Il Problema della Raggiungibilita' per gli Automi Ibridi

Tiziano Villa

Universita' di Verona, Febbraio 2011

Sommario

- Il problema della raggiungibilita'
- Sistemi di transizione
- Relazione di equivalenza
- Bisimulazione
- Simulazione

Il Problema della Raggiungibilita'

Dato un automa ibrido H calcolare $Reach(H) \subset Q \times X$.

Permette di rispondere a domande su proprieta' di sicurezza:

dato $F \subseteq Q \times X$, la proprieta' "always F" e' soddisfatta da H se lungo tutte le esecuzioni di H lo stato rimane in F.

F e' un insieme "buono" di stati in cui si vuol sempre rimanere o anche F^c e' un insieme "cattivo" di stati da cui si vuole sempre rimanere fuori.

Altre proprieta':

"eventually F" vivacita' se lungo tutte le esecuzioni di H lo stato a un certo punto raggiunge F.

"always eventually F'' rispondenza sempre eventualmente...

"eventually always F'' persistenza eventualmente sempre...

Un sistema di transizione e' una collezione

$$T = (S, \Sigma, \rightarrow, S_0, S_F)$$

dove

- 1. S e' un insieme di stati
- 2. Σ e' un alfabeto di eventi
- 3. $\rightarrow \subseteq S \times \Sigma \times S$ e' una relazione di transizione
- 4. $S_0 \subseteq S$ e' un insieme di stati iniziali
- 5. $S_F \subseteq S$ e' un insieme di stati finali

Un automa finito $M=(Q,\Sigma,\Delta,q_o,F)$ e' un sistema di transizione dove

- 1. S = Q
- 2. Σ e' lo stesso
- 3. $\rightarrow = \Delta$
- 4. $S_0 = q_0$
- 5. $S_F = F$

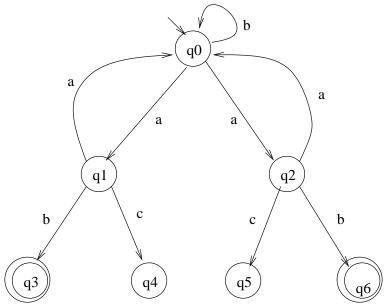
Un automa ibrido H=(Q,X,Init,f,Inv,E,G,R) insieme con una proprieta' di sicurezza "always F'' e' un sistema di transizione dove

- 1. $S = Q \times X$
- 2. $\Sigma = E \cup \{\tau\}$
- 3. $\rightarrow = \{transizioni\ discrete\} \cup \{evoluzioni\ continue\}$, caratterizzate da Inv, G, R
- 4. $S_0 = Init$
- 5. $S_F = F^c$

Esempio di problema della **raggiungibilita'**: dato un sistema di transizione T, c'e' uno stato $s_f \in S_F$ raggiungibile da uno stato $s_0 \in S_0$ con una successione di transizioni ?

Per automi finiti si possono sempre risolvere i problemi di raggiungibilita' mediante enumerazione.

Esempio. Automa finito.



Calcolo della Raggiungibilita'

```
\label{eq:Raggiungibilita'} \begin{split} Raggiungibilita'(T) & \{ \\ Reach_0 = S_0 \\ Reach_{-1} = \emptyset \\ i = 0 \\ \text{While } Reach_i \neq Reach_{i-1} & \{ \\ Reach_{i+1} = Reach_i \cup \\ \{s' \in S : \exists s \in Reach_i, \sigma \in \Sigma \ con \ (s,\sigma,s') \in \rightarrow \} \\ i = i+1 \\ \} \\ \rbrace \end{split}
```

Se la procedura puo' essere meccanizzata, ed essa termina, e al termine $Reach_i \cap S_F = \emptyset$ allora la risposta al problema della raggiungibilita' e ' "no".

Per automi finiti la procedura puo' essere meccanizzata e termina sempre.

Nell'esempio $Reach_{-1} = \emptyset$, $Reach_{0} = \{q_{0}\}$, $Reach_{1} = \{q_{0}, q_{1}, q_{2}\}$, $Reach_{2} = Q$.

Relazione d'Equivalenza

Nell'esempio q_1 e q_2 hanno proprieta' simili, poiche' sono raggiungibili da q_0 mediante a e tutte le esecuzioni successive sono simili. Gli stati q_1 e q_2 sono "equivalenti". La nozione di bisimulazione cattura tale equivalenza.

Una bisimulazione e' una relazione d'equivalenza che preserva la relazione di transizione.

Una **relazione d'equivalenza** $\sim \subseteq S \times S$ e' una relazione:

- 1. riflessiva: $(s,s) \in \sim \forall s \in S$
- 2. simmetrica: $(s,s') \in \sim \Rightarrow (s',s) \in \sim$
- 3. transitiva: $(s,s') \in \sim \land (s',s'') \in \sim \Rightarrow (s,s'') \in \sim$

Una relazione d'equivalenza partiziona S in un numero di classi d'equivalenza S_i : $S = \bigcup_i S_i$ tali che $\forall s, s' \in S, s, s' \in S_i$ se e solo se $s \sim s'$.

