
Wavelets and filterbanks
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Outline

• Wavelets and Filterbanks

• Biorthogonal bases

• The dual perspective: from FB to wavelet bases
– Biorthogonal FB
– Perfect reconstruction conditions

• Separable bases (2D)

• Overcomplete bases
– Wavelet frames (algorithme à trous, DDWF)
– Curvelets



Wavelets and Filterbanks

Wavelet side

• Scaling function
– Design (from multiresolution

priors)
– Signal approximation
– Corresponding filtering operation

§ Condition on the filter h[n] →
Conjugate Mirror Filter (CMF)

• Corresponding wavelet 
families

Filterbank side

• Perfect reconstruction 
conditions (PR)
– Reversibility of the transform

• Equivalence with the 
conditions on the wavelet 
filters
– Special case: CMFs →

Orhogonal wavelets
– General case → Biorthogonal

wavelets



Wavelets and filterbanks

• The decomposition coefficients in a wavelet orthogonal basis are computed with a fast 
algorithm that cascades discrete convolutions with h and g, and subsample the output

• Fast orthogonal WT
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Linking the domains
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f [n]↔ f (z) = f [k]z−k
k=−∞

+∞

∑

f [n−1]↔ z−1 f (z) unit delay

f [−n]↔ f z−1( ) reverse the order of the coefficients

(−1)n f [n]↔ f (−z) negate odd terms

Switching between the 
Fourier and the z-domain

Switching between the time 
and the z-domain



Fast orthogonal wavelet transform

• Fast FB algorithm that computes the orthogonal wavelet coefficients of a discrete signal 
a0[n]. Let us define

Since                                is orthonormal, then

• A fast wavelet transform decomposes successively each approximation PVjf in the coarser 
approximation PVj+1f plus the wavelet coefficients carried by PWj+1f.

• In the reconstruction, PVjf is recovered from PVj+1f and PWj+1f for decreasing values of j 
starting from J (decomposition depth)
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Fast wavelet transform

• Theorem 7.7
– At the decomposition

– At the reconstruction
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Proof: decomposition (1)
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Proof: decomposition (2)

• Coming back to the projection coefficients

• Similarly, one can prove the relations for both the details and the reconstruction formula

a j+1[ p]= f ,ϕ j+1,p = f , h[n− 2p]
n
∑ ϕ j ,n = f
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∫ h[n− 2p]
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n
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a j+1[ p]= a j ∗h[2p]



Proof: decomposition (3)

• Details
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Proof: Reconstruction
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Since Wj+1 is the orthonormal complement of Vj+1 in Vj, the union of the two respective basis is a basis 
for Vj. Hence



Graphically

aj p[ ] = h p− 2n[ ]
n
∑ aj+1 n[ ] = aj+1 n[ ]h p− 2n[ ]

n
∑

aj 0[ ] = h −2n[ ]
n
∑ aj+1 n[ ] = aj+1 n[ ]h −2n[ ]

n
∑

Let's assume that h is symmetric

aj 0[ ] = aj+1 n[ ]h 2n[ ]
n
∑

n0 1 2

n0 1 2

aj+1[n]

h[n]



Graphically

n0 1 2

n0 1 2

h[n]

aj+1 n[ ]

aj 0[ ] = aj+1 n[ ]h 2n[ ]
n
∑ =

aj+1 n[ ]h n[ ]
n
∑



Summary

• The coefficients aj+1 and dj+1 are computed by taking every other sample of the convolution 
of aj with        and           respectively.

• The filter      removes the higher frequencies of the inner product sequence aj , whereas      
is a high-pass filter that collects the remaining highest frequencies. 

• The reconstruction is an interpolation that inserts zeroes to expand aj+1 and dj+1 and filters 
these signals, as shown in Figure.

h g
h g

a j+1[ p]= a j ∗h[2p]



Filterbank implementation
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Fast DWT

• Theorem 7.10 proves that aj+1 and dj+1 are computed by taking every other sample of the 
convolution on aj with       and       respectively

• The filter h removes the higher frequencies of the inner product and the filter g is a band-
pass filter that collects such residual frequencies

• An orthonormal wavelet representation is composed of wavelet coefficients at scales                         

plus the remaining approximation at scale 2J

h g
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Summary

∀ω ∈ , ĥ ω( )
2
+ ĥ ω +π( )

