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1 Introduction

In this second part of the course we analyse the basic theory of linear operators and
equations in Banach and Hilbert spaces, in particular the theory of compact operators
in Banach and Hilbert spaces and the Lax-Milgram theory, emphasizing the applica-
tions to the most common integral and partial differential equations and variational
(or optimization) problems. We introduce also appropriate general tools such weak
and distributional derivatives, Sobolev spaces and functions of bounded variation. We
follow closely the book

[B] Brézis, H.; Functional Analysis, Sobolev spaces and Partial Differential Equations,
Springer (2010),

referring to the corresponding sections for detailed proofs of the main results presented
in this course. Additional content concerning the theory of linear operators is taken
from

[K] Kolmogorov, Fomin; Elements of Theory of Functions and Functional Analysis,
Dover (1999).

A suitable reference for the introductory theory of functions of bounded variations is

[G] Giusti, E.; Minimal surfaces and functions of bounded variation, Birkhäuser (1984).

2 Examples of linear problems in Banach and Hilbert

spaces

We are interested in solving Au = f for a given f ∈ F , where F is a Banach or Hilbert
space, A : D(A) ⊂ E → F is a linear operator between two Banach spaces E,F .
Some interesting cases are also expressed in the form of the fixed point-type equation
λu = Tu+ f , where T : E → E is linear (i.e. A = λI − T ).

In general we say that the problem Au = f is well-posed if it enjoys existence
and uniqueness of solution, and stability (or continuous dependence) with respect to
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(perturbation of) the data. This last property is crucial for approximation and dis-
cretization of both problem and solution. In case one of the above properties fails, we
say that the problem is ill-posed. We briefly describe next some motivating examples.

2.1 Initial and boundary value problems for parabolic and
elliptic partial differential equations.

Given an electric charge density f in a region Ω having the boundary ∂Ω connected with
earth, i.e. with zero electrostatic potential, the corresponding electrostatic potential u
solves the Dirichlet problem (an elliptic PDE) −∆u = f on Ω with boundary condition
u = 0 on ∂Ω, where ∆u = div gradu, the trace of the Hessian of u, is a linear
differential operator called the Laplacian of u (which enters in general in the description
of equilibrium phenomena). Under certain fairly general assumptions the solution u is
unique and is expressed through the integral formula u(p) =

∫
Ω
f(q)G(p, q)dq, where

dq is the Lebesgue measure on Ω and G(p, q) is the so-called Green function for the
Laplacian on the domain Ω. In the case Ω = B1(0) ⊂ R2 we have G(p, q) = 1

2π
log |p−q|,

if Ω = B1(0) ⊂ R3 then G(p, q) = 1
4π
|p − q|−1 (i.e. G(p, q) is the Coulomb potential

describing the interaction of two unit point charges located at p and q). The Dirichlet
problem for the Laplacian is well-posed.

The (homogeneous) heat equation ut − ∆u = 0 for u(t, x) ∈ (0,+∞) × Ω with
initial condition u(0, x) = u0(x) (and possibly further boundary conditions on ∂Ω)
describes the evolution of the temperature u due to heat diffusion in the domain Ω.
If Ω = RN , under some suitable fairly general assumptions, the solution is unique
(and stable with respect to perturbations of the initial datum, so that the problem is
well-posed), and is explicitely given by u(t, x) = Gt ∗ u0(x) =

∫
RN u0(y)Gt(x − y) dy,

where Gt(x) = 1√
2πt

N exp(− |x|
2

4t
) is the heat kernel. The heat kernel, being a normal

distribution, enters in the description of diffusion phenomena or processes: it describes
the transition probability density at time t of a brownian motion (i.e. a random walk
with infinitesimal space-time steps) of a particle starting at time t = 0 from 0 ∈ RN .
The heat kernel is also referred to as a gaussian convolution kernel or a gaussian filter
in the signal processing literature, where Gt ∗ u0 represent a regularization (denoising)
at scale t of a given signal u0 (possibly affected by noise).

In both preceding examples, the solution operator u = Kf is an integral operator:
in the case of the heat equation, if we set v(x) = u(t, x) for fixed t > 0, we have in
particular v = Ktu0 with Ktu0 = Gt ∗ u0 having the form of a convolution (a weighted
average) of the initial datum with the heat kernel Gt.

2.2 Integral equations and integral transforms.

The Volterra equations
∫

Ω
K(x, y)u(y) dy = f(x) and u(x) =

∫
Ω
K(x, y)u(y) dy + f(x)

in the unknown u for a given kernel K(x, y) and datum f on a domain Ω are examples
of integral equations of the type Ku = f or u = Ku + f , with K the corresponding
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integral operator. The problem to prescribe a load u on an elastic horizontal rod
(identified with a segment [a, b]) in order that it reaches a desired given profile f(x) for
x ∈ [a, b] can be modelized through a Volterra equation for a suitable kernel K(x, y)
defined for x, y ∈ [a, b] that encodes the action of gravity on the load.

The Fourier transform Fu(ω) =
∫
RN u(x)e−2πix·ωdx, is suitable to define Fourier coeffi-

cients or modes relative to the (vector) frequency ω ∈ RN for a (non-periodic) function
u defined on the whole space, and is used to analyse signals in the frequency (or Fourier)
space. Under some assumptions (for instance, on L2(RN)) it is an invertible integral
operator, and it is used to solve certain linear PDE’s on the whole space RN , such
as diffusion equations, Maxwell equations of electromagnetism, Schrödinger equation
in quantum mechanics: applying the Fourier transform to those PDEs, the resulting
equations in the frequency space are of algebraic type.

Further examples of integral transforms are given by the Radon and the Hough
transforms, which are used for example to solve inverse problems in tomography. For
a given mass density u supported on a planar region Ω, the total mass contained in a
line L is given by

∫
L
u(z)d`(z), with d` the line element. By scanning the domain Ω

with all possible lines in the plane we obtain the output f = Ru, the Radon transform
of u, which is given by

f(r, θ) =

∫
Lr,θ

u(z)d`(z) Lr,θ = {(x, y) ∈ R2, x cos θ + y sin θ = r} .

The Radon transform is invertible, so that in principle one can recover the exact mass
distribution u given f , but in fact, for instance in the concrete situation of a com-
puter axial tomography, the output f is affected by systematic errors inherent the
measurement device and by noise, so that the real inverse problem one is faced to
solve is Ru = f + ε, where ε is an unknown probability distribution encoding error
measurements and noise, i.e. it is an ill-posed problem.