Relazione d'Equivalenza

Data una relazione d'equivalenza \sim , $S/\sim = \{S_i\}$ denota lo **spazio quoziente**, cioe' l'insieme delle classi d'equivalenza.

Dato un insieme $P \subseteq S$, P/\sim rappresenta la parte dello spazio quoziente in comune con P:

$$P/\sim = \{S_i : S_i \cap P \neq \emptyset\} \subseteq S/\sim$$

Dato un sistema di transizione $T = (S, \Sigma, \rightarrow, S_0, S_F)$, il **sistema di transizione quoziente** e'

$$T/\sim = \{S/\sim, \Sigma, \rightarrow_{\sim}, S_0/\sim, S_F/\sim\}$$

dove per $S_1, S_2 \in S/\sim$, $(S_1, \sigma, S_2) \in \rightarrow_{\sim}$ se e solo se ci sono $s_1 \in S_1$ e $s_2 \in S_2$ tali che $(s_1, \sigma, s_2) \in \rightarrow$.

Per $\sigma\in \Sigma$, $Pre_\sigma: 2^S\to 2^S$ e' l'insieme degli stati che raggiungono P con una transizione in σ

$$Pre_{\sigma}(P) = \{ s \in S : \exists s' \in P \ con \ (s, \sigma, s') \in \rightarrow \}$$

Nell'esempio, se $P = \{q_3, q_4, q_5, q_6\}$, allora $Pre_b(P) = Pre_c(P) = \{q_1, q_2\}$.

Bisimulazione

Dato $T = (S, \Sigma, \rightarrow, S_0, S_F)$ e una relazione d'equivalenza \sim su S, \sim si dice una **bisimulazione** se

- 1. S_0 e' un'unione di classi d'equivalenza
- 2. S_F e' un'unione di classi d'equivalenza
- 3. $\forall \sigma \in \Sigma$, se P e' un'unione di classi d'equivalenza, anche $Pre_{\sigma}(P)$ e' un'unione di classi d'equivalenza.

Se \sim e' una bisimulazione, T e T/\sim si dicono bisimili.

 \Rightarrow Date le classi d'equivalenza P,Q e $\sigma \in \Sigma$, dev'essere $Pre_{\sigma}(P) \cap Q = \emptyset$ o $Pre_{\sigma}(P) \cap Q = Q$.

Proposizione. Se $T=(S,\Sigma,\rightarrow,S_0,S_F)$ e $T/\sim=\{S/\sim,\Sigma,\rightarrow_\sim,S_0/\sim,S_F/\sim\}$ sono sistemi di transizione bisimili, i problemi di raggiungibilita' di T e T/\sim sono equivalenti.

Bisimulazione

Dato $T = (S, \Sigma, \rightarrow, S_0, S_F)$, una **bisimulazione** e' una relazione binaria $\sim \subseteq S \times S$ tale che $\forall \sigma \in \Sigma$:

1.
$$s_1 \sim s_2 \land s_1 \in S_0 \implies s_2 \in S_0$$

2.
$$s_1 \sim s_2 \land s_2 \in S_0 \implies s_1 \in S_0$$

3.
$$s_1 \sim s_2 \land s_1 \in S_F \Rightarrow s_2 \in S_F$$

4.
$$s_1 \sim s_2 \land s_2 \in S_F \Rightarrow s_1 \in S_F$$

5.
$$s_1 \sim s_2 \land (s_1, \sigma, s_1') \in \to \exists s_2' [s_1' \sim s_2' \land (s_2, \sigma, s_2') \in \to]$$

6.
$$s_1 \sim s_2 \land (s_2, \sigma, s_2') \in \to \exists s_1' [s_1' \sim s_2' \land (s_1, \sigma, s_1') \in \to]$$

Gli stati s_1 e s_2 sono **equivalenti rispetto alla bisim- ulazione** o **bisimili** se c'e' una bisimulazione \sim tale che $s_1 \sim s_2$.

Compito: Dimostrare l'equivalenza delle due definizioni di bisimulazione.