2
= 2

and
ĥ(0) = 2

¯2h

¯2g
ja

1ja +

1jd +

Analysis or decomposition Synthesis or reconstruction
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The fast orthogonal WT is implemented by a filterbank that is 
completely specified by the filter h, which is a CMF
The filters are the same for every j

­2 h

­2 g
ja

Teorem 7.2 (Mallat&Meyer) and Theorem 7.3 [Mallat&Meyer]



Filter bank perspective
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Taking h[n] as reference (which amounts to choosing the synthesis low-pass filter) the following 
relations hold for an orthogonal filter bank:
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Finite signals

• Issue: signal extension at borders

• Possible solutions:
– Periodic extension

§ Works with any kind of wavelet
§ Generates large coefficients at the borders

– Symmetryc/antisymmetric extension, depending on the wavelet symmetry
§ More difficult implementation
§ Haar filter is the only symmetric filter with compact support

– Use different wavelets at boundary (boundary wavelets)
– Implementation by lifting steps



Wavelet graphs



Initialization

• Initialization
– Let b[n] be the discrete time input signal and let N-1 be the sampling period, such that the 

corresponding scale is 2L=N-1

– Then: 

original continuous 
time signal discrete time signal interpolation function

N-1: discrete sample distance
2L= N-1 scale



Initialization
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Basis for VL



The filter bank perspective



Perfect reconstruction FB

• Dual perspective: given a filterbank consisting of 4 filters, we derive the perfect 
reconstruction conditions

• Goal: determine the conditions on the filters ensuring that

a0 ≡ a0

¯2h

¯2g
0a

1a

1d

­2 h

­2 g~

~

a0



PR Filter banks

• The decomposition of a discrete signal in a multirate filter bank is interpreted as an 
expansion in l2(Z)

[ ] [ ] [ ] [ ] [ ]1 0 0 0[ ] * 2 2 2
n n

a l a h l a n h l n a n h n l= = - = -å å
since

then

and the signal is recovered by the reconstruction filter

thus

dual family of vectors

points to 
biorthogonal 

wavelets



The two families are biorthogonal

Thus, a PR FB projects a discrete time signals over a biorthogonal basis of l2(Z).
If the dual basis is the same as the original basis than the projection is orthonormal.



Discrete Wavelet basis

• Question: why bother with the construction of wavelet basis if a PR FB can do the same 
easily?

• Answer: because conjugate mirror filters are most often used in filter banks that cascade 
several levels of filterings and subsamplings. Thus, it is necessary to understand the 
behavior of such a cascade
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N-1: discrete sample distance
2L= N-1 scale

discrete signal at scale 2L

for depth j>L



Discrete wavelet basis



Perfect reconstruction FB

• Theorem 7.7 (Vetterli) The FB performs an exact reconstruction for any input signal iif

ĥ* ω( ) ̂h(ω)+ ĝ* ω( ) ̂g(ω) = 2
ĥ* ω +π( ) ̂h(ω)+ ĝ* ω +π( ) ̂g(ω) = 0
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Matrix notations

(alias free)

When all the filters are FIR, the determinant can be evaluated, which yields simpler 
relations between the decomposition and the reconstruction filters.



Changing the sampling rate

• Downsampling

• Upsampling
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Subsampling: proof
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Perfect Reconstruction conditions
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Perfect Reconstruction conditions

• Putting all together

̂a0 (ω) = â1(2ω) ̂h(ω)+ d̂1(2ω) ̂g(ω) =

=
1
2
a0 ω( ) ĥ* ω( )+ a0 ω +π( ) ĥ* ω +π( )( ) ̂h(ω)

+
1
2
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ĥ* ω( ) ̂h(ω)+ ĝ* ω( ) ̂g(ω) = 2
ĥ* ω +π( ) ̂h(ω)+ ĝ* ω +π( ) ̂g(ω) = 0
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Perfect reconstruction biorhogonal filters

• Theorem 7.8. Perfect reconstruction filters also satisfy

Furthermore, if the filters have a finite impulse response there exists a in R and l in Z such 
that

• Conjugate Mirror Filters: 

ĥ* ω( ) ̂h(ω)+ ĥ* ω +π( ) ̂h(ω +π ) = 2

ĝ(ω) = e− jω ̂h*(ω +π )
̂g(ω) = e− jωh*(ω +π )

Correspondingly
g[n]= (−1)1−n h[1− n]
g[n]= (−1)1−n h[1− n]

h = h→ ĥ ω( )
2
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2
= 2
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Perfect reconstruction biorthogonal filters

Given h and      and setting a=1 and l=0 in (2) the remaining filters are given by the following 
relations

§ The filters h and     are related to the scaling functions φ and ~φ via the corresponding two-scale relations, 
as was the case for the orthogonal filters (see eq. 1).