2.3 Regularization of ill-posed problems

Typical situations where ill-posed problems appear are inverse (or reconstruction) prob-
lems in signal and (biomedical) image processing is a datum f (a function) given by
a measured signal (e.g. by a biomedical apparatus such as a magnetic resonance de-
vice), which corresponds to a linear transform (e.g. Fourier or Radon transform) of
the original datum/signal u, and the task is to recover the original datum u from the
measured signal f . In general, besides the linear transform one has to take into account
error measurements or noise, so that the effective operator R cannot be expected to
be invertible. One thus seeks for approximate solutions according to optimality cri-
teria that penalize both noise and errors (e.g. a least squares optimization criterion
among a suitable admissible set H (the hypothesis space) of signals having an expected
structure), so that the resulting well-posed regularized problem can be put in the form
λBu + Ru = f , where Bu, the regularization term, is expressed through a suitable
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invertible operator B, and λ > 0 is a tuning (or scaling) parameter suited for the
specific situation under analysis.

Another similar ill-posed situation, where one has to invert a “low rank” operator R
(i.e. with a nontrivial, maybe huge kernel) appears in the approximation of sparse
data, a particular instance of machine learning. One is given with the values f(xi) of a
function at very few points xi ∈ S (the “training set”) of a domain D (e.g. a dataset),
and wants to infer f on the whole domainD: there are of course many possible arbitrary
extensions of f from S to D, moreover the values f(xi) could be affected by errors, so
that the problem is ill-posed. One is led to regularize the problem by asking that the
extension u be regular in the sense that it belongs to a certain space H which is suited
for that particular problem, and be close to the data f(xi) in a least square sense: one
is thus led to solve the problem

λBu+
∑
i

[u(xi)− f(xi)] = 0 ,

where B is a suitable invertible operator acting on H and λ > 0 a tuning parameter.
This problem stems equivalently from the minimization of the functional

F(u) = λ‖u‖2
H +

∑
xi∈S

|u(xi)− f(xi)|2

which is referred to as the Tychonoff regularization of the original problem.

3 Linear operators in Banach and Hilbert spaces

Let E,F be two Banach (or Hilbert) spaces, consider the linear operator T : D(T ) ⊂
E → F , where the domain of definition D(T ) is a dense subspace of E (it may well be
D(T ) = E).

Recall that T is continuous if and only if it is bounded, i.e. there exists C > 0 such
that ‖Tv‖F ≤ C‖v‖E for any v ∈ D(T ), and in particular T extends by density to a
bounded operator on the whole of E. Here are some examples of bounded operators.

Diagonal operators. The operator T : `1 → `1 given by (xi) 7→ (cixi), with
‖(ci)‖`∞ = supi |ci| < +∞ is bounded, since

‖T (xi)‖`1 =
∑
i

|cixi| ≤ sup
i
|ci|
∑
i

|xi| = ‖(ci)‖`∞‖(xi)‖`1

Hilbert-Schmidt operators. Let (aij) a sequence of numbers such that
∑

i,j a
2
ij =

C < +∞. Then the operator T : `2 → `2 given by (xi) 7→ (
∑

j aijxj) is bounded, since

‖T (xi)‖2
`2 =

∑
i

(∑
j

aijxj

)2

≤

(∑
i,j

a2
ij

)(∑
j

x2
j

)
= C‖(xi)‖2

`2 .
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By essentially the same calculations one shows that the integral operator Tu(x) =∫
Ω
K(x, y)u(y) dy is bounded on the Hilbert space L2(Ω) provided K ∈ L2(Ω×Ω), and

that ‖Tu‖2 ≤ ‖K‖2‖u‖2.

Fourier transform. From the inequality |û(ω)| ≤
∫
R |u(x)| |e2πiωx| dx it follows that

û ∈ C0 ∩ L∞(R) whenever u ∈ L1(R), and ‖û‖∞ ≤ ‖u‖1, i.e. u 7→ û is a bounded
operator from L1(R) to C0 ∩ L∞(R).

Convolution operators. Let T : u 7→ g ∗ u, for g ∈ L1(Rn). By the properties of the
convolution product we deduce the estimate

‖Tu‖p = ‖g ∗ u‖p ≤ ‖g‖1‖u‖p, i.e. T ∈ L(Lp(Rn)) for any 1 ≤ p ≤ +∞ .

3.1 Properties of bounded linear operators.

([B], chap. 2 and 6 and [K], ch. IV, sect. 30)
The space L(E,F ) of bounded linear operators between two Banach spaces E,F is a

Banach space when endowed with the operator norm ||T ||L = sup{||Tv||F , ||v||E ≤ 1},
that measures the maximal elongation factor for unit vectors in E. In particular, we
have ‖Tv‖F ≤ ‖T‖L‖v‖E and ‖T‖L is the smallest constant such that this inequality
is verified for any v ∈ E. Observe that ‖T ◦ S‖ ≤ ‖T‖‖S‖, i.e. the operator norm is
compatible with the composition of operators.

There are various notions of convergence for a sequence of operators Tn ∈ L(E,F )
to T ∈ L(E,F ): uniform (||Tn − T ||L → 0), strong (Tnv → Tv in F ∀ v ∈ F ), weak
(< φ, Tnv >→< φ, Tv > ∀ v ∈ F , ∀φ ∈ F ′).

The Weierstrass criterion for the uniform convergence of series of operators: if∑
n ‖Tn‖L < +∞, then T =

∑
n Tn ∈ L(E,F ).

Example (Neumann series). For T ∈ L(E) and ||T ||L < 1, (I − T ) is invertible
(and (I − T )−1 ∈ L(E)). Moreover, (I − T )−1 =

∑+∞
n=0 T

n (observe that ‖T n‖ ≤ ‖T‖n
and use W. criterion). In particular, the fixed point equation u = Tu+ f has a unique
solution u = (

∑
n T

n)f , that can be approximated by iterating the operator T on an
arbitrary initial guess (for instance, 0 or f itself).

Recall that T ∈ L(E) = L(E,E) is injective and surjective, then T−1 ∈ L(E) by
the open mapping theorem. Reasoning as in the previous example, it follows that the
subset of invertible operators is open in L(E): if T is invertible then for any S ∈ L(E)
such that ||S|| < ||T−1||−1, the operator T +S = S ◦ (S−1T + I) is invertible. This can
be rephrased by saying that the invertibility property of an operator is stable under
small (or lower order) perturbations.

The adjoint operator T ∗ ∈ L(F ′, E ′) is defined through the identity < T ∗φ, v >=<
φ, Tv > for any v ∈ F , φ ∈ F ′. It holds ‖T ∗‖ = ‖T‖, as a consequence of Hahn-Banach.
In case E = F = H a Hilbert space, from the identification H ≡ H ′ given by the Riesz
representation theorem, one considers T, T ∗ ∈ L(H). If T = T ∗ the operator is called
self-adjoint or symmetric.
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Example: Hilbert-Schmidt integral operators on `2 (respectively L2(Ω)), induced by
symmetric kernel (aij) = (aji) (resp. K(x, y) = K(y, x)) are self-adjoint operators.