Bisimulazione

Due sistemi di transizione $T=(S,\Sigma,\to,S_0,S_F)$ e $T'=(S',\Sigma,\to',S'_0,S'_F)$ si dicono **bisimili** se esiste una relazione binaria $\sim\subseteq S\times S'$ tale che $\forall\sigma\in\Sigma$:

1.
$$s_1 \sim s_2 \land s_1 \in S_0 \implies s_2 \in S_0'$$

2.
$$s_1 \sim s_2 \land s_2 \in S'_0 \implies s_1 \in S_0$$

3.
$$s_1 \sim s_2 \land s_1 \in S_F \Rightarrow s_2 \in S_F'$$

4.
$$s_1 \sim s_2 \land s_2 \in S_F' \Rightarrow s_1 \in S_F$$

5.
$$s_1 \sim s_2 \land (s_1, \sigma, s_1') \in \to \exists s_2' [s_1' \sim s_2' \land (s_2, \sigma, s_2') \in \to']$$

6.
$$s_1 \sim s_2 \land (s_2, \sigma, s_2') \in \to' \Rightarrow \exists s_1' [s_1' \sim s_2' \land (s_1, \sigma, s_1') \in \to]$$

Simulazione

Dato $T = (S, \Sigma, \rightarrow, S_0, S_F)$, una **simulazione** e' una relazione binaria $\sim \subseteq S \times S$ tale che $\forall \sigma \in \Sigma$:

1.
$$s_1 \sim s_2 \land s_1 \in S_0 \implies s_2 \in S_0$$

2.
$$s_1 \sim s_2 \land s_1 \in S_F \Rightarrow s_2 \in S_F$$

3.
$$s_1 \sim s_2 \land (s_1, \sigma, s_1') \in \to \exists s_2' [s_1' \sim s_2' \land (s_2, \sigma, s_2') \in \to]$$

Gli stati s_1 e s_2 sono **equivalenti rispetto alla simulazione** se c'e' una simulazione \sim tale che $s_1 \sim s_2$ e una simulazione \sim' tale che $s_2 \sim s_1$.

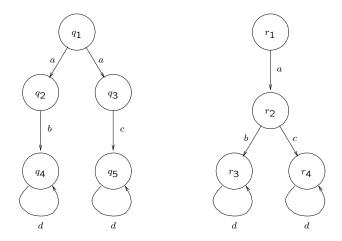
Per avere una bisimulazione bisogna che $\sim' \equiv \sim^{-1}$, cioe' \sim dev'essere una simulazione in entrambe le direzioni.

Simulazione

Bisimulazione \Longrightarrow Linguaggio.

Un'equivalenza piu' fine di un'altra identifica meno stati come equivalenti. Dalla piu' fine alla meno fine: Bisimulazione \longrightarrow Linguaggio.

Esempio. Gli stati q_1 e r_1 sono equivalenti rispetto al linguaggio, ma non simili, perche' nessun a-successore di q_1 simula l'a-successore r_2 di r_1 .



Compito: Esibire dei sistemi di transizione T e T' tali che lo stato iniziale s_0 di T e' equivalente allo stato iniziale s_0' di T' rispetto a simulazione e linguaggio, ma non rispetto a bisimulazione.

Se T e' un sistema di transizione, la relazione binaria $\equiv_T^{bis} \subseteq S \times S$ e' definita da $q \equiv_T^{bis} r$ se e solo se c'e una bisimulazione \preceq su T con $q \preceq r$.

La relazione \equiv_T^{bis} e' l'unione di tutte le bisimulazioni su T.

Compito: La relazione \equiv_T^{bis} e' una bisimulazione su T.

La relazione \equiv_T^{bis} si dice **bisimilarita'**.

Il quoziente $T/_{\equiv^{bis}_T}$ e' il **quoziente di bisimilarita'** di T.

```
Bisimilarita'(T) \ \{ \\ S/\sim = \{S_0, S_F, S \setminus (S_0 \cup S_F)\} \\ \text{while } \exists P, P' \in S/\sim, \ \sigma \in \Sigma \colon P \cap Pre_{\sigma}(P') \neq P \land \\ P \cap Pre_{\sigma}(P') \neq \emptyset \ \{ \\ P_1 = P \cap Pre_{\sigma}(P') \\ P_2 = P \setminus Pre_{\sigma}(P') \\ S/\sim = (S/\sim \setminus \{P\}) \cup \{P_1, P_2\} \\ \} \\ \}
```

Si suppone $S_0 \neq \emptyset$, $S_F \neq \emptyset$, $S_0 \cap S_F = \emptyset$. Se $S_0 \cap S_F \neq \emptyset$, si pone $S/\sim = \{S_0 \setminus S_F, S_F \setminus S_O, S_0 \cap S_F, S \setminus (S_0 \cup S_F)\}$.

Se l'algoritmo termina \sim e' una bisimulazione:

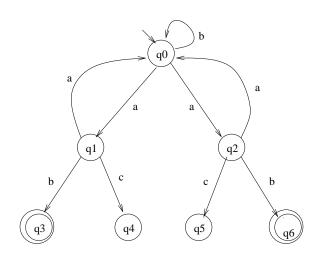
- 1. S_0 e' un'unione di classi d'equivalenza: inizialmente $S_0 \in S/\sim$ e poi l'unica operazione e' la suddivisione di una classe in piu' classi
- 2. S_F e' un'unione di classi d'equivalenza: inizialmente $S_F \in S/\sim$ e poi l'unica operazione e' la suddivisione di una classe in piu' classi
- 3. Se termina $\forall P, P' \in S/\sim e \ \forall \sigma \in \Sigma, \ P \cap Pre_{\sigma}(P')$ e' uguale a P o a $\emptyset \Rightarrow Pre_{\sigma}(P')$ e' un'unione di classi d'equivalenza.

