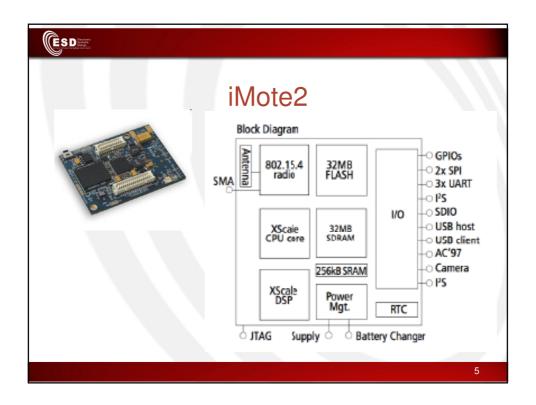


Wireless Sensor Networks

Davide Quaglia

based on slides by Seapahn Megerian and Damiano Carra

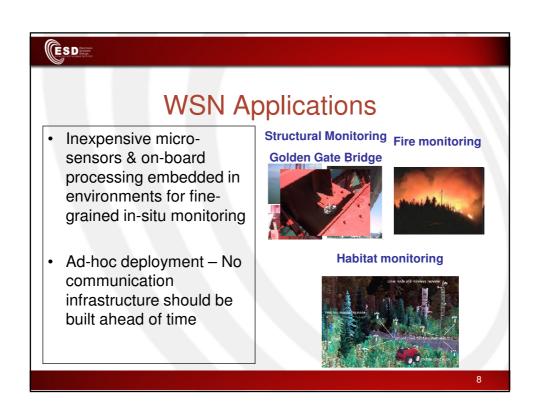
Smart Dust

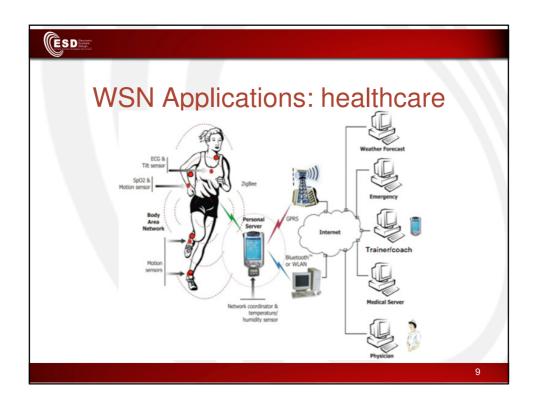

- Sensor/actuator + processor + memory + wireless interface
- Miniature, low cost hardware manufactured in large numbers

3

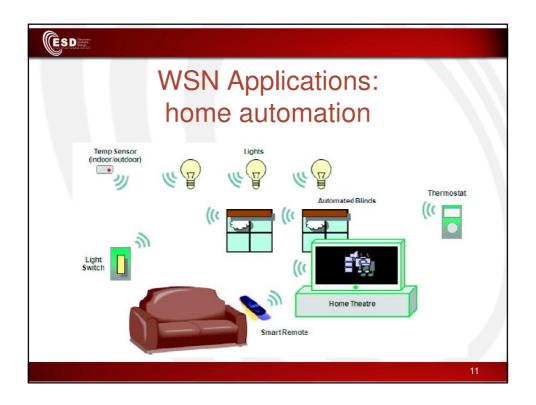
iMote2

- Intel PXA271 Xscale processor
 From 13 to 416MHz
 - Wireless MMX DSP Coprocessor
- 32MB Flash
- 32MB SDRAM
- Texas Instruments CC2420 to provide IEEE 802.15.4 radio (2.4GHz radio band)
- Application Specific I/O
- I2S, AC97, Camera Chip Interface, JTAG





Why small, wireless, battery-powered sensors?

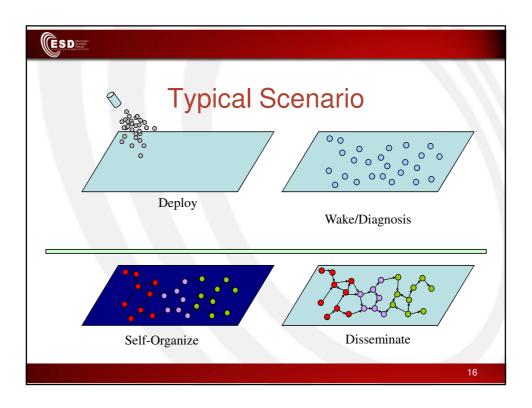

- Traditional big, wired sensors
 - Expensive, inefficient, hard to deploy, powerconsuming
 - Undesirable: For example, deployment of big traditional sensors can disturb the environment in habitat monitoring
 - Dangerous: Imagine manual deployment of big traditional sensors for disaster recovery

Applications

- Interface between Physical and Digital Worlds
 Cyber-Physical Systems
- Industry: industrial monitoring, fault-detection...
- · Civilian: traffic, medical...
- Scientific: eco-monitoring, seismic sensors, plume tracking...