3.2 Compact operators.

([B], sect. 6.1 and [K], chap. IV, sect. 31)
Definition of compact operator: T ∈ L(E,F ) is compact if T (B) is totally bounded

(hence relatively compact) in F whenever B is bounded in E (or equivalently, if the
image of the unit ball BE is relatively compact): in particular, if ‖vn‖E ≤ M is a
bounded sequence in E, then Tvn is convergent in F up to a subsequence.

Uniform limits of compact operators in L(E,F ) are compact, i.e. the space K(E,F )
of compact operators is closed in L(E,F ). Bounded operators whose range is finite
dimensional are compact (since in finite dimension boundedness and total boundedness
are equivalent, or equivalently, since the closed unit ball is compact in finite dimen-
sions): they are called finite rank operators. For example, the orthogonal projection
on a finite dimensional subspace of a given Hilbert space is a compact operator.

By the closure property of compact operators it follows that limits of sequences of
finite rank bounded operators are compact.

Viceversa, if F = H is a Hilbert space the finite rank approximation property holds
true for any T ∈ K(E,H): given v1, ..., vN ∈ H a ε-net for T (BE), set VN =span〈v1, ..., vN〉
and TN = PN · T , where PN is the orthogonal projection on VN . We have that TN has
finite rank and ||TN − T ||L(E,H) ≤ 2ε.

Examples. The diagonal operator T : (xn)n 7→ (cnxn)n, where cn → 0, is compact
on `1 (resp. `2) as uniform limit of the finite rank operators TN : (xn)n 7→ (σNcnxn)n,
where σN = 1 for n ≤ N and σN = 0 for n > N . Observe that in case cn 6= 0 for any
n ∈ N, we have that T is injective on `1, but never surjective: the inverse operator
S : (yn)n 7→ (c−1

n yn)n is unbounded and its domain of definition is the subspace of
`1 given by those sequences (yn) such that

∑
n |c−1

n yn| is finite (in particular, we have
necessarily yn = o(cn) as n→ +∞).

Hilbert-Schmidt operators are compact: for (Tu)(x) =
∫

Ω
K(x, y)u(y) dy with K ∈

L2(Ω × Ω), we have ||T ||L ≤ ||K||L2 and given a Hilbert basis (i.e. a complete or-
thonormal system) {φn} of L2(Ω), set ψnm(x, y) = φn(x)φm(y): the elements ψnm are
a Hilbert basis of L2(Ω × Ω). Expanding K(x, y) =

∑∞
n=1

∑∞
m=1 knmψnm(x, y), and

setting respectively

KN(x, y) =
N∑
n=1

N∑
m=1

knmψnm(x, y) and (TNu)(x) =

∫ b

a

KN(x, y)u(y) dy,

we have ||TN − T ||L ≤ ||KN − K||2 → 0, hence T ∈ K(L2(Ω)) as limit of finite rank
operators.
Along the same lines one proves that the Hilbert-Schmidt operator on `2, T : (xi) 7→
(
∑

j aijxj) with
∑

i,j a
2
ij < +∞, belongs to K(`2).
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Fredholm-Volterra operators: if the kernel K ∈ C0(Ω×Ω) (possibly except for suitable
discontinuity sets of zero measure) and Ω is a compact domain endowed with a finite
measure µ, then the integral operator Tu(x) =

∫
Ω
K(x, y)u(y) dµ(y) is compact on

C0(Ω): from the uniform continuity of K on the compact set Ω×Ω we deduce ‖Tu‖∞ ≤
µ(Ω)| · ‖K‖∞‖u‖∞, and moreover

|Tu(x)− Tu(x′)| ≤
∫

Ω

|K(x, y)−K(x′, y)| |u(y)| dy ≤ εµ(Ω) · ‖u‖∞ ∀ |x− x′| ≤ δ,

obtaining the equi-uniformly continuous property of Tu under a uniform bound ‖u‖∞ ≤
M , hence compactness in C0(Ω) by Ascoli - Arzelà.

A compact operator (right- or left-) composed with a bounded operator is compact.
In particular, K(E) ≡ K(E,E) is a bilateral ideal of L(E). The identity map is compact
if and only if E is finite dimensional. Any injective T ∈ K(E) doesn’t admit a bounded
inverse, unless E is finite dimensional.

If E is reflexive (e.g. a Hilbert space), T is compact if and only if for any un ⇀ u weakly
in E it holds Tun → Tu strongly in E: otherwise said, if and only if weakly converging
sequences are transformed in strongly converging sequences, and in particular, T (BE) =
T (BE), since the closed convex ball BE is closed for the weak topology.

Proof: given un ⇀ u ∈ H, by Banach-Steinhaus we have ‖un‖ ≤ M , hence for a
subsequence unk it holds Tunk → v in H. Observe that

〈Tun, w〉 = 〈un, T ∗w〉 → 〈u, T ∗w〉 = 〈Tu,w〉 ∀w ∈ H,

by weak convergence of the sequence un, i.e. T is continuous w.r.t. the weak topology.
Hence in particular Tunk ⇀ Tu and we have necessarily v = Tu by uniqueness of the
weak limit (recall that by Hahn-Banach the weak topology separates points, i.e. is
Hausdorff), hence the whole sequence Tun has Tu as unique (strong) limit point.

Application: constrained optimization of a quadratic form involving a compact
operator on a Hilbert space. Let Q(v) = 〈Tv, v〉 for v ∈ H and T ∈ K(H). The
quadratic form Q is weakly continuous, i.e. Q(v)→ Q(v0) if v ⇀ v0, since

|〈Tv, v〉 − 〈Tv0, v0〉| ≤ |〈Tv − Tv0, v〉|+ |〈Tv0, v − v0〉| → 0

since |〈Tv−Tv0, v〉| ≤ ‖Tv−Tv0‖·M → 0 by strong convergence and 〈Tv0, v−v0〉 → 0
by weak convergence. Hence the constrained optimization problems

max{Q(v), ‖v‖ ≤ 1}, min{Q(v), ‖v‖ ≤ 1}

have a solution by Weierstrass Theorem, since the set BH = {v ∈ H, ‖v‖ ≤ 1} is
bounded and weakly closed, hence weakly compact in H.

The solution can actually be obtained by the Lagrange multipliers methods, by
finding the critical points of the quadratic form ψ(v, λ) = Q(v) + λ‖v‖2 associated to
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the operator T −λI (see e.g. the proof of the spectral theorem for compact self-adjoint
operators on Hilbert spaces).