Switching to the z-domain

Signal domain
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Biorthogonal filter banks

• A 2-channel multirate filter bank convolves a signal a0 with 

a low pass filter                    

and a high pass filter

and sub-samples the output by 2

A reconstructed signal ã0 is obtained by filtering the zero-expanded signals with a dual low-pass           
and high pass filter  

Imposing the PR condition (output signal=input signal) one gets the relations that the different filters 
must satisfy (Theorem 7.7)
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Revisiting the orthogonal case (CMF)

h

g g

h¯2

¯2

­2

­2

+
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_
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_

Taking                              as reference (which amounts to choosing the analysis low-pass filter) the 
following relations hold for an orthogonal filter bank:

1

[ ] [ ] [ ] [ ]

[ ] ( 1) [1 ]n

h n h n h n h n

g n h n-

= - « = -

= - -

synthesis low-pass (interpolation) filter: 
reverse the order of the coefficients

negate every other sample

[ ] [ ]h n h n= -



Orthogonal vs biorthogonal PRFB

↓2h

↓ 2g

↑ 2

↑ 2
0a

1a

1d
a0

h

g

ĥ* ω( ) ̂h(ω)+ ĥ* ω +π( ) ̂h(ω +π ) = 2
ĝ(ω) = e− jω ̂h*(ω +π )
̂g(ω) = e− jωh*(ω +π )

In the signal domain
g[n]= (−1)1−n h[1− n]
g[n]= (−1)1−n h[1− n]

h ≠ h h = h

ĥ ω( )
2
+ ĥ ω +π( )

2
= 2

g = g

Biorthogonal PRFB Orthogonal PRFB



Fast BWT

• Two different sets of basis functions are used for analysis and synthesis

• PR filterbank
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Be careful with notations!

• In the simplified notation where 
– h[n] is the analysis low pass filter and g[n] is the analysis band pass filter, as it is the case in most of the 

literature;
– the delay factor is not made explicit;

• The relations among the filters modify as follows
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-= Slightly different formulation: the 
high pass filters are obtained by 
the low pass filters by negating 
the odd terms



Biorthogonal bases

Orthonormal basis

{en}nÎN: basis of Hilbert space

Ortogonality condition < en, ep>=0     "n¹p

"y Î H,     

There exists a sequence

|en|2=1 ortho-normal basis

Bi-orthogonal basis

{en}nÎN: linearly independent

"y Î H,     $A>0 and B>0 :

Biorthogonality condition: 

A=B=1 Þ orthogonal basis
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Biorthogonal bases

If h and h are FIR

̂Φ ω( ) =
̂h 2− pω( )

2p=1

+∞

∏ ̂Φ(0), Φ̂ ω( ) =
ĥ 2− pω( )

2p=1

+∞

∏ Φ̂(0)

The functions φ̂  and ̂φ  satisfy the biorthogonality relation
ϕ(t), ϕ(t − n) = δ[n]

The two wavelet families ψ
j,n{ }

( j ,n)∈Z 2
 and  ψ

j,n{ }
( j ,n)∈Z 2

 are Riesz bases of L2(R)

ψ
j ,n
, ψ

j ' ,n'
= δ[n− n ']δ[ j − j ']

Though, some other conditions must be imposed to guarantee that φ^ and φ^tilde are FT of 
finite energy functions. The theorem from Cohen, Daubechies and Feaveau provides sufficient
conditions (Theorem 7.10 in M1999 and Theorem 7.13 in M2009)

Any f ∈ L2 R( )  has two possible decompositions in these bases

f = f ,ψ j ,n
n, j
∑ ψ j ,n = f , ψ j ,n

n, j
∑ ψ j ,n



Reminder



Summary of Biorthogonality relations

• An infinite cascade of PR filter banks                       yields two scaling functions and two wavelets 
whose Fourier transform satisfy

)~,~(),,( ghgh

Φ̂ 2ω( ) = 1
2
ĥ ω( )Φ̂ ω( ) ↔ ϕ

t
2
#

$
%
&

'
(= h[n]ϕ t − n( )

n=−∞

+∞

∑ (i)

̂Φ 2ω( ) = 1
2
̂h ω( ) ̂Φ ω( ) ↔ ϕ t

2
#

$
%
&

'
(= h[n] ϕ t − n( )

n=−∞

+∞

∑ (ii)

