Nuclear medicine: scintigraphy, SPECT and PET

Outline

Nuclear medicine

- ► Radioactivity
- How to use radioactivity for diagnosis
- Interaction of γ -rays with body
- Clinical applications: oncology, cardiology
- Similarities/differences with radiography

Imaging modalities

- Planar scintigraphy
- Single Photon Emission Computed Tomography (SPECT)
- Positron Emission Tomography (PET)

The discovery of radioactivity

1896: Henri Becquerel provided evidence of radioactivity

- He was studying x-rays (discovered in 1895) with fluorescent minerals (*potassium uranyl sulfate*)
- Exposed uranium to sunlight and placed it on photographic plates, believing it absorbs the sun's energy and then emits it as x-rays
- ► By chance, he developed the films also on a cloudy day...and images were bright!
- ► He discovered that *uranium emitted radiation* without an external source of energy

1898: Pierre & Marie Curie develop the theory of radioactivity

- Scientific community little interested by Becquerel's discovery, but the Curies were very inspired by this "radiation phenomena"
- Discovered two new chemical elements radium and polonium

What is radioactivity?

Radioactive decay (a.k.a. radioactivity) is the process by which an unstable atomic nucleus loses energy by emitting radiation

- Isotope = variant of a chemical element that differ in neutron number (same element, different atomic mass)
- This makes the nucleus unstable, leading to spontaneous changes in its composition
- Results in emission of radiation
- Usually measured by half-life time

Common radioactive isotopes used in nuclear medicine

Radiotracer	Half-life (hours)	γ-ray energy (keV)	Clinical application
^{99m} Tc	6.0	140	various
⁶⁷ Ga	76.8	93, 185, 300, 394	tumour detection
²⁰¹ TI	72	167, 68–82 (X-rays)	myocardial viability
¹³³ Xe	127.2	81	lung ventilation
¹¹¹ ln	67.2	171, 245	inflammation

 $N_0/2$

N_/4

 $\tau_{1/2}$

 $\tau_{1/2}$

time

What is radioactivity?

Three major decay processes

- ▶ alpha : nucleus ejects an helium particle
- **beta** : nucleus emits an electron or positron + a neutrino
- **gamma** : emission of γ -rays = high energy photons

• Only γ -rays useful for **diagnostic imaging**

Basic principle

Particle

Radioactive

Atom

Biomedical Image Processing

Use of radioactivity for the diagnosis of disease

- A radioactive isotope is "attached to a molecule" which has a specific biological effect/function in the body (radiotracer) (usually glucose)
- 2. Very small amount of this radiotracer is injected into patient (usually nanogrammes)
- 3. Radiotracer accumulates in specific organs
- 4. Decay of the radiotracer **produces** γ -rays (high energy photons)
- 5. These γ -rays **pass through (and exit) the body** and can be collected by **detectors around the body**
- 6. **Reconstruction** gives the position of these *accumulation sites*

(1/2)

Basic principle

Notes

 Ionizing radiation (like x-rays but more energetic)

•		Incr	easing energy —			
	\sim			\checkmark	\checkmark	\checkmark
0.0001 nm 0.01	nm	10 nm 1	000 nm 0.01 cm	1 cm	1 m	100
0.0001 1111 0.01		-	1 1	_		100 m
Gamma rays	X-rays	Ultra- violet	Infrared	Radio	waves	100 m

- Provides functional information about the body, so it represents an important complement to other modalities (CT, MRI etc)
- Extremely high sensitivity

 (able to detect nanograms of radiotracer)
- Extremely high specificity (no natural sources of radioactivity in the body)

How can this help patients?

