—~ > Model-Driven
UML and Profiles

Emad Ebeid Davide Quaglia
Post-doc, Assistant Professor
Departm:;:rc‘)f Eﬂgi_neer_itr;g (ENG), Department of Computer Science
us Universi .
Denmark UmversTty Iof Verona
aly

Overview

» What is Modeling language?

» Whatis UML?

* A Drief history of UML

» Understanding the basics of UML
« UML diagrams

» UML Profiles

« UML Modeling tools

4/9/2015

What is Modeling language? &

A modeling language is any artificial language that can be used to
express information, knowledge or systems in a structure that is
defined by a consistent set of rules. The rules are used for the
understanding of the meaning of components in the structure

+ A modeling language can be graphical or textual

OCLPrecondition: authorsName <> null and title<>null

Graph Pattern
this | owns _i<<out>>
Constraints <+ | ++ book: Book
Changes Changes
available = true

title = title

knowhWriters isWrittenBy

writer : Writer
Constraints

name == authorsName

Changes

Model-Driven Design

Models can be refined continuously until the application is fully
specified

void generate ()

{for (int i=0; i<10;
«sc_method» { prOduce' i++) .
L | producer [] {outl =)}

start outl

’

NotStarted ,,’
4 producer

’

start /generate ()
NotStarted Started

start ' St @
Started

) N J

4/9/2015

Model-Driven Architecture (MDA)™

It was launched by the Object Management
Group (OMG) in 2001

MDA provide portability, interoperability,
maintainability and reusability of models
MDA approach defines system functionality
using a platform-independent model (PIM) Space
using an appropriate domain-specific <
language

Model-Driven Architecture viewpoints

The Platform Independent Model (PIM): The functional and non-
functional aspects

The Platform Description Model (PDM): HW and SW resources
The Platform Specific Model (PSM): System architecture

PIM PDM

PSM

4/9/2015

4/9/2015

What is UML?

+ Unified Modeling Language (UML) is a standardized general-
purpose modeling language in the field of object-oriented software
engineering

+ The standard was created, and is managed by the Object
Management Group

UML diagrams

Diagram

T

Structure Behaviour
Diagram Diagram
| | | | |
Class Componen Object Activity Use Case
Diagram Diagram Diagram Diagram Diagram
Profile Compositel | Deploymen Package Interactior| | | State
Diagram Dig‘éﬂiau”r]e Diagram Diagram Diagram Diagram

lr
| | | 1

Communication| Interaction)| Timing

Sequence
i I : ; Overview :
Notation: UM Diagram Diagram Diagram Diagram

Why UML for Modeling

Use graphical notation to communicate more clearly
than natural language (imprecise) and code(too
detailed)

Help acquire an overall view of a system

UML is not dependent on any one language or
technology

UML moves us from fragmentation to standardization

name

Shape

origin

move()
resize()

display()

Class Diagram

attributes

operations

FraudAgent

«constructor» e———_|
new()

new(p : Policy)

«process»

process(o : Order)

«query» ¢—— |
isSuspect(o : Order)
isFraudulent(o : Order)
«helper»

validateOrder(o : Order)

stereotype

4/9/2015

OO0 Relationships

» There are two kinds of Relationships
— Generalization (parent-child relationship)
— Association (student enrolls in course)

Supertype

/\

|

Subtypel Subtype2

- Generalization expresses a
parent/child relationship among related
classes.

- Used for abstracting details in several
layers

OO Relationships: Generalization

Exanple

Regular
Customer

Loyalty
Customer

or:

Customer

T\

N

Regular Loyalty
Customer Customer

4/9/2015

OO Relationships: Association

» Represent relationship between instances
of classes
— Student enrolls in a course
— Courses have students
— Courses have exams

 Association has two attributes at two ends
— Role names (e.g. enrolls)
— Multiplicity (e.g. One course can have many students)

Association: Multiplicity and Roles

student
1 *
University Person
0..1
employer teacher
Role
Multiplicity
Symbol __Meaning
Role

1 One and only one
0..1 Zero or one “A given university groups many people;
some act as students, others as teachers.
A given student belongs to a single
university; a given teacher may or may not
0.* From zero to any positive integer be working for the university at a particular
1. From one to any positive integer time.”