Ψ̂ 2ω( ) = 1
2
ĝ ω( )Φ̂ ω( ) ↔ ψ

t
2
#

$
%
&

'
(= g[n]ϕ t − n( )

n=−∞

+∞

∑ (iii)

̂Ψ 2ω( ) = 1
2
̂g ω( ) ̂Φ ω( ) ↔ ψ t

2
#

$
%
&

'
(= g[n] ϕ t − n( )

n=−∞

+∞

∑ (iv)



Properties of biorthogonal filters

Imposing the zero average condition to y in equations (iii) and (iv)

Ψ̂(0) = ̂Ψ(0) = 0 → ĝ(0) = ̂g(0) = 0
replacing into the relations (3) (also shown below)

ĝ(ω) = e−iω ̂h*(ω +π ) ̂g(ω) = e−iω ĥ*(ω +π )→ ĥ*(π ) = ̂h(π ) = 0
Furthermore, replacing such values in the  PR condition (1)

ĥ*(ω) ̂h(ω)+ ĝ*(ω) ̂g(ω) = 2→ ĥ*(0) ̂h(0) = 2
It is common choice to set

ĥ*(0) = ̂h(0) = 2



Biorthogonal bases

• If the decomposition and reconstruction filters are different, the resulting bases is non-
orthogonal

• The cascade of J levels is equivalent to a signal decomposition over a non-orthogonal basis

• The dual bases is needed for reconstruction 

{ } { }
1 ,

2 , 2J j
J jn j J n
k n k nj y

ÎZ £ £ ÎZ
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In Matlab

• Biorthogonal Wavelet Pairs: biorNr.Nd

• While the Haar wavelet is the only orthogonal wavelet with linear phase, you can design 
biorthogonal wavelets with linear phase.

• Biorthogonal wavelets feature a pair of scaling functions and associated scaling filters —
one for analysis and one for synthesis.

• There is also a pair of wavelets and associated wavelet filters — one for analysis and one 
for synthesis.

• The analysis and synthesis wavelets can have different numbers of vanishing moments and 
regularity properties. You can use the wavelet with the greater number of vanishing 
moments for analysis resulting in a sparse representation, while you use the smoother 
wavelet for reconstruction.



Example: bior3.5



Example: bior3.5



Biorthogonal bases



Biorthogonal bases qui



CMF : orhtogonal filters

• PR filter banks decompose the signals in a basis of l2(Z). This basis is orthogonal for Conjugate 
Mirror Filters (CMF).

• [Smith&Barnwell,1984]: Necessary and sufficient condition for PR orthogonal FIR filter banks, 
called CMFs

– Imposing that the decomposition filter h is equal to the reconstruction filter h~, eq. (1) becomes

– Correspondingly

ĥ*(ω) ̂h(ω)+ ĥ*(ω +π ) ̂h(ω +π ) = 2   (1) →
ĥ*(ω)ĥ(ω)+ ĥ*(ω +π )ĥ(ω +π ) = 2→
| ĥ(ω) |2 + | ĥ(ω +π ) |2= 2

]1[)1(][][~
][][~

1 nhngng
nhnh
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Summary

• PR filter banks decompose the signals in a basis of l2(Z). This basis is orthogonal for Conjugate 
Mirror Filters (CMF).

• [Smith&Barnwell,1984]: Necessary and sufficient condition for PR orthogonal FIR filter banks, called 
CMFs

– Imposing that the decomposition filter h is equal to the reconstruction filter h~, eq. (1) becomes

– Correspondingly
2|)(ˆ||)(ˆ|
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Properties

• Support
– h,     are FIR → scaling functions and wavelets have compact support

• Vanishing moments
– The number of vanishing moments of Ψ is equal to the order     of zeros of    in π. Similarly, the 

number of vanishing moments of      is equal to the order p of zeros of h in π. 

• Regularity
– One can show that the regularity of  Ψ and φ increases with the number of vanishing moments of   

, thus with the order p of zeros of h in π. 
– Viceversa, the regularity of     and                increases with the number of vanishing moments of 
Ψ, thus with the order     of zeros of       in π.

• Symmetry
– It is possible to construct both symmetric and anti-symmetric bases using linear phase filters

§ In the orthogonal case only the Haar filter is possible as FIR solution.

h~

p~ h~
y~

y~ j~
y~

p~ h~
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