- Determine extent or severity of the disease (including whether it has spread elsewhere in the body)
- Determine the patient's response to specific drugs
- Monitor disease progression and adapt treatment

Clinical applications

Oncology

- Radiotracer is attached to glucose
- Cancer cells are highly metabolic and rapidly synthesize the radioactive glucose
- Abnormal locations with high radioactivity may represent the presence of such cancer cells

Before treatment

After treatment

Cardiology

- Study perfusion, i.e. blood passage in the circulatory system, to diagnose Coronary Artery Disease (CAD)
- Characterize the damage to the heart muscle after an heart attack
 - a specific radiotracer accumulates in the *mitochondria* present in the heart muscle
 - possible to evaluate volumes etc

Similarities/differences with radiography (x-ray/CT)

Functional vs structural

Images represent the physiology/metabolism (functions) of the organs

radiography = **morphology**

nuclear medicine = physiology

Location of radiation source

- Radiography : x-rays transmitted from outside the body
- Nuclear medicine : γ -rays propagate from inside the body

Other than that

- Image formation/reconstruction are very similar, so...
- ...most of what we've seen before can be re-applied here!

Interaction of γ -rays with body

Both γ-rays and x-rays are high-energy photons

Imaging modalities

Planar scintigraphy

- Equivalent to planar radiography (x-rays)
- Detectors (gamma camera) count number of γ-rays emitted
- ► Images are 2D

Single Photon Emission Computed Tomography (SPECT)

- Equivalent to computed tomography (CT)
- Produces 3D images (slice by slice)
- ► Same **reconstruction** procedure

Imaging modalities

(2/3)

Positron Emission Tomography (PET)

- PET radiotracers decay emitting a positron
- ► These positrons annihilate on contact with electrons in the body after traveling a short distance (≈1 mm)
- Annihilation forms two γ-rays with opposite trajectories (180° apart) with very high energy (511 keV)
- γ -rays are collected by **ring of detectors**

Comparison with SPECT

- ▶ PET has **higher SNR** (100-1000x)
 - 511 keV photons of PET penetrate more than 140 keV of SPECT
 - No need for collimators
- PET has better contrast and spatial resolution (2-3 mm vs 7-8 mm)
- PET radiotracers have much shorter half-life time than SPECT
 - Access to a local cyclotron essential
- PET equipment is much more expensive

Radiotracer	Half-life (hours)
^{99m} Tc	6.0
⁶⁷ Ga	76.8
²⁰¹ TI	72
¹³³ Xe	127.2
¹¹¹ ln	67.2

Half-life (minutes)	Radiotracer	
109.7	¹⁸ FDG	Ь
20.4	¹¹ C-palmitate	đ
2.07	H ₂ ¹⁵ O	
9.96	¹³ NH ₃	
1.27	⁸² RbCl ₂	

SPECT

Imaging modalities

Different way of filling the sinogram

Annihilation coincidence detection

- The *two* γ -*rays* hit detectors at *different times*
- An Annihilation Coincidence Detector (ADC) register the hit time of all γ-rays, i.e. time stamp
- Two γ-rays belong to the same annihilation if:
 - fall within given "coincidence resolving window", e.g. 6 nanoseconds
 - are compatible, e.g. detectors 2+5 would fall outside the brain

PET/CT scanners

Get the best from both worlds!

- ► Combines *functional information* from PET...
- ...with anatomical location provided by CT

CT only

PET-CT

Greater detail with a higher level of accuracy

- ▶ Patient does not change position between scans → no need for *registration*
- ▶ No time between scans → both images represent the same temporal situation

Image quality

Spatial resolution is low

SNR is low

SNR \propto number of detected γ -rays \bigstar

factor map

• Typically, only 0.01-0.5% of the generated γ -ray are detected

CNR is high

Extremely high sensitivity and specificity

Intensity correction is necessary to relate *image values* to radiotracer concentration for "quantitative analyses"

Example

- γ -rays located in the center of the body have to pass through more tissue
- they are attenuated more than those close to e.g. the skin

Summary

Pros

- Images represent the physiology/metabolism of the organs
- Very high sensitivity and specificity

Cons

- Ionizing radiation
- Low spatial resolution
- ► Rather **expensive**

Applications

- Oncology
- Cardiology