# Segmentation

Part I

### Introduction

#### What is segmentation?

► Partitioning images/volumes into meaningful pieces



► Isolating a specific region of interest



# Why is segmentation interesting?

- Detection/recognition of objects
  - ▶ Where is the vehicle?
  - ► Which type of vehicle is it?



- Quantifying object properties
  - ► How big is a tumour? Is it expanding or shrinking?
  - ► Statistical analysis of sets of biological volumes





# Main categories of algorithms

Threshold based approaches

Region based approaches

Morphological watershed

Active contours

Threshold based approaches

# recall Histogram of an image

- A **histogram** is a function h(i) that gives the *frequency of* each intensity i that occur in an image
  - ▶ Given an image  $I: \Omega \rightarrow [0 \dots K-1]$ , its histogram is the function:

$$h(i) = \operatorname{card} \left\{ \; (u,v) \mid I(u,v) = i \; \right\}$$



#### In other words

 $\blacktriangleright$  h(i) = number of pixels with intensity i



#### Notes

- ► Low-contrast image → histogram is narrow
- ► *High-contrast* image → histogram is *spread out*
- ► In general, *image processing* alters the histogram





#### recall Useful functions

#### Clamping (or clipping)

ightharpoonup Limit intensities to a given interval [a, b]

$$f(p) = \begin{cases} a & \text{if } p < a \\ p & \text{if } a \le p \le b \\ b & \text{if } p > b \end{cases}$$



► Clamping followed by intensity stretching to fill the full possible range [0, M]

$$f(p) = \begin{cases} 0 & \text{if } p < a \\ M \times \frac{p-a}{b-a} & \text{if } a \le p \le b \\ M & \text{if } p > b \end{cases}$$





#### recall Useful functions

#### Thresholding

► Also called *image binarization* 

$$f(p) = \begin{cases} 0 & \text{if } p \le a \\ 1 & \text{if } p > a \end{cases}$$

#### Notes

Despite their simplicity, binary images are widely used in medical image processing





#### Examples

- Constrain the processing to a given portion of the image, e.g brain

- Regions-of-interest (ROI) analysis









## **Noise and illumination**

Noise and illumination affect the histograms





# recall Automatic thresholding

#### Difficult to find the proper threshold

- ► Usually, there are **not only two regions**, e.g. foreground and background
- ▶ We will see advanced segmentation tools for the more general case

#### OTSU's method

- ► Very basic algorithm to automatically binarize an image
- Assumes that the image contains *exactly two regions* (i.e. bimodal histogram)
  - Actually, extensions exist for multiple regions



Searches for the threshold that minimizes the intra-class variance:

$$\sigma_w^2(t) = \omega_0(t)\sigma_0^2(t) + \omega_1(t)\sigma_1^2(t)$$

- $-\omega_0$  and  $\omega_1$  are the probabilities of the two classes separated by a threshold t
- $\sigma^2_0$  and  $\sigma^2_1$  are *variances* of these two classes
- ▶ **NB**: iterates through all the possible threshold values

$$\omega_0(t) = \sum_{i=0}^{t-1} p(i)$$

$$\omega_1(t) = \sum_{i=t}^{L-1} p(i)$$

# recall Automatic thresholding

#### Examples



# Use edges to improve global thresholding



#### ■ Why?

Chances of selecting a "good" threshold are enhanced considerably if the histogram peaks are <u>tall</u>, <u>narrow</u>, <u>symmetric</u>, and <u>separated by deep valleys</u>.

#### Idea

Use only the pixels near the edges between objects and background to construct the histogram —> the peaks will have approximately the same height.

#### Problem

We don't know the edges! —> We use the average value of the Laplacian is 0 at the transition of an edge.