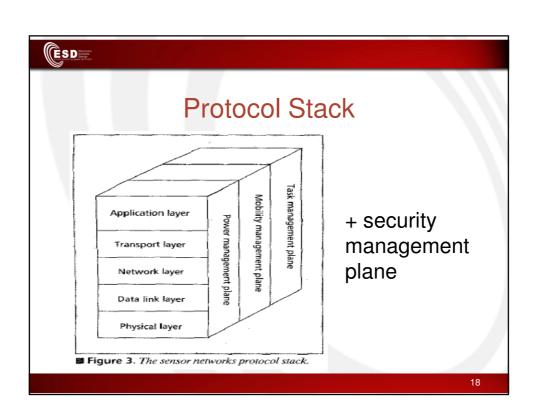
Objective

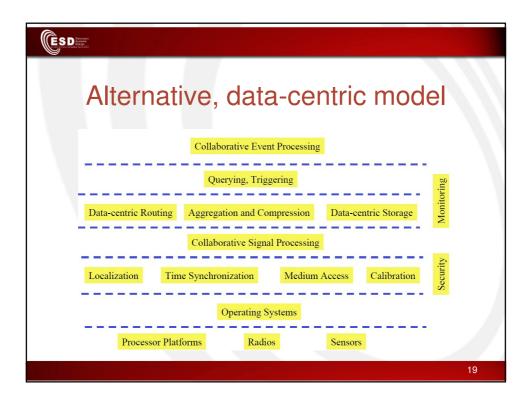
- Large-scale, fine-grained, heterogeneous sensing
 - 100s to 1000s of nodes providing high resolution
 - Spaced a few feet to 10s of meters apart
 - In-situ sensing
 - Hetegerogeneous sensors

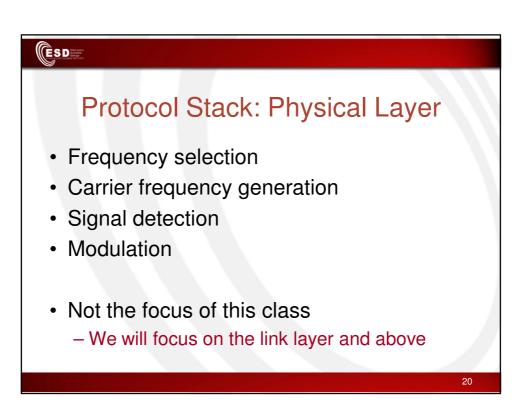

Properties

- Wireless
 - Easy to deploy: ad hoc deployment
 - Most power-consuming: transmitting 1 bit ≈ executing 1000 instructions
- Distributed, multi-hop
 - Closer to phenomena
 - Improved opportunity for LOS
 - Radio signal is proportional to 1/r⁴
 - Centralized approach do not scale
 - Spatial multiplexing
- Collaborative
 - Each sensor has a limited view in terms of location and sensor type
 - Sensors are battery powered
 - In-network processing to reduce power consumption and data redundancy

Basic Terminology and Concepts


- · Phenomenon: Physical entity being monitored
- Sink or base station or gateway: A collection point to which the sensor data is disseminated
 - Relatively resource-rich node
- Sensor network periodically samples phenomena in space and time
- · Sink floods a query





Other variations

- · Sensors mobile or not?
- Phenomena discrete or continuous?
- Monitoring in real-time or for replay analysis?
- Ad hoc queries vs. long-running queries

Protocol Stack: Physical Layer

- Issues
 - Hardware cost
 - How do we get down to \$1/node?
 - Radio
 - IEEE 802.15.4
 - 2.4GHz radio band (= 802.11b & Bluetooth) @ 250Kbps
 - 868/915 MHz radio band
 - Up to 30 meters

21

Protocol Stack: Data Link Layer

- Point-to-point transmission
- · Creation of the network infrastructure
- Basic addressing
- Medium access control
- Multiplexing of data streams
- PDU detection
- Ack and retransmission
- Error detection

Data Link Layer: Medium Access Control

- Basic strategy:
 - Only one RF interface per node (RX vs. TX)
 - Turn off RF interface as much as possible between receiving and transmitting intervals
- Techniques: Application-layer transmission scheduling, TDMA, SMAC, ZMAC, BMAC, ...