T e T/\sim hanno problemi di raggiungibilita' equivalenti.

Se S e' finito, l'algoritmo termina sempre e riduce la complessita' del calcolo della raggiungibilita'.

Esempio. Quoziente di bisimilarita' del precedente automa finito: $\sim = \{\{q_0\}, \{q_1, q_2\}, \{q_3, q_6\}, \{q_4, q_5\}\}.$

[Da $P = \{q_1, q_2, q_4, q_5\}$, $P' = \{q_0\}$, $Pre_a(P') = \{q_1, q_2\}$, $P \cap Pre_a(P') = \{q_1, q_2\}$, $P \setminus Pre_a(P') = \{q_4, q_5\}$.]



T e T/\sim hanno problemi di raggiungibilita' equivalenti.

Se S e' infinito, il calcolo della raggiungibilita' non e' detto termini. Se pero' l'algoritmo della bisimulazione termina producendo un quoziente T/\sim finito, si possono risolvere su T/\sim i problemi di raggiungibilita'.

Se T ha una bisimulazione finita, e' garantito che su T/\sim sia la raggiungibilita' in avanti che all'indietro terminano.

Ma c'e' di piu'...

Se T ha una bisimulazione finita, o la raggiungibilita' in avanti o quella all'indietro terminano su T.

Il quoziente rispetto alla bisimilarita' serve soprattutto a stabilire la decidibilita' del problema, poi si calcola la raggiungibilita' in avanti o all'indietro.

Problema: per quale classe di sistemi di transizione infiniti, c'e' una bisimulazione finita ?

La decidibilita' richiede non solo la terminazione della procedura, ma anche la calcolabilita' di ogni passo:

- rappresentare simbolicamente gl'insiemi
- eseguire intersezione e complementazione d'insiemi
- calcolare se un insieme e' vuoto
- calcolare $Pre_{\sigma}(Y)$ di un insieme Y

Sommario

- Automi temporizzati
- Bisimulazione di automi temporizzati

Automa Temporizzato

Predicati di orologio

L'insieme $\Phi(X)$ di predicati di orologio di X e' un insieme di espressioni logiche finite definite induttivamente da $\delta \in \Phi(X)$ se:

$$\delta := (x_i \leq c) \mid (x_i \geq c) \mid \neg \delta_1 \mid \delta_1 \wedge \delta_2$$

dove $\delta_1, \delta_2 \in \Phi(X), x_i \in X$ e $c \geq 0$ e' un razionale.

A ogni $\delta \in \Phi$ si associa un insieme

$$\hat{\delta} = \{ x \in X : \delta(x) = True \}$$

Esempi

- $(x_1 \le 1) \in \Phi(X)$
- $(0 \le x_1 \le 1) \in \Phi(X) \ (\equiv (x_1 \ge 0) \land (x_1 \le 1))$
- $(x_1 = 1) \in \Phi(X) \ (\equiv (x_1 \ge 1) \land (x_1 \le 1))$
- $(x_1 < 1) \in \Phi(X) \ (\equiv \neg(x_1 \ge 1))$
- $True \in \Phi(X) \ (\equiv \neg((x_1 \leq 0) \land (x_1 \geq 1)))$
- $(x_1 \leq x_2) \notin \Phi(X)$

Automa Temporizzato

Un automa temporizzato e' un automa ibrido

$$H = (Q, X, Init, f, Inv, E, G, R)$$
 dove

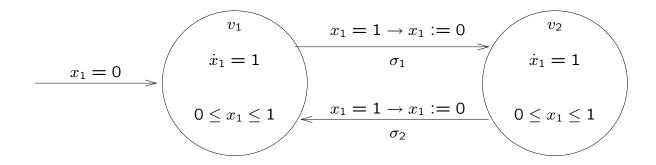
- Q e' l'insieme dei modi (stati discreti), $extbf{ extit{Q}} = \{q_1, \dots, q_m\}$
- $X = \{x_1, \dots, x_n\}, X = R^n$
- $Init = \{\{q_i\} \times \widehat{Init_{q_i}(x)}\}_{i=1}^m$, dove $Init_{q_i}(x) \in \Phi(X)$
- $f(q, x) = (1, ..., 1), \forall (q, x)$
- $Inv(q,x) = \widehat{Inv_q(x)}$, dove $Inv_q(x) \in \Phi(X)$, $\forall q \in Q$
- $E \subseteq \mathbf{Q} \times \mathbf{Q}$
- $G(e,x) = \widehat{G_e(x)}$, dove $G_e(x) \in \Phi(X)$, $\forall e = (q,q') \in E$
- R(e,x) o lascia x_i invariato o lo azzera, $\forall e \in E$

Per semplicita' nel costruire la bisimulazione si assumera'

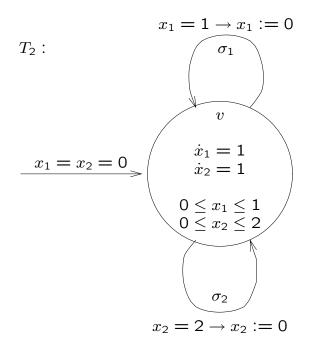
• Inv(q,x) = X, $\forall q \in Q$

Esempio di automa a tempo con 1 orologio.