# Otsu's method using edges information

#### Algorithm

- 1. Compute an edge image of f(x,y) using any method you have seen
- 2. Specify a threshold value T
- 3. Threshold the image of Step1 using the threshold T to produce a binary image  $g_T(x,y)$  (mask image)

4. Compute an histogram using only the pixels in f(x, y) that correspond to the locations of the

1-valued pixels in  $g_T(x,y)$ 

5. Use the histogram in Step4 to segment f(x,y) globally using Otsu's method.



### **Noise and illumination**

Noise and not uniform illumination play a major role in the performance of a thresholding algorithm







# Multiple thresholds

#### ■ Why?

► To capture more features

#### ■ How?

► Set more than one threshold simultaneously using the property of separability measure

$$g(v) = \left\{egin{array}{ll} 0 & ext{if} & v < t_1 \ 1 & ext{if} & t_1 \leqslant v < t_2 \ 2 & ext{if} & t_2 \leqslant v < t_3 \ dots & dots & dots \ n & ext{if} & t_n \leqslant v. \end{array}
ight.$$



# **Variable Thresholding**

#### Image subdivision

► To compensate for non-uniformities in illumination and/or reflectance



#### Local image properties

Find a threshold for every point (x,y) using local properties (such as mean and standard deviation) of the set of pixels contained in the neighbourhood of (x,y)

#### **Example**:

$$T_{xy} = a\sigma_{xy} + bm_{xy}$$

$$g(x, y) = \begin{cases} 1 & \text{if } f(x, y) > T_{xy} \\ 0 & \text{if } f(x, y) \le T_{xy} \end{cases}$$







# Multivariable thresholding

If we consider a color image, then we have more than one variable to characterize each pixel (e.g. RGB).



#### multivariable thresholding

Each pixel is represented as a 3D vector  $\mathbf{z}=(z_1,z_2,z_3)$ . In order to perform a color threshold we then introduce the notion of <u>distance</u>  $D\left(\mathbf{z},\mathbf{a}\right)$ 

- $D(\mathbf{z}, \mathbf{a}) > 0$  for all **z** not equal **a**
- $D(\mathbf{z}, \mathbf{a}) = 0$  if  $\mathbf{z} = \mathbf{a}$
- $D(\mathbf{z}, \mathbf{a}) \leq D(\mathbf{z}, \mathbf{x}) + (\mathbf{x}, \mathbf{a})$
- $D\left(\mathbf{z},\mathbf{a}\right)=T$  defines a volume

**Example:** Euclidean distance

$$D(\mathbf{z}, \mathbf{a}) = ||\mathbf{z} - \mathbf{a}|| = \left[ (\mathbf{z} - \mathbf{a})^T \cdot (\mathbf{z} - \mathbf{a}) \right]^{1/2}$$



# Region based approaches

# Region-based approach

#### What is a region?

A group of connected pixels with **similar** properties



#### Idea

Pixels that correspond to an object are grouped together and marked

#### Principles

- ► Similarity
  - Gray value differences
  - Gray value variance
- ► Spatial proximity
  - Euclidean distance
  - Compactness of a region



# **Region-based segmentation**

#### Main Goal:

<u>Partition</u> an image I into regions  $R_i$ 

#### Formulation:

- ightharpoonup Completeness. Every pixel must be in a region  $\bigcup_{i=1}^{n} R_i$
- ightharpoonup Connected in some sense connected in some sense
- ▶ <u>Disjointness</u>. Region must be disjoint  $R_i \cap R_j = \emptyset$   $\forall i = 1, 2, ..., n$
- ► <u>Satisfiability</u>. Pixels of a region must satisfy at least one common property P  $P(R_i) = TRUE \quad \forall i = 1, 2, ..., n$
- ► <u>Segmentability</u>. Different regions satisfy different properties!  $P(R_i \bigcup R_j) = FALSE \quad \forall i = 1, 2, ..., n$

# Main methods of Region based Segmentation

Region Growing

Split and Merge

Clustering

# Region growing segmentation

#### Principle:

To group pixels or sub-regions into larger regions based of pre-defined criteria.