M..N From M to N (natural language)

From zero to any positive integer

4/9/2015

Class Diagram

Name — Order Multiolici g class
‘ “JaloReceved ultiplicity: man al(ﬂ
Attributes -isPrepaid % Customer
-number :String 1 -name
-price : Money / -address
Operations — +<1|2|;(>)asl:(h)() Association +creditRating() : String()
1 {if Order.customer.creditRating is Generalization
"poor", then Order.isPrepaid must
be true }
/ Corporate Customer Personal Customer
. -contactName -creditCard#
Constraint -creditRating
. .. -creditLimit
Multiplicity: (inside braces{}} -
M lue +remind()
any val +billForMonth(Integer)
o8 .1
Multiplicity: 0
. —
optional *
1 Employee
OrderLine

-quantiy: Integer | 1
-price: Money

-isSatisfied: Boolean

Association: Model to Implementation

0.4
Student Course

Class Student {
Course enrolls[4];

Class Course {
Student has];

4/9/2015

| Class P, ‘ Class P,

Part Classes

Example

¢

%/—/

Person

‘ Head |

Arms

OO0 Relationships: Composition

Whole Class

&

Composition: expresses a relationship among instances
of related classes. It is a specific kind of Whole-Part
relationship.

It expresses a relationship where an instance of the
Whole-class has the responsibility to create and initialize
instances of each Part-class.

It may also be used to express a relationship where instances
of the Part-classes have privileged access or visibility to
certain attributes and/or behaviors defined by the
Whole-class.

Composition should also be used to express relationship where
instances of the Whole-class have exclusive access to and
control of instances of the Part-classes.

Composition should be used to express a relationship where
the behavior of Part instances is undefined without being
related to an instance of the Whole. And, conversely, the
behavior of the Whole is ill-defined or incomplete if one or
more of the Part instances are undefined.

AGGREGATION

Container Class

0O Relationships: Aggregation

Aggregation: expresses a relationship among instances
of related classes. It is a specific kind of Container-
Containee relationship.

It expresses a relationship where an instance of the

‘ Class E; |

Class E,

Container-class has the responsibility to hold and maintain
instances of each Containee-class that have been created

Example

H—/

Containee Classes

outside the auspices of the Container-class.

Aggregation should be used to express a more informal
relationship than composition expresses. That is, it is an
appropriate relationship where the Container and its
Containees can

Aggregation is appropriate when Container and
Containees have no special access privileges to each other.

Milk

4/9/2015

Aggregation vs. Composition

Composition is really a strong form of aggregation
« components have only one owner
« components cannot exist independent of their
owner
« components live or die with their owner (e.g.
Each person has a head that can not be shared
with other people).
Aggregations may form "part of" the aggregate, but
may not be essential to it. They may also exist
independent of the aggregate.
e.g. Apples may exist independent of the bag.

Sequence Diagram(make a phone call)

Caller Phone Recipient
Picks up
Dial tone
Dial
Ring notification Ring
Picks up

Hellb

4/9/2015

10

Sequence Diagram:Object interaction

Self-Call: A message that an
Object sends to itself.

Condition: indicates when a
message is sent. The message is
sent only if the condition is true.

A B

Synchronous

Asynchronous

Delayed

N

[condition] remove()

*[for each] remove()

|

Self-Call

ssion

Sequence Diagram:Object interaction

Combination fragments are used
to model loops, conditions,
parallel execution

A B

Synchronous

Asynchronous

Transmission

delayed
remove() [candition]
remove() loop
Self-Call

4/9/2015

11

Sequence Diagrams — Object Life Spans

« Creation
— Create message
— Object life starts at that point
« Activation
— Symbolized by rectangular
stripes
— Rectangle on the lifeline where
the object is active
+ Destruction event
— Placing an ‘X’ on lifeline Activation bar
— Object’s life ends at that point

r
Create B

_____________________ u
/ X

Destruction
event

Lifeline

Deployment Diagram

» The components must be deployed on some set of hardware in order to
execute.

connection
kiosk * =

«10-T Ethernet»

\ RAID farm

[
console /74
< -~ «RS-232»
—

4/9/2015

12

Deployment Diagram (2)

— «AbstractChannel»
- delay =500 e
max_throughput = 50

W= true anodes

Node_0 ‘_ Node_1
+node 0 wabstractChanfieh
«artifacts - «artifacts
(TwoNodes) +node_1 (TwoNodes)
Sensor | | D A = Actuator

«dataFlows

UML Profiles

» Profile: Provides a generic extension mechanism for customizing
UML models for particular domains and platforms. Extension
mechanisms allow refining standard semantics in strictly additive
manner

+ Profiles are defined using stereotypes, tag definitions, and
constraints that are applied to specific model elements, such as
Classes, Attributes, Operations, and Activities

+ A Profile is a collection of such extensions that collectively
customize UML for a particular domain (e.g., aerospace, healthcare,
financial) or platform (J2EE, .NET)

4/9/2015

13

Tagged Values | ...

A tagged value is a combination of a tag and a value that gives supplementary
information that is attached to a model element. A tagged value can be used to
add properties to any model elements and can be applied to a model element
or a stereotype.

Tagged values can be defined for existing model elements, or for individual
stereotypes, so that everything with that stereotype has that tagged value. It is
important to mention that a tagged value is not equal to an attribute. Instead,
you can regard a tagged value as being a metadata, since its value applies to
the element itself and not to its instances.