 T_1 :



Esempio di automa a tempo con 2 orologi.

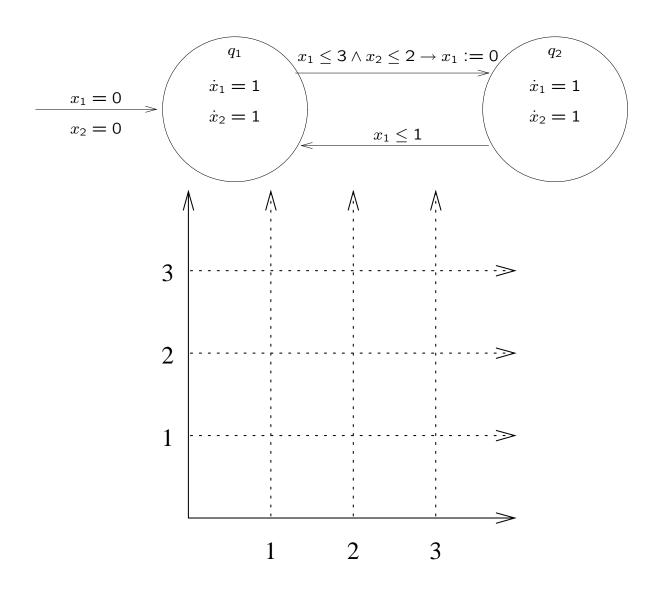


Un automa temporizzato, con un insieme di stati finali $F = \{\{q_i\} \times \widehat{F_{q_i}}\}_{i=1}^m$, dove $F_{q_i} \in \Phi(X)$ si puo' vedere come un sistema di transizione $T = (S, \Sigma, \rightarrow, S_0, S_F)$ dove

- 1. $S = Q \times X$
- 2. $\Sigma = E \cup \{\tau\}$, τ e' un simbolo che denota il passaggio del tempo
- 3. $((q,x), e, (q',x')) \in \to \text{ if } e = (q,q') \in E, G_e(x) = True \ e$ $x' \in R(e,x)$
- 4. $((q, x), \tau, (q', x')) \in \rightarrow \text{if } q = q', \exists t \geq 0 : x' = x + t(1, ..., 1)$
- 5. $S_0 = Init$
- 6. $S_F = F$

Esempio di automa a tempo.

 T_1 :



•
$$Q = \{q\}, \ \mathbf{Q} = \{q_1, q_2\}$$

•
$$X = \{x_1, x_2\}, X = R^2$$

- $Init = \{(q_1, 0, 0)\}$
- $f(q, x) = (1, 1), \forall (q, x)$
- $Inv(q) = R^2$, $\forall q \in Q$
- $E = \{(q_1, q_2), (q_2, q_1)\}$
- $G((q_1, q_2)) = \{x \in R^2 : (x_1 \le 3) \land (x_2 \le 2)\}, G((q_2, q_1)) = \{x \in R^2 : (x_1 \le 1)\}$
- $R((q_1,q_2),x) = \{(0,x_2)\}, R((q_2,q_1),x) = \{(x_1,x_2)\}$

Obiettivo: mostrare che gli automi temporizzati hanno una bisimulazione finita.

Senza perdita di generalita' si possono considerare tutte le costanti come intere. Sia T un sistema di transizione definito da un automa temporizzato H e $\lambda > 0$ un razionale. Sia H_{λ} l'automa temporizzato ottenuto sostituendo tutte le costanti c in H con λc . Sia T_{λ} il sistema di transizione associato con H_{λ} .

Proposizione. $T \in T_{\lambda}$ sono bisimili.

Compito. Dimostrarlo.

Percio' consideriamo il sistema bisimile T_{λ} , dove λ e' il multiplo comune di tutti i denominatori delle costanti non intere.

Sia c_i la costante maggiore con cui si confronta x_i . Nell'es. $c_1 = 3, c_2 = 2$.

Sia $\lfloor x_i \rfloor$ la parte intera di x_i e $\langle x_i \rangle$ la parte frazionaria di x_i : $x_i = |x_i| + \langle x_i \rangle$, $|x_i| \in Z$, $\langle x_i \rangle \in [0, 1)$.