Adjoint of a compact operator: if T ∈ K(H) then T ∗ ∈ K(H) and conversely.
Example: the adjoint of a Hilbert-Schmidt operator is associated to the conjugate
kernel K∗(x, y) = K(y, x) (respectively to the sequence a∗ij = āji in the discrete `2

case)

3.3 Self-adjoint compact operators in Hilbert spaces

([B], sect. 6.4, [K], chap. IX, sect. 59)
Spectral theory for self-adjoint compact operators in Hilbert spaces: the eigenvalues

are real and there exists a Hilbert basis made of eigenvectors, which “diagonalizes”
the operator. In particular, for T ∈ K(H), T ∗ = T , and en a orthonormal basis of
eigenvectors, i.e. Ten = λnen (with λn → 0), we have the diagonal representation
Tv = T (

∑
n cnen) =

∑
n λncnen, i.e. the operator can be identified with the operator

T̃ ∈ K(`2) given by T̃ (cn) = (λncn). Moreover, ‖T‖L = maxn |λn|.

Proof of the spectral theorem: we consider a (iterated) contrained optimization problem
on the unit closed ball B = {‖v‖ ≤ 1} of H for the quadratic form Q(v) = 〈Tv, v〉
associated to T ∈ K(H). Recall first that Q(v) is weakly continuous, since vn ⇀
v0 implies Tvn → Tv0, and moreover ‖vn‖ ≤ M (weakly convergent sequences are
bounded), whence

| 〈Tvn, vn〉 − 〈Tv0, v0〉 | ≤ |Tvn − Tv0| · |vn|+ | 〈Tv0, vn − v0〉 | → 0.

By Weierstrass Theorem, |Q(v)| reaches its maximum on the unit closed ball B,
which is weakly compact. Let e1 be a maximum point. We have necessarily ‖e1‖ = 1
because Q(λv) = λ2Q(v) for λ ∈ R. Moreover, for any e ∈ H such that ‖e‖ = 1 and
〈e, e1〉 = 0, one has 〈e, Te1〉 = 0. This follows for instance by applying the Lagrange
multipliers theorem to the function

ψ(x, y, λ) = Q(v) + λ‖v‖2 = x2〈Te1, e1〉+ 2xy〈Te1, e〉+ y2〈Te, e〉+ λ(x2 + y2) ,

where v = xe1 + ye belongs to the 2-dimensional space spanned by e1 and e. Since
e1 is a critical point of ψ, we deduce 0 = ∂ψ

∂y
(1, 0, λ) = 2〈Te1, e〉. In particular,

one has Te1 = 〈Te1, e1〉 · e1 = λ1e1, i.e. e1 is an eigenvector of T and moreover
|Q(e1)| = |〈Te1, e1〉| = |λ1|, i.e. the eigenvalue λ1 has maximum modulus among all
the eigenvalues of T (actually we have |λ1| = ‖T‖L).

Iterating this procedure, one obtains, for n ≥ 1, an eigenvector en of T , with ‖en‖ =
1, and such that < en, em >= 0 for any m < n, corresponding to the maximum point
of |Q(v)| on (span{e1, ..., en−1})⊥ ∩ B, with λn = Q(en) the corresponding eigenvalue.
Moreover, it holds |λn−1| ≥ |λn|.

If for some n0 ∈ N one has λn0 = Q(en0) = 0, then (span{e1, ..., en0−1})⊥ = kerT .
Indeed, Q(w) = 0 for any w ∈ (span{e1, ..., en0−1})⊥, and if 〈w, ei〉 = 0 ∀ i < n0, then
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〈Tw, ei〉 = 〈v, Tei〉 = 0, i.e. also Tw ∈ (span{e1, ..., en0−1})⊥. The polarization identity
4〈Tv, u〉 = Q(u+ v)−Q(u− v) hence implies that 4〈Tw, Tw〉 = Q(w+ Tw)−Q(w−
Tw) = 0 for any w ∈ (span{e1, ..., en0−1})⊥, i.e. Tw = 0.

We deduce in this case that the set {e1, ..., en0}, completed with a (complete) or-
thonormal system {e′j} of kerT yields a Hilbert basis of eigenvectors of T .

Otherwise, we are left with a orthonormal sequence {en}n, so that in particular
en ⇀ 0 by Bessel inequality (for any w ∈ H,

∑
n〈en, w〉2 ≤ ||w||2 ⇒ 〈en, w〉 → 0

as n → +∞), and hence |λn| = |Q(en)| ↘ 0 by weak continuity of Q. Let N =

span{e1, ..., en, ...}
⊥

. For any w ∈ N one necessarily has |Q(w)| ≤ |Q(en)| for any
n ∈ N, hence Q(w) = 0 and N = kerT .

In this case, the set {en}n∈N, completed with a (complete) orthonormal system {e′j}
of kerT yields a Hilbert basis of eigenvectors of T .

Using the above Hilbert basis to decompose u =
∑

n〈u, en〉en +
∑

j〈u, e′j〉e′j, we may
express

Tu =
∑
n

λn〈u, en〉en =

(∑
n

λnen ⊗ en

)
u ,

where, for v, w ∈ H, the tensor product v ⊗ w denotes the rank one operator u 7→
〈u,w〉v.

Thanks to the spectral theorem, under analogous assumptions as in the finite di-
mensional case, one can prove a singular value decomposition theorem for compact
operators on Hilbert spaces, namely the existence of two orthonormal systems {en}
and {fn} and λn > 0 such that

Tu =

(∑
n

λnen ⊗ fn

)
u =

∑
n

λn〈u, fn〉en .

This decomposition is widely used in applications.

3.4 The Fredholm Alternative

([B], sect. 6.3, [K], chap. IV, sect. 31, 32).
The Fredholm alternative gives a procedure to solve equations of the type Au =

u− Tu = f , with T ∈ K(H), H a Hilbert space. We have
1. kerA is finite dimensional,
2. The range R(A) is closed, hence there holds the orthogonal direct sum decom-

position H = R(A)⊕ kerA∗ = R(A∗)⊕ kerA, where A∗ = I − T ∗.
3. kerA = 0 ⇔ R(A) = H, (in case T = T ∗, this follows from 2.)
4. dim kerA =dim kerA∗ < +∞.

Proof: we have proved point 1., 2. and (partially) 3., following closely the arguments
given in the cited references [B], sect. 6.3 and [K], sect. 31,32.
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The Fredholm alternative holds more generally for operators of the type A = I −T
with T ∈ K(E), E a Banach space.

The procedure to implement the Fredholm alternative goes as follows: first of all,
solve the associated adjoint homogeneous equation, i.e. the fixed point equation v =
T ∗v. If the solution is trivial, then Au = f admits a unique solution for any datum f ∈
H (that can be possibly found in an iterative way via contraction mapping principle, as
in the case of Fredholm-Volterra integral operators). Otherwise, call v1, ...vk a basis of
kerA∗ (i.e. a maximal independent set of fixed points of T ∗); then there are solutions
of Au = f provided f verifies the orthogonality conditions < f, vi >= 0 for any
i = 1, ..., k.