One of the most common uses of a tagged value is to specify properties that
are relevant to code generation or configuration management. So, for example,
you can make use of a tagged value in order to specify the programming
language to which you map a particular class, or you can use it to denote the
author and the version of a component.

Tagged Values

» Graphically, a tagged value is rendered as a string
enclosed by brackets, which is placed below the name of
another model element. The string consists of a name
(the tag), a separator (the symbol =), and a value (of the

tag)

Server
{processors=3}

4/9/2015

14

Constraints

+ Constraints are properties for specifying semantics and/or conditions
that must be held true at all times for the elements of a model. They
allow you to extend the semantics of a UML building block by adding
new rules, or modifying existing ones.

* For example, when modeling hard real time systems it could be
useful to annotate the models with some additional information, such
as time budgets and deadlines. By making use of constraints these
timing requirements can easily be captured.

MyProcessor «nfpConstraint»
speedFactor = 1

="

Catalog of Adopted OMG Profiles

+ UML Profile for CORBA
« UML Profile for Enterprise Application Integration (EAI)
» UML Profile for Enterprise Distributed Object Computing (EDOC)

« UML Profile for Modeling QoS and Fault Tolerance Characteristics and
Mechanisms

» UML Profile for Schedulability, Performance, and Time
* UML Profile for System on a Chip (SoC)

« UML Profile for Modeling and Analysis of Real-Time and Embedded
Systems (MARTE)

+ UML Testing Profile
« UML Profile for Systems Engineering (SysML)
« UML Profile for DoODAF/MoDAF (UPDM)

4/9/2015

15

UMLED
MARTE profile MARTE

* MARTE (Modelling and Analysis Real-Time and Embedded
systems) deals with time- and resource-constrained aspects, and
includes a detailed taxonomy of hardware and software patterns
along with their non-functional attributes to enable state-of-the art
quantitative analyses (e.g., performance and power consumption)

Non-Functional Properties
(NFPs)

» Non-functional properties describe the
“fitness” of systems behavior. (E.g.,
performance, memory usage, power
consumption, etc)

4/9/2015

16

NFP subprofile

Three mechanisms to annotate UML models:
* Values of stereotype properties _

% D «hwProcessor»
«hwProcessor » o mmm speedFactor =1
MyProcessor

¢ Slot values of classifier instances _
I MyProcessor proci :MyPr@ﬁor

speedFactor: Integer [0..1] speedFactor= 1

¢ Constraints —_ SR

MyProcessor «nfpConstraint» ﬁ
«“:D speedFactor = 1

Generic Quantitative Analysis Modeling
(GQAM)

. . —
The generic analysis e | ; | | e —
. B 's ime GRM o

domain includes MARTE tibrary

L . L.y) ; 7.y
specialized domains in < import » E i i

B . . 3 - \mc'mrl » - irv-;-:voll » - irr‘:‘)oﬂ »

which the analysis is oo] | i
based on the software —
behavior, such as T import 2> GQAM Resources
performance and L impon s »| caam_cbservers
schedulability and also S =
power, memory, reliability, ke Y i i

availability, and security. s.l.,. | ,,,',,

4/9/2015

17

GaExecHost

+ |t denotes a processor that executes Steps

* In performance modeling, an GaExecHost can be any
device which executes behavior, including storage and
peripheral devices.

Task
SwSchedulableResource

Semantics SchedulableResources are resources, which execute concurrently to
other concurrent resources. The competition for execution among the set of
schedulable resources is supervised by a scheduler. In fact, a scheduler interleaves
their execution based on a scheduling algorithm. Common SchedulableResources
are POSIX Thread, ARINC-653 Process, and OSEK/VDX Task. By default,
schedulableResources share the same address space but preserve their own
contexts (program counter, registers, signal mask, stack, etc.).

Applying SwResource stereotypes on classifiers
All stereotypes of the SRM sub-profile extend the UML::Classes:‘Kernel::Classifier metaclass. Thus, any UML Classifier
sub-metaclass may be extended by those stereotypes (e.g.. Class. Interface. Component, and AssociationClass). Figure

14.40 and Figure 14.41 illustrate UML Class and UML Component extension.

[

« » « »

deadineElements =Task :Deadine 7 deadlineElements = Task :Deadline [=) « interface »
yieldService = Taskyield() » =T 8) » | TaskServiee

~ Task = Task ——
. eld|
">*w..] Deadiine : Integer - Deadiine : Integer Hheldo
Hyield()
(i) Class (i) Class and Interface

Figure 14.39 - Class extension example

4/9/2015

18

GaCommHost

* Itis used for denoting a physical
communications link.