Si consideri la relazione binaria $\sim\subseteq Q\times Q$, dove $(q,x)\sim (q',x')$ se

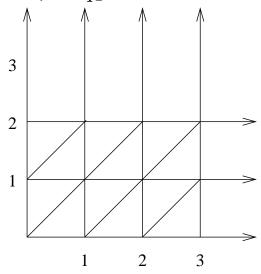
- 1. q = q'
- 2. $\forall x_i, \lfloor x_i \rfloor = \lfloor x_i' \rfloor$ oppure $(x_i > c_i) \land (x_i' > c_i)$
- 3. $\forall x_i, x_j \text{ con } x_i \leq c_i \text{ e } x_j \leq c_j$ $(\langle x_i \rangle \leq \langle x_j \rangle) \Leftrightarrow (\langle x_i' \rangle \leq \langle x_j' \rangle)$
- 4. $\forall x_i \text{ con } x_i \leq c_i$

$$(\langle x_i \rangle = 0) \Leftrightarrow (\langle x_i' \rangle = 0)$$

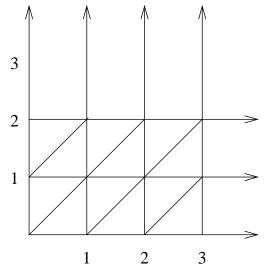
Proposizione. \sim e' una relazione d'equivalenza.

Compito. Dimostrarlo.

Classi di equivalenza per q_1 :



Classi di equivalenza per q_2 :



Le classi di equivalenza sono

- triangoli aperti
- segmenti o semirette aperti
- rettangoli aperti
- punti

Nell'esempio il numero di classi d'equivalenza e': $2 \times (12 \text{ punti} + 30 \text{ linee} + 18 \text{ regioni}) = 120.$

Teorema. \sim e' una bisimulazione.

Dobbiamo dimostrare che:

- 1. Init e' un'unione di classi d'equivalenza
- 2. F e' un'unione di classi d'equivalenza
- 3. Se P e' un'unione di classi d'equivalenza e $e \in E$, $Pre_e(P)$ e' un'unione di classi d'equivalenza.
- 4. Se P e' un'unione di classi d'equivalenza, $Pre_{\tau}(P)$ e' un'unione di classi d'equivalenza.

Init e F sono unioni di classi d'equivalenza..

Se $\delta \in \Phi(X)$, $\hat{\delta} = \{x \in X : \delta(x) = True\}$ e' un'unione di classi d'equivalenza (solo sulle variabili X), poiche' $\hat{\delta}$ puo' scriversi come unione e intersezione d'insiemi della forma $\{x_i \geq c\}$, $\{x_i \leq c\}$, $\{x_i < c\}$, $\{x_i > c\}$, $\{x_i = c\}$.

Tutti questi insiemi sono unioni di classi d'equivalenza sulle variabili in X.

Lemma. Se P e' un'unione di classi d'equivalenza

$$R^{-1}(e,P) = \{(q,x) \in \mathbf{Q} \times \mathbf{X} : \exists (q',x') \in P, e = (q,q'), x' \in R(e,x)\}$$
 e' un'unione di classi d'equivalenza.

Proposizione. Se P e' un'unione di classi d'equivalenza,

$$Pre_{(q,q')}(P) = R^{-1}((q,q'),P) \cap (\{q\} \times G((q,q')))$$

e' un'unione di classi d'equivalenza.

Proposizione. Se P e' un'unione di classi d'equivalenza,

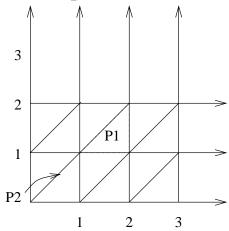
$$Pre_{\tau}(P) = \{(q, x) \in \mathbf{Q} \times \mathbf{X} : \exists (q', x') \in P, t \geq 0, q = q', x' = x + t(1, ..., 1)\}$$

e' un'unione di classi d'equivalenza.

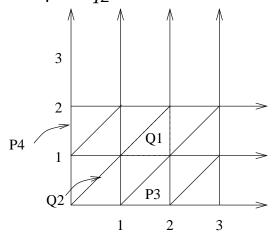
Dimostrazione per esempio :-)

Siano $P_1, P_2, P_3, P_4, Q_1, Q_2$ come in figura:

Classi di equivalenza per q_1 :



Classi di equivalenza per q_2 :



Siano date le seguenti definizioni d'insiemi in \mathbb{R}^2 :

$$P_{1} = (l_{1}, \{1 < x_{2} < x_{1} < 2\}),$$

$$P_{2} = (l_{1}, \{0 < x_{2} = x_{1} < 1\}),$$

$$P_{3} = (l_{2}, \{0 < x_{2} < 1, 1 < x_{1} < 2, x_{2} < x_{1} - 1\},$$

$$P_{4} = (l_{2}, \{1 < x_{2} < 2, x_{1} = 0\}).$$

$$Q_{1} = (l_{2}, \{1 < x_{2} < x_{1} < 2\}),$$

$$Q_{2} = (l_{2}, \{0 < x_{2} = x_{1} < 1\}).$$

Per le transizioni $e_1=(q_1,q_2)$, $e_2=(q_2,q_1)$, gl'insiemi Pre si calcolano come segue.