#### Method:

Select a set of pixels ("seed points") of potential regions and try to grow them by appending to each seed point those neighbouring pixels that have <u>similar</u> properties (such as gray level, texture, color, shape, ...) till the pixels being compared are too dissimilar.











seed

growing

final region

# Region growing algorithm

#### Algorithm based on 8-connectivity

f(x,y) - the input image S(x,y) - seed array containing 1 at the location of seed points and 0 elsewhere (size(S)=size(f)) - predicate to be applied at each location (x,y)



- 2. Form an image  $f_P(x,y)$  such that at a pair coordinates (x,y)  $f_P(x,y)=1$  if the input image satisfies the given predicate P, otherwise  $f_P(x,y)=0$
- 3.Let g(x,y) be an image formed by appending to each seed point in S(x,y) all the 1-valued points in  $f_P(x,y)$  that are 8-connected to that seed point
- 4. Label each connected component in g(x,y) with a different region label obtaining the **segmented image**



# Region growing examples













# Region growing segmentation comments

#### Advantages

- ▶ It is a **fast** method
- ► It is conceptually **simple**





#### Disadvantages

- ► Local method: no global view of the problem
- ► Application specific: may need user to select starting points and different choices of seeds may give different segmentation results
- Problems can occur if the seed point lies on an edge
- May yield misleading results if connectivity properties are not used
- Stopping rule difficult to be defined
- ► Algorithm is very **sensitive to noise**

# Region splitting and merging

#### Region splitting:

Starts with the whole image as a single region and subdivides it into subsidiary regions recursively while a condition of homogeneity is not satisfied.



#### Region merging:

- ▶ Is the opposite of region splitting, and works as a way of avoiding oversegmentation
- ▶ Starts with small regions (e.g. 2x2 or 4x4 regions) and merge the regions that have similar characteristics (such as gray level, variance, ...).

# **Splitting and Merging**

#### Algorithm

1. Split into four disjoint quadrants any region  $R_i$  for which  $P(R_i) = FALSE$ 





- 2. When no further splitting is possible, merge any adjacent regions  $R_j$  and  $R_k$  for which  $P(R_i \bigcup R_k) = TRUE$
- 3. Stop when no further splitting or merging is possible



Figure 7.38 Example of split-and-merge algorithm. (From Fu, Gonzalez, and Lee [1987].)

# Observations on splitting and merging



- Tries to eliminate the need for seeds Sort of an all purpose algorithms
- Still requires a predicate P  $P(R_i)$  needs to be fairly generic
- The key to this algorithm is how to merge the regions!

# Clustering

Process of partitioning a set of pattern vectors into subsets called *clusters*.

#### Principles:

- ▶ Used any feature that can be associated to a pixel to group them (intensity values, RGB values, texture measurements, etc. ...)
- ▶ Once pixels have been grouped into clusters, find connected regions using connected components labeling.
- Least square error measure to find how "close" are the pixels

$$D = \sum_{k=1}^{K} \sum_{x_i \in C_k} ||x_i - m_k||^2.$$



# **Clustering example**

Using Euclidean distance

$$D = \sum_{k=1}^{K} \sum_{x_i \in C_k} ||x_i - m_k||^2.$$



# **K-Means algorithm**

- Classical algorithm: K-Means
  - 1.Set ic (iteration count) to 1
  - **2.Choose randomly a set of** K means  $m_1(1), \ldots, m_K(1)$
  - 3. For each vector  $x_i$  compute  $D(x_i, m_k(ic))$  for each  $k = 1, \ldots, K$  and assign  $x_i$  to the cluster  $C_j$  with the nearest mean
  - 4.Increment ic by 1 and update the means to get a new set  $m_1(ic), \ldots, m_K(ic)$
  - 5. Repeat steps 3 and 4 until  $C_k(ic) = C_k(ic+1) \quad \forall k$





Figure 10.4: Football image (left) and K=6 clusters resulting from a K-means clustering procedure (right) shown as distinct gray tones. The six clusters correspond to the six main colors in the original image: dark green, medium green, dark blue, white, silver, and black.