23

Protocol Stack: Network Layer

- · Main goals:
 - addressing
 - Routing
 - Multi-hop forwarding
- Design principles:
 - Power efficiency
 - Data-centric
 - Data aggregation when desired and possible
 - Attribute-based addressing vs. IP-like addresses

Minimum Energy Routing

- Maximum power available route
- · Minimum energy route
- Minimum hop (MH) route
- Simple tree to avoid computational complexity

Example: Directed Diffusion

- One of the first data-centric routing protocols
- · Route based on attributes and interests
- · How it works:
 - Sink floods interest
 - Sensors send data toward the sink
 - Sink reinforces gradients
- Flooding is expensive

27

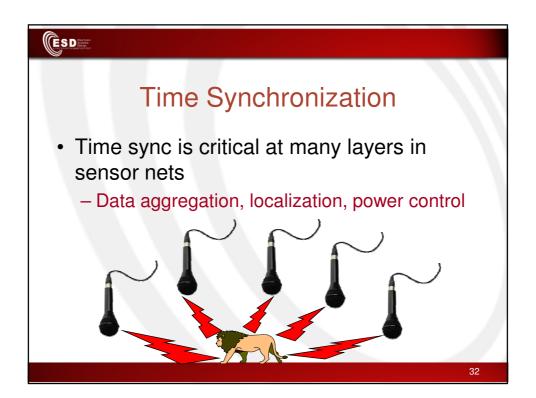
Protocol Stack: Transport Layer

- · Application multiplexing
- · Application discovery
- · End-to-end security
 - Like SSL: authentication, encryption, data integrity
 - Good? What about data aggregation?

Protocol Stack: Application Layer

- · Actual WSN applications
- Sensor database
 - TinyDB
 - Cougar
- Virtual machines
- Middleware

29


Other Important Issues

- Operating system
 - TinyOS: Event-driven
 - FreeRTOS
 - MANTIS OS, LiteOS, etc: Multithreaded
- Localization, Timing Synchronization, and Calibration
- Aggregation/Data Fusion
- Security
 - Encryption
 - Authentication
 - Data integrity
 - Availability: DOS & jamming attacks

Time and Space Problems

- Timing synchronization
- Node Localization
- Sensor Coverage

Sources of time synchronization errors

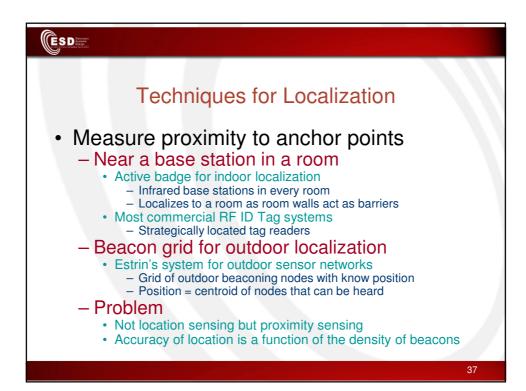
- Send/receive time
 - OS processing
 - Interrupt latency
 - Context switches
 - Transfer from host to NIC
- Access time
 - Specific to MAC protocol
 - · E.g. in CSMA/CA, sender must wait for free channel
- Propagation time
 - Function of the number of hops
- Clock drift

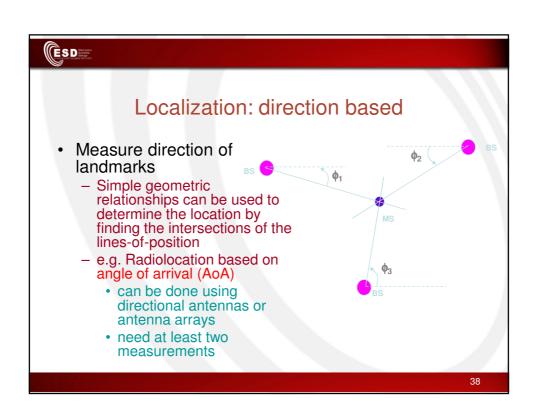
Conventional Approaches

- GPS at every node (around 10ns accuracy)
 - Doesn't work indoor
 - Cost, size, and energy issues
- NTP
 - Primary time servers are synchronized via atomic clock
 - Pre-defined server hierarchy
 - Nodes synchronize with one of a pre-specified time
 - Can support coarse-grain time synchronization
 - Inefficient when fine-grain sync is required
 - Sensor net applications, e.g., localization, TDMA
 - Discovery of time servers

 - Potentially long and varying paths to time-serversDelay and jitter due to MAC and store-and-forward relaying