$$Pre_{e_1}(P_1) = \emptyset$$

 $Pre_{e_1}(P_2) = \emptyset$

 $Pre_{e_1}(P_1) = Pre_{e_1}(P_2) = \emptyset$, perche' la locazione di P_1 e di P_2 e' q_1 e la transizione $e_1 = (q_1, q_2)$ porta a stati con locazione q_2 .

$$Pre_{e_2}(P_3) = \emptyset$$

 $Pre_{e_2}(P_4) = \emptyset$

 $Pre_{e_2}(P_3) = Pre_{e_2}(P_4) = \emptyset$, perche' la locazione di P_3 e di P_4 e' q_2 e la transizione $e_2 = (q_2, q_1)$ porta a stati con locazione q_1 .

$$Pre_{e_2}(P_1) = Q_1 \cap (q_2, \{x_1 \le 1\})$$

= \emptyset

Per calcolare $Pre_{e_2}(P_1)$, si noti che e_2 lascia la regione invariata e percio' ci si aspetterebbe che tutti gli stati in Q_1 finissero in P_1 per la transizione e_2 ; pero' la transizione e_2 avviene solo se e' vera la guardia $x_1 \leq 1$, per cui

$$Pre_{e_2}(P_1) = Q_1 \cap (q_2, \{x_1 \le 1\})$$

= $(q_2, \{1 < x_2 < x_1 < 2\} \cap \{x_1 \le 1\})$
= \emptyset .

$$Pre_{e_2}(P_2) = Q_2 \cap (q_2, \{x_1 \le 1\})$$

= Q_2

Similmente, per calcolare $Pre_{e_2}(P_2)$, si noti che e_2 lascia la regione invariata e inoltre che questa volta tutti gli stati in Q_2 finiscono in P_2 per la transizione e_2 , perche' la guardia $x_1 \leq 1$ e' soddisfatta dagli stati in Q_2 , per cui

$$Pre_{e_2}(P_2) = Q_2 \cap (q_2, \{x_1 \le 1\})$$

$$= (q_2, \{0 < x_2 = x_1 < 1\} \cap \{x_1 \le 1\})$$

$$= (q_2, \{0 < x_2 = x_1 < 1\})$$

$$= Q_2.$$

$$Pre_{e_1}(P_3) = R^{-1}((q_1, q_2), P_3) \cap (q_1, G((q_1, q_2)))$$

= $\emptyset \cap (q_1, \{x_1 \le 3 \land x_2 \le 2\})$
= \emptyset

Per calcolare $Pre_{e_1}(P_3)$, si noti che e_1 riassegna x_1 a 0, ma in P_3 tutti gli stati hanno $x_1 > 1$ percio' la transizione e_1 non puo' portare ad alcuno stato in P_3 , per cui

$$Pre_{e_1}(P_3) = \emptyset.$$

$$Pre_{e_1}(P_4) = (q_1, \{x_1 \ge 0 \land 1 < x_2 < 2\} \cap \{x_1 \le 3 \land x_2 \le 2\})$$

= $(q_1, \{0 \le x_1 \le 3 \land 1 < x_2 < 2\})$

Per calcolare $Pre_{e_1}(P_4)$, si noti che in P_4 tutti gli stati hanno $x_1=0$ sicche' potrebbero finire in P_4 tutti gli stati con $x_1 \in [0,\infty)$ e $x_2 \in (1,2)$; pero' la transizione e_1 avviene solo se e' vera la guardia $x_1 < 3$ e $x_2 < 2$, per cui

$$Pre_{e_1}(P_4) = (q_1, \{0 \le x_1 < \infty \land 1 < x_2 < 2\} \cap \{x_1 \le 3 \land x_2 \le 2\})$$