#### **K-Means Limits**

#### Advantages

- ▶ It is a **fast** method
- ► It is conceptually **simple**
- Convergence is guaranteed





#### Disadvantages

- **Exact number** of **clusters** must be provided
- ► Features with larger scales dominate clustering

#### Possible solution

Introduce the concept of "uncertainty" using a probabilistic (fuzzy or probabilistic) formulation







K=5

K=11

# Segmentation

Part II

# **Summary Part I**

#### Threshold based approaches

- ▶ Otsu's method
- Otsu's method with edge detection
- Variable thresholding
- Multivariable thresholding















# **Summary Part I**

- Region-based approaches
  - ► Region growing
  - ► Split and Merge
  - Clustering













seed















# Morphological watershed

# Morphological watershed

- Visualize a 2D image in 3-dimensions:
  - ▶ 2 spatial coordinates
  - ▶ intensity of the pixel as third coordinate





### Watershed

### Topographic interpretation

- points belong to a regional minimum
- points at which a drop of water would fall with certainty to a single minimum watershed

points at which water would be equally likely to fall to more than one such minimum

watershed lines

Aim
Identify all the watershed lines
to get a segmentation



## Watershed principles

### Underlying idea

- ► Immagine that a hole is done through each local minimum so that the entire topography is flooded with water rising through the holes at uniform rate
- ► When rising water in adjacent catchment basis is about to merge, a dam is built up to prevent merging. These dam boundaries correspond to watershed lines



# Watershed principles













## Watershed algorithm: Basic steps

- Start with all the pixels with the lowest possible values
  - ► These pixels are the *local minima* "through which we start to flood water"
- For each group of pixels of intensity k
  - ▶ If the point is adjacent to exactly one existing region, add this pixel to that region
  - **▶** Else
    - if the point is adjacent to more than one existing regions, mark as boundary
    - Else start a new region





## Watershed algorithm: dam construction

### Principle

► Prevent the merging of water from two catchments basins

### Underlying operation

► Binary morphological <u>dilation</u>



## Watershed algorithm: dam construction

### Dam construction sub-algorithm

- ► Set pixels with minimum gray level to 1 and the rest to 0
- ► At each iteration we flood the 3D topography from below and the pixels covered by the rising water are set to 1 and the other 0
- ▶ If at flooding step n-1 there are two connected components  $(C_1 \text{ and } C_2)$  and at step n there is only one connected component C, then
  - Compute  $q = C \cap (C_1 \cup C_2)$  to find the points that may have caused the merging

- For each point on the boundary of  $C_1$  and  $C_2$  re-perform the dilation and find which

of them gives the same point in q

 Mark the the found points with a number greater then the maximum intensity value of the image



## **Watershed animation**



Taken from <a href="http://cmm.ensmp.fr/~beucher/wtshed.html">http://cmm.ensmp.fr/~beucher/wtshed.html</a>

# **Example of watershed segmentation**

Highly used with gradient images



## Watershed segmentation properties

### Non local (regions can leak!)

### Boundary based

- Poor in low contrast data
- Very sensitive to noise

### Low level (pixel based)

- ► Lack of shape model
- ► May leed to over segmentation

### Preprocessing step

► Necessary for reliable boundary measure





## Marker-controlled water segmentation

#### Problem

Due to noise and other local irregularities of the gradient, *over segmentation* may occur





original image

over-segmented image

#### Solution

- Exclude a number of non-significant minima
- ▶ Do the exclusion implicitly using markers on the blobs to specify the only allowed regional minima (like seeds for region growing algorithm)
- ► For example, gray level values can be used as markers



markers of the blobs and of the background



marker-controlled watershed of the gradient image

# Marker controlled water segmentation



# Active contours

## **Active contours: Introduction**

## ■ Why?

► When edge-segmentation is fragmented









### **Active contours: Introduction**

- The active contour model (also called <u>snakes</u>) extract the object contours of an image
  - ► It is based on the variational theory
  - ► The active contour evolves like a "snake"

#### Goal

- ► Given initial contour near the desired object evolve the contour to fit exact object boundary
- Elastic band is iteratively adjusted so as to
  - be near image positions with *high gradient*
  - satisfy contours priors





## **Snakes vs Hough transformation**

Like Hough transformation is useful for shape fitting, but





#### **Hough**

- Rigid model shape
- Single voting pass can detect multiple instances

#### **Snakes**

- Prior on shape types, but shape iteratively adjusted (deformed)
- Requires initialization nearby
- One optimization "pass" to fit a single contour