3.5 Spectral theory for T ∈ L(E).

([B], sect. 6.2, [K], chap. IV, sect 31, 32)
Definition of resolvent set ρ(T ) ⊂ C: we have λ ∈ ρ(T ) if (λI − T )−1 ∈ L(E). The

resolvent set is open in C. Moreover, if |λ| > ‖T‖ then {λ ∈ C , |λ| > ||T ||} ⊂ ρ(T ).
Actually, denoting r(T ) = lim supn(||T n||)1/n ≤ ||T || the spectral radius of T , we have
{λ ∈ C , |λ| > r} ⊂ ρ(T ). Spectrum σ(T ) = C \ ρ(T ) of T ∈ L(E): it is a closed set
contained in B(0, ||T ||) ⊂ C. Let λ ∈ σ(T ): If ker(T − λI) 6= 0 then λ is an eigenvalue
of T , and belongs to the point spectrum. Otherwise, λ belongs to the continuous
spectrum (ker(T − λI) = 0 but (T − λI) is not surjective). In particular, the map
(T − λI)−1 may be defined either in a dense or in a proper closed subspace of E, and
may be either bounded or unbounded.

Examples. The right shift τr in `1 (or `2), or the diagonal operator Tα : {xn} 7→
{αnxn} where 0 6= αn → 0. In both cases 0 belongs to the continuous spectrum.
Moreover, {αn} ⊂ σ(Tα) is the point spectrum of Tα, while the point spectrum of τr is
empty.

The multiplication operator Tu(x) = x · u(x) on C0([a, b]). For any λ ∈ R, ker(T −
λI) = 0, hence there are no eigenvalues. Moreover, for λ /∈ [a, b], (T − λI)−1v(x) =
(x−λ)−1v(x) is well-defined for any v ∈ C0([a, b]) and is bounded, i.e. λ ∈ ρ(T ), while
for a ≤ λ ≤ b (T − λI)−1 is defined on the dense subspace {v ∈ C0([a, b]), v(λ) = 0},
and it is unbounded. In particular, σ(T ) = [a, b] is the continuous spectrum of T .

The resolvent operator Rλ = (T − λI)−1 of T ∈ L(E), with λ ∈ ρ(T ). Resolvent
equation Rλ−Rµ = (λ−µ)RλRµ: it yields dRλ

dλ
= R2

λ, that is λ 7→ Rλ is a holomorphic
function, whose singularities are in σ(T ). In particular, the Cauchy integral formula
(and the calculus of residues) involving Rλ and a given holomorphic function f(z)
allows to consistently define f(T ) (in particular, if f(z) = ez, we obtain a formula for
exp(T ), while if f(z) = 1 we derive some information on the Jordan blocks of T ).

3.6 Spectrum of a compact operator

([B], sect. 6.3, [K], chap. IV, sect. 31, 32)
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Structure of the spectrum of a compact operator: 0 ∈ σ(T ) and σ(T ) \ {0}, if
non empty, is made of at most countably many eigenvalues λn, and in the case of
infinite eigenvalues, then λn → 0 as n → +∞. The fact that 0 6= λn ∈ σ(T ) is
an eigenvalue follows from the Fredholm Alternative, point 3. The corresponding
eigenspaces ker(λnI−T ) 6= 0 are finite-dimensional (point 1. of Fredholm Alternative).
If the operator is self-adjoint on a Hilbert space, then the eigenvalues are real, and
max |λn| = ‖T‖L (as a consequence of the Spectral Theorem).

4 Lax-Milgram Theory

4.1 Lax-Milgram and Stampacchia theorem

([B], sect. 5.3)
The Lax-Milgram Lemma: given a bilinear form a(u, v), continuous (a(u, v) ≤

M‖u‖‖v‖) and coercive (0 < α‖u‖2 ≤ a(u, u) ∀ u 6= 0) on a closed subspace S of a
Hilbert space H, for any bounded linear form φ ∈ H ′ there exists a unique u ∈ S such
that a(u, v) = φ(v) for any v ∈ S. In particular, ‖u‖ ≤ α−1‖φ‖∗.

If moreover a is symmetric (i.e. a(u, v) = a(v, u)), we have the characterization
u = arg min{1

2
a(v, v)− φ(v) , v ∈ S}.

Proof: without loss of generality, the proof is carried out in the case F = H. By
Riesz representation theorem, the equation to be solved can be rewritten as 〈Au, v〉 =
〈f, v〉 for any v ∈ H, i.e. Au = f , where A ∈ L(H) verifies the estimates 0 < α‖u‖ ≤
‖Au‖ ≤M‖u‖ ∀ u 6= 0.

From α‖u‖ ≤ ‖Au‖ (which is called an a priori estimate) it follows that kerA = 0.
Moreover, α‖un − um‖ ≤ ‖Aun − Aum‖ implies that if yn = Aun → y in H, i.e. Aun
is a Cauchy sequence in H, then also un is a Cauchy sequence, hence un → u in H by
completeness, thus yielding y = Au. One concludes that A has a closed range R(A) in
H. Finally, if v⊥R(A), then 〈v, Au〉 = 0 ∀ u ∈ H. In particular, choosing u = v, we
have 0 = 〈v, Av〉 ≥ α‖v‖2, thus v = 0 and R(A) = H. We just proved that A is both
injective and surjective, and the conclusion of the Lemma follows.

In case of a symmetric a, since α‖u‖2 ≤ a(u, u) ≤ M‖u‖2, the scalar product
((u, v)) := a(u, v) is equivalent to 〈·, ·〉, hence by Riesz representation theorem applied
to H endowed with ((·, ·)), one has φ(v) = a(g, v) for a certain g ∈ H, whence u
verifies a(u − g, v) = 0 ∀ v ∈ H, i.e. u is the orthogonal projection (with respect to
the scalar product induced by a) of g on H, in other words u minimizes the (squared)
distance (induced by a) a(v−g, v−g), or, equivalently, the quadratic functional F (v) =
1
2
a(v, v)−φ(v), for v ∈ H, whose Euler-Lagrange equation ∂vF (u) ≡ 〈F ′(u), v〉 = 0 for

any direction v ∈ H is precisely given by a(u, v) = φ(v) for any v ∈ H.