= $(q_1, \{0 \le x_1 \le 3 \land 1 < x_2 < 2\}).$

Gl'insiemi predecessori rispetto alla transizione τ (scorrere del tempo) si calcolano come segue:

$$Pre_{\tau}(P_{2}) = P_{2} \cup (\{l_{1}\} \times \{x_{1} = x_{2} = 0\})$$

$$Pre_{\tau}(P_{3}) = P_{3} \cup (\{l_{2}\} \times \{(1 < x_{1} < 2) \land (x_{2} = 0)\})$$

$$Pre_{\tau}(P_{4}) = P_{4}$$

$$Pre_{\tau}(P_{1}) = P_{1} \cup (\{l_{1}\} \times \{(1 < x_{1} < 2) \land (x_{2} = 1)\})$$

$$\cup (\{l_{1}\} \times \{(1 < x_{1} < 2) \land (0 < x_{2} < 1) \land (x_{1} - 1 < x_{2})\})$$

$$\cup (\{l_{1}\} \times \{(x_{1} = 1) \land (0 < x_{2} < 1)\})$$

$$\cup (\{l_{1}\} \times \{(0 < x_{1} < 1) \land (0 < x_{2} < 1)\}$$

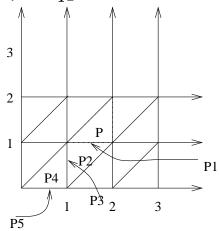
$$\wedge (x_{1} > x_{2})\})$$

$$\cup (\{l_{1}\} \times \{(0 < x_{1} < 1) \land (x_{2} = 0))\})$$

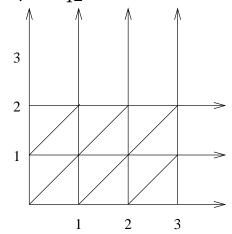
Tutti gl'insiemi Pre sono unioni di elementi del grafo delle regioni.

Un altro esempio di calcolo di Pre_{τ} . Siano $P, P_1, P_2, P_3, P_4, P_5$ come in figura:

Classi d'equivalenza per q_1 :



Classi d'equivalenza per q_2 :



$$Pre_{\tau}(P) = P \cup P_1 \cup P_2 \cup P_3 \cup P_4 \cup P_5$$

Conclusione: i problemi di raggiungibilita' su automi temporizzati possono essere risolti su un insieme di transizione finito, **grafo delle regioni**, con un numero di stati discreti limitato da

$$m(n!)2^n \prod_{i=1}^n (2c_i + 2)$$

(m modi, n orologi).

In generale invece di costruire il grafo delle regioni si puo':

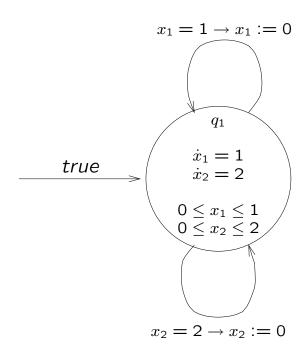
- o calcolare al volo la raggiungibilita' spesso termina senza aver costruito l'intero grafo delle ragioni
- o calcolare una bisimulazione piu' grezza, ad esempio il quoziente di bisimilarita' che spesso genera meno classi di equivalenza del grafo delle regioni

Ma il problema e' PSPAZIO-completo!

Automi a Pendenza Fissa

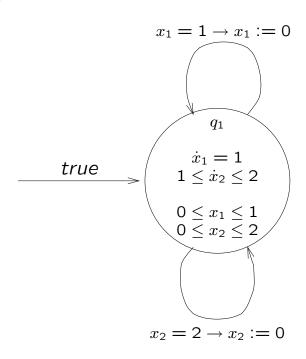
Gli automi a pendenza fissa generalizzano gli automi temporizzati ammettendo orologi del tipo $\dot{x}_i = a_i$, dove a_i e' una costante intera che non varia da modo a modo.

Compito. Esibire una bisimulazione finita per gli automi a pendenza fissa. Calcolare la relazione di bisimilarita' sull'esempio seguente.



Un Automa Rettangolare

Compito. Applicare l'algoritmo di bisimilarita' al seguente automa rettangolare. Che cosa si puo' dedurre circa l'esistenza di uno spazio quoziente finito ?



Bibliografia

- 1. R. Alur, D. Dill, "A theory of timed automata", Theoretical Computer Science, Vol. 126, 1994, pages 183-235.
- 2. R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis, S. Yovine, "The algorithmic analysis of hybrid systems", Theoretical Computer Science, Vol. 138, 1995, pages 3-34.
- 3. T.A. Henzinger, "The theory of hybrid automata", Proceedings of the 11th Annual Symposium on Logic in Computer Science, IEEE Computer Society Press, 1996, pages 278-292.
- 4. T.A. Henzinger, P.-H. Ho, H. Wong-Toi, "HyTech: a model checker for hybrid systems", Software Tools for Technology Transfer, Vol. 1, 1997, pages 110-122.
- 5. R. Alur, T.A. Henzinger, P.-H. Ho, "Automatic symbolic verification of embedded systems", IEEE Transactions on Software Engineering, Vol. 22, 1996, pages 181-201.

- 6. T.A. Henzinger, P.-H. Ho, H. Wong-Toi, "Algorithmic analysis of nonlinear hybrid systems", IEEE Transactions on Automatic Control, Vol. 43, 1998, pages 540-554.
- 7. T.A. Henzinger, P.W. Kopke, A. Puri, P. Varaiya, "What's decidable about hybrid automata?", Journal of Computer and System Sciences, Vol. 57, 1998, pages 94-124.