## Why do we want to fit deformable shape?

Non-rigid deformable objects can change their shape over time







### Main idea

Represents an object boundary or some other salient image

feature as a parametric curve

- An energy functional E is associated with the curve
- The problem of finding object boundary is cast as an energy minimization problem
- At each iteration we can move each vertex to another nearby location ("state")



## **Energy minimization**

 $\blacksquare \text{ A snake $\it C$ is a $\it curve$ $\it C$} = \big\{\nu(s) = (x(s),y(s)) \mid s \in [0,1]\big\}$ 



The movements of a snake is modelled as an energy minimization process

$$E = E_i + E_e + E_c = \int_0^1 (E_i(\nu(s)) + E_e(\nu(s)) + E_c(\nu(s))) ds$$

- $ightharpoonup E_i$  internal forces, increases if the snake is stretched or bent
- $ightharpoonup E_e$  external forces, decreases if the snake moves closer to the border of the object we want to segment
- $ightharpoonup E_c$  additional constraints such as penalizing the creation of loops (for many applications it is set to 0)

## Discretizing ...

#### A snake is a curve





▶ Discrete case  $C = \{ \nu_i = (x_i, y_i) \mid 0 \le i \le 1 \}$ 



### The movement is modelled as an energy minimization process

▶ Continuous case 
$$E = \int_0^1 \left( E_i(\nu(s)) + E_e(\nu(s)) + E_c(\nu(s)) \right) ds$$

▶ Discrete case 
$$E = \sum_{j=0}^{n-1} \left( E_i(\nu_j) + E_e(\nu_j) + E_c(\nu_j) \right)$$

## External (Image) energy

- Encourage contour to fit on places where image structure exist
  - ► Measure how well the curve matches the image data locally
  - ► "Attract" the curve toward different image features (edge, lines, etc., ...)





- $\blacksquare$  Given the image I  $E_e(\nu(s)) = -c_3 \left|\left|\nabla I(\nu(s))\right|\right|^2$ 
  - $ightharpoonup c_3$  is a constant that sets the relative influence of the edge attraction force
  - For the entire snake  $E_e = \int_0^1 E_e(\nu(s)) ds$   $E_e = \sum_{j=0}^{n-1} (-c_3 ||\nabla I(\nu_j)||^2)$

## Internal energy

- Encourage prior shape preferences: e.g., smoothness, elasticity, particular known shape
  - ► A priori we want to favour **smooth shapes**, contours with **low curvature**, contours similar to a **known shape**, etc., to balance what is actually observed in the gradient image
- Given the curve C

$$E_i = c_1 \frac{\left| \left| \frac{d\nu(s)}{ds} \right| \right|^2}{\left| \frac{d^2\nu(s)}{ds^2} \right|} + c_2 \frac{\left| \left| \frac{d^2\nu(s)}{ds^2} \right| \right|^2}{\left| \frac{d^2\nu(s)}{ds^2} \right|}$$
Tension,
Elasticity
Stiffness,
Curvature

- $ightharpoonup c_1$  is a constant that controls the **elasticity**
- $ightharpoonup c_2$  is a constant that controls how much the snake can bend

## Discrete internal energy



elastic energy (elasticity)

$$\frac{dv}{ds} \approx v_{i+1} - v_i$$



$$\frac{d^2 v}{ds^2} \approx (v_{i+1} - v_i) - (v_i - v_{i-1}) = v_{i+1} - 2v_i + v_{i-1}$$

▶ For the entire snake 
$$E_i = \sum_{j=0}^{n-1} c_1 \left| \nu_{j+1} - \nu_j \right|^2 + c_2 \left| \nu_{j+1} - 2\nu_j + \nu_{j-1} \right|^2$$

Elasticity

Stiffness, Curvature

## Internal energy properties

- Elasticity term measures how much the snake is stretched locally
  - ightharpoonup small  $c_1$  will result in high stretch values having no impact on the energy (the snake may stretch infinitely)
  - ightharpoonup large  $c_1$  makes that the snake can stretch very little



