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Separable Wavelet bases

In general, to any wavelet orthonormal basis {; ;}. ;<% of L4[R), one can
associate a separable wavelet orthonormal basis of L2(R?):

i '7{’.;"1 1] (x1) d(f’.ﬂ”z (x2) }

(j1J2.n1.,n2)€Z*

The functions ¥, (%) and ¥,,,(X,) mix information at two different scales
along x, and x,, which is something that we could want to avoid

Separable multiresolutions lead to another construction of separable wavelet
bases with wavelets that are products of functions dilated at the same scale.
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Separable multiresolutions

The notion of resolution is formalized with orthogonal projections in spaces of
various sizes.

The approximation of an image f(x,,x,) at the resolution 27 is defined as the
orthogonal projection of fon a space V./ that is included in L?(R?)

The space V,/ is the set of all approximations at the resolution 27.
— When the resolution decreases, the size of V/ decreases as well.

The formal definition of a multiresolution approximation {V},., of L2(R?) is a
straightforward extension of Definition 7.1 that specifies multiresolutions of L2(R).

— The same causality, completeness, and scaling properties must be satisfied.
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Separable spaces and bases

* Tensor product

— Used to extend spaces of 1D signals to spaces of multi-dimensional signals

— Atensor product X; X X,  between vectors of two Hilbert spaces H, and H, satisfies
the following properties

Linearity

VAeC,A(X ®X,)=(A%)®X, =X ®(AX,)

Distributivity

(X +Y)® (X +Y,) = (X ®% )+ (4 ®Y,)+ (Y, ®%)+(V ® Y,) +

— This tensor product yields a new Hilbert space H =H,;, ® H, including all the
vectors of the form X, ® X, where X, € H; and X, € H, as well as a linear
combination of such vectors

— An inner product for H is derived as <X1 X X,, Y, ® y2> = <X1, y1>H1 <X2, y2>H2

Gloria Menegaz




Separable bases

. TheoremA3Let H=H,®H, f {€,} y and {ezn}neN are Riesz bases of H,
and H,, respectively, then {eln ®e2m}n N2 is a Riesz basis for H. If the two bases

are orthonormal then the tensor product basis is also orthonormal.

Ne

— To any wavelet orthonormal basis one can associate a separable wavelet

orthonormal basis of L2(R?) {Wj’n(x)’l/jl’m(y)}(j,n,l,m)ez4

However, wavelets y, (x) and y, (Xx) mix the information at two different
scales along x and y, which often we want to avoid.
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Separable Wavelet bases

Separable multiresolutions lead to another construction of separable wavelet
bases whose elements are products of functions dilated at the same scale.

We consider the particular case of separable multiresolutions

A separable 2D multiresolution is composed of the tensor product spaces
2 _
Vi =V;®V;

VZis the space of finite energy functions f(x,y) that are linear expansions of
separable functions

f(xy)=2alnlf,(x)gn(y) feVj g,eV,

If {Vj }jez is a multiresolution approximation of L2(R), then {sz }jez is a
multiresolution approximation of L2(R2).
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Separable bases

It is possible to prove (Theorem A.3) that

1 (x=2)n —2Im
{(ﬁj,n,m(X’ y) - %,n(x)%,m()’) - j gp[ j J(D[ ) j j}
2 2 2 ’
(n,m)ez

is an orthonormal basis of V4,
A 2D wavelet basis is constructed with separable products of a scaling function and a
wavelet oy]

l//?—l l//}—l
Vil Vi

vi P i via >
Vi
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Examples

EXAMPLE 7.13: Piecewise Constant Approximation

Let V; be the approximation space of functions that are constant on [27m, 2/ (m + 1)] for
any m € Z. The tensor product defines a two-dimensional piecewise constant approximation.
The space \} 2 is the set of functions that are constant on any square [2/n1, 2/ (n; + 1)] X
[27 15, 2»’{;:2+1}] for (s21, n2) e Z2. The two-dimensional scaling function is

1 ifosxy=s=lando=sx;=1

2 (ay = o) =
& (x) =d(x1) d(x2) [:} otherwise.

EXAMPLE 7.14: Shannon Approximation

Let V; be the space of functions with Fourier transforms that have a support included in
[—2~/ 7, 27/ 7). Space Tz Is the set of functions the two-dimensional Fourier transforms of
which have a support mcluded in the low-frequency square [—2 V7, 27/ 7] X [—2 77, 277 7).
The two-dimensional scaling function is a perfect two-dimensional low-pass filter the Fourier
transform of which is

1 if o] <277 and |wz| =277

@) @) =1, iorwise.
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Separable wavelet bases

A separable wavelet orthonormal basis of L2(R?) is constructed with separable
products of a scaling function and a wavelet .

The scaling function is associated to a one-dimensional multiresolution
approximation {V},c ;.

Let {V/};c, be the separable two-dimensional multiresolution defined by
2 _
Vo=V, &V,

Let W,/ be the detail space equal to the orthogonal complement of the lower-
resolution approximation space V, in V;;:

2 2 2
VZ, =VZeWw,

To construct a wavelet orthonormal basis of L2(R2), Theorem 7.25 builds a wavelet
basis of each detail space W2j :

Gloria Menegaz 10




Separable wavelet bases
Theorem 7.25

Let ¢ be a scaling function and y be the corresponding wavelet generating an orthonormal basis of
L2(R). We define three wavelets
1
y (X, y) =p(x)y(y)
2
w (% y) =y (X)e(y)
3
and denote for 1<=k<=3 w (X, y) =y (X)y(y)

k _ 1 X—2jn y—2jm
‘//j,n,m(xiy)_zjl)” ( 2] ) ZJ

The wavelet family . , ;
{Wj,n,m (X’ y)! l)yj,n,m (X’ y)!Wj,n,m (X’ y)}

(n,m)ez?

is an orthonormal basis of W2j and

{l//%,n,m(xy y)al//jz,n,m(x’ y)’l/j?,n,m(xi y)}(j,n,m)ez3

is an orthonormal basis of L?(R?)