Generalizations
» CommunicationMedia (from MARTE::GRM)

» Scheduler (from MARTE::GRM)

Attributes
+ throughput: NFP_Frequency [*]

actual throughput Ab stract ¢ h anne |
+ utilization: NFP_Real [*]

utilization of this host

GaCommChannel

* |t is used for denoting a logical
communications layer connecting
SchedulableResources..

Attributes
« msgSize: NFP_DataSize [0..1]

The size of the data unit handled by the channel.
« utilization: NFP_Real [0..1]

The fraction of the Communication Host capacity used by the Channel. This is typically a result of the analysis better
than a specification.

[Data flow]

4/9/2015

19

Assianment of Nodes and abstract

[z5] [za]
wgaExecHosts «gaExecHosts wgaExecHosts
6 e «gaxectiosts nd
n5
(CASSE] (CASSE)| [(CASSE)
CASSE
{3'Tasl{ ATk (CASSE) E‘;ﬁsﬁf W:Task| |i5: Task
= td : Task : Tas| = —_—
[eg.
xga,m{‘gﬂ o = 5 «gaCommHosts »,_a4
ExecHost «gaC)
«agaExecHosty o :: o= gace g3aCpmmHosts «gaExecHosty
ng wgaExecHosts n12
(CASSE]| [(CASSE) n13
(CASSE) o4 Task | | 15: Task EgaComitioss (CASSE] (CASSE)
3 : Task 3 : Task 3 : Task
«gaCi H 3l
2] s \B] \‘ a6
agaExecHostr
«gaExecHosts «gaExecHosts o
«gaExecHosty | — nid 6 s sgaCommHosly | S5E)
n n2 |17 [cAssE)| [cAssE) (CASSE] | [(CASSE} /E/ 1: Task
'CASSE] : Tasl : Tas| g . 5
[) (CASSE)| [(CASSE) a6 tl:Task| |12: Task B tEa|| [ER e I sy
Tk , | |WiTask ||15: Task
] | | el ask] 65 A sk
<gaCommHosts & «gaExectiosts
«gaCommHosts n10
(CASSE]
13 : Task

Design

Synthasis Verlication Testing Por

Electronic
Systems

SysML

4/9/2015

20

@Eﬁn.

VN i:

Hydraulic Cylinder

©]

=

Reservoir

Retract/Extend

—le=]

Control

D %}' valve
=

Filter Pump

Reservoir

A Language to
document the properties
from different disciplines
to describe the

. whole system

Filter Pump

4/9/2015

21

Structural Diagrams

SysML Diagram
\ .. |
ymmmeebaaloy
Behavior : Requirement Structure
Diagram : Diagram Diagram
? L ?

Activity Sequence State Machine Use Case Block Definition Internal Block
Diagram Diagram Diagram Diagram Diagram Diagram Package Diagram

[] sameasUML2

] Modified from UML 2

t——_t New diagram type

.
: Parametric
: Diagram

..... B

Requirement diagram

req [Package] Vehicle Specifications [Braking]J

Vehicle System
Specification

Braking Subsystem
Specification

«requirement»
Stopping Distance

«requirement»
Anti-Lock Performance

id#
102

id#
337

txt
The vehicle shall stop from
60 mph within 150ft on a
clean dry surface.

txt
The Braking subsystem shall
prevent wheel lockup under
all braking conditions.

L __ «deriveReqt» ‘

4/9/2015

22

4/9/2015

Eso:

Parametric diagram

par [constrainiBlock] StraightLineVehicleDynamics [Parametric Diagramy

i 1l bf: [+
:BrakingForce f :Accelleration
Equation) | Equation

[f = (tfbf)*{1-1)] F: [F = ma]
a:
a:
s ' ™
:DistanceEquation 1 :VelocityEquation
[v = dx/dt] v [a = dv/di]
e S

#iTE SysML vs MARTE y.r7e

* Functional
properties

Parametric formalism

» Continuous flow behavior:
+ Equation-based * Non Functional Properties

analytical models « Time constraints

23

UML Modeling Tools

» Rational Rose (www.rational.com) by IBM

» TogetherSoft Control Center, Borland
(http://www.borland.com/toqether/index.html)

* ArgoUML (free software) (http:/argouml.tigris.org/)
OpenSource; written in java
» Papyrus: www.papyrusuml.org/ 1

» Others (http:/www.objectsbydesign.com/tools/umltools byCompany.html)

Reference

1. UML Distilled: A Brief Guide to the Standard Object Modeling Language
Martin Fowler, Kendall Scott

2. IBM Rational

http://www-306.ibm.com/software/rational/uml/

3. Practical UML --- A Hands-On Introduction for Developers
http://www.togethersoft.com/services/practical _guides/umlonlinecourse/

4. Software Engineering Principles and Practice. Second Edition;
Hans van Vliet.

5. http://www-inst.eecs.berkeley.edu/~cs169/

4/9/2015

24