Localization


- Why each node should find its location?
 - Data meaningless without context
 - Support to commissioning (=configuration)
 - Geographical forwarding/addressing (less important)
- · Why not just GPS at every node?
 - Large size and expensive
 - High power consumption
 - Works only outdoors with LOS to satellites
 - Overkill: Often only relative position is needed


35

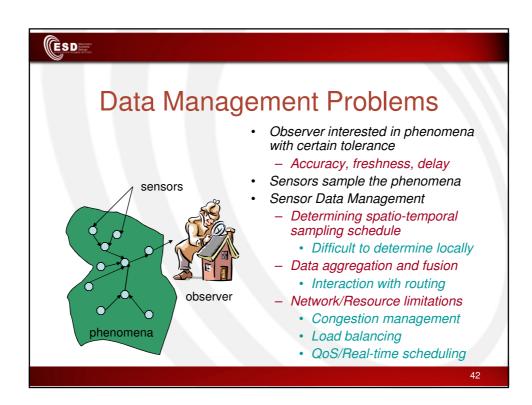
What is Location?

- Absolute position on geoid
- Location relative to fixed anchor points
- · Location relative to a starting point
 - e.g. inertial platforms
- Most applications:
 - location relative to other people or objects, whether moving or stationary, or the location within a building or an area

Localization: Range-based

- Measure distance to anchor points
 - Measure signal-strength or time-of-flight
 - Estimate distance via received signal strength
 - Mathematical model that describes the path loss attenuation with distance
 - Use pre-measured signal strength contours around fixed beacon nodes
 - Distance via Time-of-arrival (ToA)
 - Distance measured by the propagation delay
 - Distance = time * c
 - N+1 anchor points give N+1 distance measurements to locate in N dimensions

39


Many other issues

- What about errors? Collisions? No LOS?
- If sensors are mobile, when should we localize?

Sensor Network Coverage

- Given:
 - Ad hoc sensor field with some number of nodes with known location
 - Start and end positions of an agent
- How well can the field be observed?

- Energy efficiency
 - Sensor nodes should run for several years without battery replacement
 - Energy efficient protocols are required
 - More efficient batteries
 - But, efficient battery development is always slower than processor/memory/network development
 - Energy harvesting

43

Key Design Challenges

- Responsiveness
 - Periodic sleep & wake-up can reduce the responsiveness of sensors and the data rate
 - · Important events could be missed
 - In real-time applications, the latency induced by sleep schedules should be kept within bounds even when the network is congested

Robustness

- Inexpensive sensors deployed in a harsh physical environment could be unreliable
 - Some sensor could be faulty or broken
- Global performance should not be sensitive to individual sensor failures
- Graceful performance degradation is desired when there are faulty sensors

45

Key Design Challenges

- Synergy
 - Moore's law apply differently
 - Sensors may not become more powerful in terms of computation and communication capability
 - Cost reduction is the key to a large number of sensor deployment
 - A WSN as a whole needs to be much more capable than a simple sum of the capabilities of the sensors
 - · Extract information rather than raw data
 - Also support efficient collaborative use of computation, communication, and storage resources

- Scalability
 - 10,000 or more nodes for fine-granularity sensing & large coverage area
 - Distributed, localized communication
 - Utilize hierarchical structure
 - Address fundamental problems first
 - Failure handling
 - In-situ reprogramming, e.g., Deluge
 - Network throughput & capacity limits?

47

Key Design Challenges

- Heterogenity
 - Heterogeneous sensing, computation, and communication capabilities
 - e.g., a small number of devices of higher computational capabilities & a large number of low capability nodes -> two-tier WSN architecture
 - Best architecture exist for all application? NO!!!
 - How to determine a right combination of heterogeneous devices for a given application?

- Self-configuration
 - WSNs are unattended distributed systems
 - Nodes have to configure their own network topology
 - Localize, synchronize & calibrate
 - Coordinate communications for themselves

49

Key Design Challenges

- Self-optimization & adaptation
 - WSNs cannot be optimized a priori
 - Environment is unpredictble, and may change drastically
 - WSN protocols should be adaptive & adapt themseleves online

- Systematic design
 - Tradeoff between two alternatives
 - (1) Fine-tuning to exploit application specific characteristics to improve performance
 - (2) More flexible, easy-to-generalize design approaches sacrificing some performance
 - Systematic design methodologies for reuse, modularity & run-time adaptation are required

51

Key Design Challenges

- Security & Privacy
 - Security support for critical applications
 - Avoid sabotage in, e.g., structural monitoring
 - Support privacy of medical sensor data
 - Severe resource limitations, but challenging security & privacy issues