A generalization of Lax-Milgram lemma is given by Stampacchia theorem (see the
corresponding statement in [B], sect. 5.3).
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4.2 Galerkin approximation

The Galerkin approximation method: if Vh ⊂ H, dimVh < +∞, one considers the
solution uh of the system a(u, v) = φ(v) ∀ v ∈ Vh. We have the uniform bound
‖uh‖ ≤ α−1‖φ‖∗, which gives weak compactness of the sequence {uh}. Moreover,
the Lemma of Céa guarantees that ‖u − uh‖ ≤ M

α
dist (u, Vh) (in other words, uh is

comparable to the orthogonal projection of u on Vh): indeed, a(u − uh, u − uh) =
a(u− uh, u− v) for any v ∈ Vh since a(u, v − uh) = a(uh, v − uh) = φ(v − uh), whence
α‖u− uh‖2 ≤M‖u− uh‖‖u− v‖ for any v ∈ Vh and the conclusion follows.

Hence, considering a sequence of finite-dimensional spaces Vh ⊂ Vh+1 such that
H = ∪hVh, one has the convergence uh → u in H as h→ +∞.

Remark that the approximating finite-dimensional problem is a linear system with a
positive definite coefficients matrix, called stiffness matrix, which is given by [a(fi, fj)],
with {fi} a basis for Vh.

The choice of the sequence Vh invading H and of a basis {fi} for Vh is aimed to
efficiently solve the approximating linear system, and also to have the best possible
convergence rate for the error estimate ||uh − u||. Here are some examples in case
H = L2(Ω), Ω ⊂ Rn:

1) if a is represented by a compact self-adjoint operator, then considering a Hilbert
basis {en}n∈N of L2(Ω) made of eigenvectors, and setting Vh =span< e1, ..., eh >, the
corresponding system is diagonal.

2) considering a basis {fi} of Vh made of finite elements (piecewise linear or polyno-
mial function insisting on a fixed triangulation of the domain) yields a sparse stiffness
matrix. Finite elements are used in numerical fluid dynamics, material science, elas-
ticity,...

3) Haar basis, wavelets, radial basis functions: these Hilbert basis of L2(Ω) are
used in signal and image processing and statistical analysis, being not computation-
ally expensive, and also since they are able to take into account localized oscillation
phenomena at any scale in physical and in frequency space.

4) if the original problem admits a smooth solution (for example, u ∈ C∞(Ω) as
for Laplace equation), it may be convenient to use spectral methods for its approx-
imation, i.e. to consider a Hilbert basis of L2(Ω) made of orthogonal polynomials
(e.g. the trigonometric system, the Legendre polynomials, the Hermite polynomials,
the Tchebycheff polynomials): since the Lemma of Céa states that the error estimate
‖u− uh‖ is comparable to the distance of u to its orthogonal projection on Vh, hence
the convergence rate will be better according to the regularity of u (for instance, the
more regular u, the more rapidly its Fourier coefficients decay to 0).

5 Boundary value problems in dimension one

([B], sect. 8.1, 8.3, 8.4, 8.5, 8.6)
Weak / variational formulation of elliptic boundary value problems in dimension

1. Classical vs weak solutions. Natural ambient spaces for weak solutions of boundary
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value problems are Sobolev spaces. The space W 1,p
0 ([a, b]) is defined as the closure

of C1
c ([a, b]) w.r.t. the W 1,p norm, it is a closed (and hence complete) subspace of

W 1,p([a, b]) and can be characterized as follows: W 1,p
0 ([a, b]) = {v ∈ W 1,p([a, b]), v(a) =

v(b) = 0}. Recall the compact embedding of W 1,p([a, b]) (hence of W 1,p
0 ([a, b])) in

C0([a, b]). By the Poincaré inequality ‖u‖p ≤ Cp|b − a|‖u′‖p valid on W 1,p
0 ([a, b]), the

Lp norm of the derivative gives an equivalent norm on W 1,p
0 ([a, b]). The Hilbert space

H1
0 ([a, b]) = W 1,2

0 ([a, b]).

The homogeneous Dirichlet problem −u′′+u = f on [a, b], u(a) = u(b) = 0: weak
formulation in H1

0 ([a, b]) in case f ∈ L2([a, b]) as

a(u, v) = 〈u, v〉H1 =

∫ b

a

u′v′ + uv =

∫ b

a

fv = φ(v)

for any v ∈ H1
0 ([a, b]). Application of Lax-Milgram theory for existence, uniqueness, a

priori estimates, variational characterization of the weak solution as the minimizer on
H1

0 ([a, b]) of the Dirichlet energy F (v) = 1
2
‖v′‖2

2 + 1
2
‖v − f‖2

2. Hilbert regularity: the
weak solution belongs to H2

2 ∩ H1
0 ([a, b]), i.e. its second (weak) derivative exists and

belongs to L2([a, b]). Classical regularity of the weak solution in case f ∈ C0([a, b]).

Remark. The energy functional F (v) can be used for the time discretization of the
gradient flow of the energy E(v) = 1

2
‖v′‖2

2, starting from a given function u0 ∈ L2([a, b]).
That gradient flow corresponds in turn to the initial/boundary value problem for the
homogeneous heat equation ut − uxx = 0 with initial datum u0(x) and homogenous
boundary data u(t, a) = u(t, b) = 0 for any t > 0.

Indeed, consider the following Euler-type discretization scheme of the heat equation:
fix the discretization step ∆t ≡ λ−1 and denote tn = n∆t, u(tn, ·) = vn(·). To solve
discretized equation 1

∆t
(vn+1 − vn)− v′′n+1 = 0 with v0 = u0 one may iteratively obtain

vn+1 as the minimizer in of the Dirichlet energy functional Fλ(v) = 1
2
‖v′‖2

2 + λ
2
‖v−vn‖2

2

on H1
0 ([a, b]).

The functional Fλ(v) = ‖v′‖2
2 + λ‖v − f‖2

2 gives also an example of Tychonoff regular-
ization for ill-posed problems in signal (or image) processing: it contains the fidelity
(least square) term ‖v−f‖2

2 tuned by the parameter λ > 0 and the regularization term
‖v′‖2

2 penalizing oscillations of v.

Analysis of the (homogeneous) Sturm-Liouville problem (it is an elliptic equation in
divergence form)−(pu′)′+qu = f . Compactness and symmetry of the solution operator
u = Tf as an operator on L2([a, b]) thanks to the compact embedding H1

0 ([a, b]) ⊂
L2([a, b]). The spectral decomposition of Sturm-Liouville operators ([B], sect.
8.6) produces Hilbert basis of H1

0 ([a, b]) made by special functions used in spectral
(Galerkin) approximation methods (trigonometric polynomials, Legendre, Tchebycheff,
Hermite polynomials,...)

