is no yellow car on it

YO�start YOn

yellow_enters

yellow_exits

blue_enters

37



Automata for R ′1,2 - Summary of Equivalent Versions

Version Automaton Modeling Intuition

Version 1

YL, R1, BR, R2

YL, R1, BR, G2

green2

YL, G1, BR, R2

green1

red2

YL, G1, BB, G2

blue_enters

YL, G1, BR, G2

green1

red1

green2

YB, G1, BR, R2

yellow_enters

YL, G1, BB, G2

green1

YL, G1, BL, G2

blue_exits

YL, G1, BB, R2
red2

red1

red2

blue_enters YB, G1, BR, G2

yellow_enters

green2

YB, R1, BR, R2
red1

YR, G1, BR, R2

yellow_exits

red1

YL, G1, BB, R2
red2

YL, G1, BL, G2
blue_exits

blue_gone green1
YL, G1, BL, R2

red2

green2

green1

blue_exits

red2

YR, G1, BR, G2

yellow_exits

YB, R1, BR, G2

red1

green1

YR, R1, BR, R2

yellow_exits
green2

yellow_gone

green2

red1

YR, R1, BB, G2

yellow_gone

YR, G1, BB, G2 green1

YR, R1, BL, G2
blue_exits

YR, R1, BB, R2red2

yellow_gone

red1

YR, G1, BB, R2

red2

YR, G1, BL, G2

blue_exits

yellow_gone

green1

YR, R1, BR, G2

blue_gone

YR, R1, BL, R2

red2

yellow_gone

green2

green1

blue_exits

green2

red1

YR, G1, BL, R2

blue_exits

yellow_gone

red1
red2

blue_gone

yellow_gone

yellow_gone

blue_enters

green1
red2

green2

green1

blue_gone

yellow_gone

blue_gone

green2

red1

YL, G1, BL, R2

yellow_gone

green2

red1

blue_exits

yellow_gone

red2

blue_enters

red1

blue_gone

red1

YB, G1, BL, G2

yellow_enters

red2

yellow_gone

green1

green2

blue_gone

green2

green1

green1

red2

yellow_exits

YB, R1, BL, G2

YB, G1, BL, R2

blue_gone

yellow_exitsred2

red1

blue_gone

yellow_exits

green2

YB, R1, BL, R2

red1

blue_gone

yellow_exits

green1

green2

yellow_exits

blue_gone

green1

red2

blue_gone

green2

red1

yellow_enters

From a modi�ed copy of Yellow-

CarStream ‖ BlueCarStream

Version 2 {YO� ,BO� }start

{YOn,BO� }

{YO� ,BOn}

yellow_enters yellow_exits

blue_enters

blue_exits

From a modi�cation of �On/O�

bridge� automaton for yellow and blue

cars (concurrent)

Version 3
BO�start BOn

yellow_enters

yellow_exits

blue_enters

From a modi�cation of �On/O�

bridge� automaton for yellow and

blue cars (in isolation)

YO�start YOn

yellow_enters

yellow_exits

blue_enters

Homework: note the modeling similarities of R′
1,2 (version 2) with R1 (version 1);

of R′
1,2 (version 3) with R1 (version 2) and R2.

38



Requirement 3

Requirement 3: Green Lights must alternate.

If Tra�c Light 1 turns green �rst

⇓

⇓

⇓

. . .

If Tra�c Light 2 turns green �rst

⇓

⇓

⇓

. . .

39



Requirement 3 - Attempt 1

Requirement 3: Green Lights must alternate.

If Tra�c Light 1 turns green �rst

⇓

. . .

Requirement R3A

S1start S2

green2

green1

If Tra�c Light 2 turns green �rst

⇓

. . .

Requirement R3B

S ′1start S ′2

green1

green2

Not certaintly an AND of the two automata.

We need the UNION of these two automata.
40



Requirement 3 - Attempt 1 - Nondeterministic

Requirement 3: Green Lights must alternate.

If Tra�c Light 1 turns green �rst If Tra�c Light 2 turns green �rst

Requirement R3A Requirement R3B

S1start S2

green2

green1

S ′1start S ′2

green1

green2

Requirement R3A ∧ R3B := R3A‖R3B = R3A × R3B Requirement R3A ∨ R3B

{S1, S ′1}start S0start

S1 S2

S ′1 S ′2

green1

green2

green2

green1

ε

ε

Homework: synthesize a supervisor that (also) takes into consideration

requirement R3A ∧ R3B . What e�ect does it have on the plant? 41



Requirement 3 - Attempt 1 - Nondeterministic

Requirement 3: Green Lights must alternate.

If Tra�c Light 1 turns green �rst

⇓

. . .

If Tra�c Light 2 turns green �rst

⇓

. . .

NFA

S0start

S1 S2

S ′1 S ′2

green1

green2

green2

green1

ε

ε

DFA

{S0, S1, S ′1}start

{S2} {S1}

{S ′2} {S ′1}

green2

green1

green1

green2

green1

green2

42



Requirement 3 - Attempt 2 - Deterministic

Requirement 3: Green Lights must alternate.

⇓

3A) If Tra�c Light 1 turns green, then

Tra�c Light 2 must turn green at least

once before Tra�c Light 1 turns green

again.

3B) Whenever Tra�c Light 2 turns

green, then Tra�c Light 1 must turn

green at least once before Tra�c Light

2 turns green again.

If Tra�c Light i = 1, 2 turns green, then Tra�c Light (i mod 2) + 1 must turn

green at least once before Tra�c Light i turns green again.

43



Requirement 3 - Attempt 2 - Deterministic

Requirement 3: Green Lights must alternate.

⇓

3A) If Tra�c Light 1 turns green, then

Tra�c Light 2 must turn green at least

once before Tra�c Light 1 turns green

again.

S1start S2

green2

green1

green2

3B) Whenever Tra�c Light 2 turns

green, then Tra�c Light 1 must turn

green at least once before Tra�c Light

2 turns green again.

S ′1start S ′2

green1

green2

green1

If Tra�c Light i = 1, 2 turns green, then Tra�c Light (i mod 2) + 1 must turn

green at least once before Tra�c Light i turns green again. 44



Requirement 4

Requirement 4: Whenever Tra�c Light 1 turns green, then 2 to 4

yellow cars traverse (i.e., exit) the bridge before Tra�c Light 1

turns red again

1st car 2nd car

Tra�c Light 1 cannot turn red Tra�c Light 1 can turn red

3rd car 4th car

Tra�c Light 1 can turn red Tra�c Light 1 must turn red

What about the

automaton?

45



Requirement 4

Requirement 4: Whenever Tra�c Light 1 turns green, then 2 to 4

yellow cars traverse (i.e., exit) the bridge before Tra�c Light 1

turns red again

R1start G1 Y1

Y2Y3Y4

green1 yellow_exits

yellow_exits

yellow_exitsyellow_exits

red
1

red
1red1

46



Requirement 5

Requirement 5: Whenever Tra�c Light 2 turns green, then 1 to 3

blue cars traverse (i.e., exit) the bridge before Tra�c Light 2 turns

red again

1st car 2nd car

Tra�c Light 2 can turn red Tra�c Light 2 can turn red

3rd car

Tra�c Light 2 must turn red

What about this

automaton?

47



Requirement 5

Requirement 5: If Tra�c Light 2 turns green, then 1 to 3 blue cars

traverse (i.e., exit) the bridge before Tra�c Light 2 turns red again

R2start G2 B1

B2B3

green2 blue_exits

blue_exits

blue_exits

red2

red
2red2

48