The preferences for low-curvature, smoothness help deal with missing data



## **Total Energy**

We need to minimize the total energy

$$E_{total} = \int_{0}^{1} \left( E_{i}(\nu(s)) + E_{e}(\nu(s)) + E_{c}(\nu(s)) \right) ds$$

$$= \int_{0}^{1} \left( c_{1} \left\| \frac{d\nu(s)}{ds} \right\|^{2} + c_{2} \left\| \frac{d^{2}\nu(s)}{ds^{2}} \right\|^{2} - c_{3} \left\| \nabla I(\nu(s)) \right\|^{2} + E_{c}(\nu(s)) \right) ds$$

Numerically this is done by solving its Euler-Lagrange form

$$-\frac{d}{ds} \left( c_1 \left| \left| \frac{d\nu(s)}{ds} \right| \right|^2 \right) + \frac{d^2}{ds^2} \left( c_2 \left| \left| \frac{d^2\nu(s)}{ds^2} \right| \right|^2 \right) + \nabla \left( E_e(\nu(s)) + E_c(\nu(s)) \right) = 0$$

- Of course the discretized version!
  - ► This equation can be interpreted as a force balance equation
  - ► The contour deforms under the action of these forces

### **Forces**

#### Elastic force

► Generated by elastic potential energy of the curve

$$F_{elastic} = -\frac{d}{ds} \left( c_1 \left| \left| \frac{d\nu(s)}{ds} \right| \right|^2 \right)$$



- Generated by the bending energy of the contour
- ► Tries to smooth out the curve

#### External force

ightharpoonup Minimizes  $E_e$ 

$$F_e = -\nabla E_e$$



Image





Initial curve (High bending energy)



Final curve deformed by bending force. (low bending energy)



External force



Zoomed in

## Discretizing ...

- The curve is piecewise linear obtained by joining each control
  - point

$$C = \{ \nu_i = (x_i, y_i) \mid 0 \le i \le 1 \}$$



- Force equations applied to each control point separately
- Each control point allowed to move freely under the influence of the forces
- The energy and force terms are converted to discrete form with the derivatives substituted by finite differences
  - ► as we have seen for energies

## Elastic snake example

### A simple elastic snake is defined by

- ► A set of n points
- lacktriangle An internal energy term (tension, bending)  $E_i = c_1 \sum_{j=0}^{n-1} |
  u_{j+1} 
  u_j|^2$



lacktriangle An external energy term (gradient-based)  $E_e = -\sum_{j=0}^{n-1} |
abla I(
u_j)|^2$ 

### To use to segment an object

- ► Initialize in the vicinity of the desired object
- ► Modify the points to minimize the total energy

$$E = \sum_{j=0}^{n-1} c_1 |\nu_{j+1} - \nu_j|^2 - |\nabla I(\nu_j)|^2$$

$$= \sum_{j=0}^{n-1} c_1 \left( (x_{j+1} - x_j)^2 + (y_{j+1} - y_j)^2 - \left( |I_x(x_j, y_j)|^2 + |I_y(x_j, y_j)|^2 \right) \right)$$

# **Examples without constraints**











# **Example using only external force**

Red: Initial contour Green: Final contour



### Limitations

May over-smooth the boundary



- Cannot follow topological changes of objects
  - can be overcome using *level sets*



snake does not really "see" object boundaries in the image unless it gets very close to it!





image gradients are large only directly on the boundary!

### Limitations

Snakes are very sensitive to false local minima which leads to wrong convergence



- Fails to detect concave boundaries.
  External force cant pull control points into boundary concavity
  - ► Can be solved using *Gradient Vector Flow*



### **Active contours comments**

### Advantages

- Useful to track and fit non-rigid shapes
- Contour remains connected
- Possible to fill in "subjective contours"
- ► Flexibility in how energy function is defined, weighted



- Depends on number and spacing of control points
- ► Must have a decent **initialization** near true boundary
- ► May get stuck in **local minimum**
- ► Parameters of energy function must be set well based on prior information