Integral representation of the solution operator T (compact and symmetric onH1
0 ([a, b])):

let en(x) a Hilbert basis of H1
0 ([a, b]) made of eigenvectors of T related to the eigenval-

ues µn ∈ R, with µn → 0. Then f =
∑
〈f, en〉en(x) and u = Tf =

∑
n µn〈f, en〉en(x),
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where 〈f, en〉 =
∫ b
a
f(y)en(y) dy. Hence, by dominated convergence, we may inter-

change the sum with the integral, obtaining u(x) =
∫ b
a
(
∑

n µnen(x)en(y))f(y) dy. We
recover the fact that T is the Hilbert-Schmidt integral operator on L2([a, b]) given

by Tf(x) =
∫ b
a
G(x, y)f(y) dy with the symmetric Green kernel G ∈ L2 given by

G(x, y) =
∑

n µnen(x)en(y).

Remark. The corresponding parabolic problem ut−(pux)x+qu = f , u(0, x) = u0(x) ∈
L2([a, b]), u(t, a) = u(t, b) = 0 can be solved by taking advantage of a Hilbert basis
of eigenvectors of the spatial operator through the method of separation of variables:
let f(x) =

∑
n fnen(x) and seek for a solution u(t, x) =

∑
n cn(t)en(x) with u(0, x) =

u0(x) =
∑

n c0,nen(x), plug it into the equation, obtaining formally∑
n

[ċn(t) + µ−1
n cn(t)− fn]en(x) = 0 for any t > 0, x ∈ [a, b] ,

whence cn(t) can be explicitely determined as the solution of the Cauchy problem
ċn + µ−1

n cn = fn, cn(0) = c0,n. A rigorous justification of the above representation
formula for the solution is obtained by passing to the limit in the corresponding fi-
nite dimensional Galerkin approximation, by virtue of uniform bounds in the a priori
estimates on the approximate solution. For instance, in the case f ≡ 0 we obtain
cn(t) = c0,n exp(−t/µn) whence we deduce the L2 bound (uniform in t) for u(·, t)∫ b

a

|u(t, x)|2dx dt =

∫ b

a

(∑
n

cn(t)en(x)

)2

dx

=

∫ b

a

∑
n

[cn(t)en(x)]2dx =
∑
n

c2
0,n exp(−2t/µn)

≤ exp(−2t/µ1)
∑
n

c2
0,n = exp(−2t/µ1)‖u0‖2

2 .

Analogously, the hyperbolic problem (e.g. vibrating string, wave equations) utt −
(pux)x+qu = 0 can be transformed in the family of second order o.d.e’s c̈n+µ−1

n cn = 0,
with the initial conditions cn(0) and ċn(0) given by the Fourier coefficients of the initial
data u(0, x) and ut(0, x).

Reaction-diffusion-transport equation in dimension one: the bilinear form a(u, v)
on H1

0 ([a, b]) associated to the equation −(pu′)′+ ru′+ qu = f is not symmetric, and is
coercive in some cases, for instance if p(x) > α > 0, q(x) > β > 0 and ‖r‖∞ < 2

√
αβ,

since in this case there exists γ > 0 such that

a(u, u) ≥ α‖u′‖2
2 + β‖u‖2

2 − ‖r‖∞‖u′‖2‖u‖2 > γ‖u′‖2
2,

and coercivity on H1
0 ([a, b]) is granted by Poincaré inequality.

Example of weak formulation of a non homogeneous Dirichlet problem within the
framework of Stampacchia Theorem and a homogeneous Neumann problem.
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Maximum principle, stability, well-posedness of elliptic and parabolic initial/boundary
value problems: for the Dirichlet model problem −u′′+u = f on [a, b], u(a) = α, u(b) =
β we have the pointwise bound min{α, β, inf [a,b] f} ≤ u(x) ≤ max{α, β, sup[a,b] f} for
any x ∈ [a, b], that gives a control of the sup norm of the solution in term of the sup
norm of the data. As a consequence one obtains uniqueness and stability (i.e. contin-
uous dependence) of the solution with respect to the data, i.e. well-posedness of the
Dirichlet problem. For a classical solution the maximum principle follows by observing
that a maximum (resp. minimum) point x0 for u is either on the boundary (hence con-
trolled by α, β), or in the interior, in which case it is a critical point (i.e. u′(x0) = 0)
and u′′(x0) ≤ 0 (resp. u′′(x0) ≥ 0), whence u(x0) ≤ f(x0) (resp. u(x0) ≥ f(x0)).

To prove the maximum principle in the general framework of weak formulations
one uses Stampacchia truncation method ([B], sect. 8.5).

6 Boundary value problems in dimension N

6.1 Reaction - diffusion - transport equations

Let u(x) denote the concentration of a chemical diffusing in a fluid medium (e.g. air,
water) occupying a region of space Ω, which in turn is transported by a velocity vector
field V which is supposed to be divergence-free (i.e. the fluid has no sources nor sinks,
and every streamline of the vector field is either closed or starts and ends on the
boundary of any fluid subregion). The evolution of the concentration of the chemical
is governed by a balance law that relates the rate of change of the concentration in a
given region with the flux Φu accross the boundary and the mass production inside the
region, originated possibly by some source term having density f(x) or some reaction
term g(u) which in the simplest can be assumed to be linear, i.e. g(u) = αu (Malthusian
model) but could be also nonlinear, e.g. g(u) = αu(β − u) (logistic model). Thus we
may write, for any A ⊂ Ω having smooth boundary ∂A ⊂ Ω, denoting by n its exterior
unit normal,

− d

dt

∫
A

u(x) dx =

∫
∂A

Φu · n dσ +

∫
A

g(u) + f(x) dx

whence, by the divergence theorem,∫
A

(ut − div Φu) dx =

∫
A

g(u) + f(x) dx , for any A ⊂ Ω .

Passing to the limit as A concentrates around a point x ∈ Ω, by the mean-value
theorem we may deduce the differential equation ut−∇ ·Φu = g(u) + f . The flux due
to the drift by the velocity field V is uV , and assuming that the flux due to diffusion
is proportional to ∇u (Fourier law), we have Φu = k∇u + uV , so that we recover the
following reaction - drift - diffusion equation (recall we assume divV = 0)

ut − k∆u+ V · ∇u = g(u) + f in Ω ,
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that is complemented by an initial condition u0 and suitable boundary conditions on
∂Ω of Dirichlet (e.g. fixing the concentration on ∂Ω) or Neumann type (e.g. fixing
the flux accross ∂Ω: the homogeneous Neumann condition ∂u

∂n
= 0 means an insulation

condition).
In case g(u) = 0 and V = 0 (pure diffusion) we get the heat equation, that models

the diffusion of heat (here u is the temperature distribution).

Drift-diffusion equations arise also to compute the transition probability u underly-
ing a stochastic process (e.g. a brownian motion with drift) to pass from a given initial
state to the state x ∈ Ω at time t (Fokker-Planck equation).

They also model, in their nonlinear version, some evolution phenomena in popula-
tion dynamics (e.g. in epidemiology).