On the same line, one can define biorthogonal 2D bases.
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Separable wavelet bases

The three wavelets extract image details at different scales and in different
directions.

Over positive frequencies, gﬁ(a)) and l/7(60) have an energy mainly
concentrated, respectively,on [0, ] and [11,2 T71].

The separable wavelet expressions imply that

71 — A ; 3 1
4 (a)x’a)y)_go(a)x)l//(a)y) Via Via
A2 oA A 3 1
ve(o,0,)=v(o)oo, Vil Vi
2 2 2
7’ (o, 0,) =y (0,)7 (o,
i
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Bi-dimensional wavelets

coif: phil=*phily ). coifz: philx)"psify).

P(X, Y) = p(X)p(y)

v (X, Y) = o()w(y)
v (X, y) =w(X)e(y)
v (X, y) =y (w(y)

x1—by xo-05
1 ] 1 1, 2 2)where(x=(x1,x2)eR2)

,/alag aq g

Gloria Menegaz




Example: Shannon wavelets

EXAMPLE 7.16

For a Shannon multiresolution approximation, the resulting two-dimensional wavelet basis
paves the two-dimensional Fourier plane (wq, w2) with dilated rectangles. The Fourier trans-
forms ff:' and ¢ are the indicator functions of [—a, 7] and [=2w., —m]U[w, 277], respectively.
The separable space ‘iif contains functions with a two-dimensional Fourier transform support
included in the low-frequency square [—2 7, 277 % [—2/ 7, 27/4]. This corresponds to
the support of &E” Indicated in Figure 7.23.

The detail space ﬁ-f Is the orthogonal complement of 1-:,3 in Eff_l and thus includes

functions with Fourier transforms supported in the frequency annulus Wetween the two squares
(277 277 x [-27 7, 277 and [27 g 2 g =27 gy, 27 g,
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Biorthogonal separable wavelets

Let ¢, ,@ and 7 be a two dual pairs of scaling functions and wavelets that generate
a biorthogonal wavelet basis of L* (R).

The dual wavelets of *,* and y° are

7t (%, y)=p(x)y7(y)

7 (%, y) =y (x)@(y)

7 (%, y) =9 (x)7 (y)

One can verify that

W)
and

j,nez®

~1 ~2 ~3
{l//j,n’l//j,n’l//j,n}j,nezs

are biorthogonal Riesz basis of L* (R?)
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Fast 2D Wavelet Transform

a. |nmj= f! i
j [ ] < ¢J'”'m > Approximation at scale j

d kj [n’ m] = < f ’l//:(,n,m > Details at scale j

k=123
[aJ ,{dl- ,d 12 ,d ?}13 j<J ] Wavelet representation

Analysis

aj.i[n,m]=a; *hh[2n,2m]
d1j+1[n,m] =a; *hg[2n,2m]
dj?ﬂ[n,m] =a; *gh[2n,2m]
d?ﬂ[n, m]=a; * gg[2n,2m]

Synthesis
a;[n,m]=4a;,, *hh[n,m]+dj

i:1*hg[n,m]+d?,; * gh[n,m]+d3; * gg[n,m]
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Fast 2D DWT
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Finite images and complexity

When a, is a finite image of N=N,xN,, pixels, we face boundary problems when
computing the convolutions
— A suitable processing at boundaries must be chosen

For square images with N,N,, the resulting images a; and d, ; have N,;N,/22
samples. Thus, the images of the wavelet representation include a total of N
samples.
— If h and g have size K, one can verify that 2K2-2(/-1) multiplications and additions are
needed to compute the four convolutions
— Thus, the wavelet representation is calculated with fewer than
— The reconstruction of a; by factoring the reconstruction equation requires the same
number of operations.
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Matlab notations

Decomposition Step

columns

FOwS an L.o D

i ]

| A

—w LoD SR B

columns

(h)

= HiD =1y 2 “in
horizontal
cA; —w
J columns e
D \v)
rows Lo D 12— “in
. o | vertical
—*_ HiD 291 columns ()
Hi D o 42— Din
diagonal
where 2 ¥ 1 | Downsample columns: keep the even indexed columns.
| § 2 | Downsample rows: keep the even indexed rows.
I'ow's
X | Convolve with filter X the rows of the entry.
columns
X | Convolve with filter X the columns of the entry.
Initialization CAq = s for the decomposition initialization.
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Matlab notations

Two-Dimensional IDWT

Reconstruction Step

columns

CAj1 —m

(h)

T e o

142 | _LoR Fows
columns 241 Lo R [
142 HiR

horizontal

—™ wkeep —e-cA:

(v) columns i
cDiq
Il —w 42— Lo R rows
vertical = oW
() columns 241 HIiR [
cDigg —wl1hol—» Hir
diagonal
where 2 § 1| Upsample columns: insert zeros at odd-indexed columns.

142

rows

X

columns

X

Upsample rows: insert zeros at odd-indexed rows.

Convolve with filter X the rows of the entry.

Convolve with filter X the columns of the entry.
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Example
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Example

Bulgg
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H[::H[::
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Subband structure for images

=

cAq cD qh) cD {{dj cD ?’)
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