6.2 Weak formulation of the Dirichlet problem in H1
0(Ω)

([B], sect. 9.4, 9.5)
Consider the model Dirichlet problem −∆u+u = f in a bounded open set Ω ⊂ RN

with ∂Ω of class C1 (or piecewise C1), with homogeneous Dirichlet boundary condition
u = 0 on ∂Ω. If f ∈ C0(Ω) then u is a classical solution if u ∈ C2(Ω) ∩ C0(Ω). Recall
first the integration by parts formula∫

∂Ω

φ
∂u

∂n
=

∫
Ω

div (φ∇u) =

∫
Ω

∇φ · ∇u +

∫
Ω

φ∆u .

Multiplying the equation −∆u + u = f by a test function φ ∈ C∞c (Ω) (it is enough
φ ∈ C1

c (Ω)) and then integrating by parts, taking into acccount that φ vanishes on the
boundary, we obtain that a classical solution verifies the equivalent formulation∫

Ω

∇u · ∇φ+

∫
Ω

uφ =

∫
Ω

fφ ∀φ ∈ C1
c (Ω) ,

that has the form

a(u, v) = 〈u, v〉H1 := 〈u, v〉L2 +
N∑
j=1

〈 ∂u
∂xj

,
∂v

∂xj
〉L2 = 〈f, v〉L2 = ϕ(v) ∀v ∈ C1

c (Ω) .

It is hence natural to look for a weak formulation of the dirichlet problem in the Hilbert

space H1
0 (Ω) = C1

c (Ω)
H1

, i.e. the closure of C1
c (Ω) with respect to the euclidean H1

norm, which, as defined above, is the sum of the L2 norms of the function and of its
partial derivatives.

Observe that for u ∈ H1
0 (Ω) one may define weak derivatives, since for un ∈ C1

c (Ω),
un → u in the H1 metric, we have that ∂u

∂xi
→ gi in L2(Ω) for any i = 1, ..., N , and

hence the integration by parts formula gives∫
Ω

u
∂φ

∂xi
= lim

n→+∞

∫
Ω

un
∂φ

∂xi
= − lim

n→+∞

∫
Ω

∂u

∂xi
φ = −

∫
Ω

giφ ,
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i.e. gi ∈ L2(Ω), for i = 1, ..., N are the weak partial derivatives of u, and we still denote
them by ∂u

∂xi
.

Hence, the bilinear form a(u, v) (i.e. the H1 inner product), for u, v ∈ H1
0 (Ω) has

the same representation as for C1
c functions, just interpreting partial derivatives in the

weak sense.
It follows by Lax-Milgram (or Riesz representation theorem in H1

0 (Ω)), that the
weak formulation of the Dirichlet problem

〈u, v〉H1 ≡ 〈u, v〉L2 +
N∑
j=1

〈 ∂u
∂xj

,
∂v

∂xj
〉L2 = 〈f, v〉L2 ∀v ∈ H1

0 (Ω)

has a unique solution u ∈ H1
0 (Ω) for any given f ∈ L2(Ω) (observe that since |ϕ(v)| =

|
∫

Ω
fv| ≤ ‖f‖2‖v‖2 ≤ ‖f‖2‖v‖H1 we have ϕ ∈ (H1

0 )′ ).

Hilbert regularity of the weak solution: we have u ∈ H2 ∩H1
0 (Ω), i.e. u has weak

second partial derivatives in L2(Ω). The proof of this fact is not immediate at all and
makes use of the so-called technique of difference quotients.

Classical regularity of the weak solution: in case f ∈ C0(Ω) it holds u ∈ C2(Ω) ∩
C0(Ω), hence u is a classical solution.

Variational characterization of the weak solution:

u = arg min

{
F (v) =

1

2

∫
Ω

|∇v|2 +
1

2

∫
Ω

|v − f |2 , v ∈ H1
0 (Ω)

}
.

Remark. As remarked in the one dimensional case, the functional Fλ(v) = ‖∇u‖2
2 +

λ‖v−f‖2
2 is used for the time discretization of the heat flow of the energy E(v) = ‖∇u‖2

2

with time step ∆t = λ−1 and also for the regularization of ill-posed problems (arising
e.g. in image processing).

Remark. In general H1
0 (Ω) is not contained in C0(Ω), so that in particular the bound-

ary condition u = 0 on ∂Ω, differently from the one dimensional situation, cannot be
given a pointwise sense (the boundary has null measure and u is defined up to sets of
null measure!). One can nevertheless give a meaning to the boundary value of u in
L2(∂Ω) (in the so-called trace sense) by taking suitable limits of averages of u near the
boundary.

Remark. A dense class in H1
0 (Ω), suitable for Galerkin approximation of the Dirichlet

problems, is given by (linear) finite elements, compactly supported in a triangulated
mesh of the domain. The corresponding stiffnes matrix is sparse.

Poincaré inequality on H1
0 (Ω). As in the one dimensional case, the L2 norm of the

gradient gives an equivalent norm to the H1 norm on H1
0 (Ω), by virtue of Poincaré

inequality, valid for bounded domains. Indeed, for u ∈ C1
c (Ω) we have

u(x) =

∫ x1

−M

∂u

∂x1

(t, x2, ..., xN) dt ,
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where Ω ⊂ BM(0). By Cauchy-Schwarz we obtain |u(x)|2 ≤ 2M
∫M
M
|∂1u|2 dt, and

integrating on Ω we obtain, by Fubini,∫
Ω

|u(x)|2 dx ≤ 4M2

∫
Ω

∣∣∣∣ ∂u∂x1

∣∣∣∣2 dx ≤ 4M2

∫
Ω

|∇u(x)|2 dx ,

i.e. ‖u‖L2(Ω) ≤ 2M‖∇u‖L2(Ω).

6.3 Elliptic problems in divergence form

([B], Theorem 9.23)
For aij(x) ∈ L∞(Ω), i, j = 1, ..., N , ai(x) ∈ L∞(Ω) for i = 0, ..., N , f(x) ∈ L2(Ω)

consider the weak formulation in H1
0 (Ω) of the following problem in divergence form

(anisotropic diffusion - transport - reaction equation)

−
N∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
+

N∑
i=1

ai(x)
∂u

∂xi
+ a0(x)u = f(x) in Ω

with u = 0 on ∂Ω. The weak formulation reads∫
Ω

N∑
i,j=1

aij(x)
∂u

∂xj

∂v

∂xi
+

N∑
i=1

ai(x)
∂u

∂xi
v + a0(x)uv =

∫
Ω

fv ∀ v ∈ H1
0 (Ω) ,

Hence it is of the form a(u, v) = ϕ(v) (with a non symmetric). If
∑N

i,j=1 aij(x)ξiξj ≥
α|ξ|2 for some α > 0 then, for some sufficiently large λ > 0 the bilinear form a(u, v) +
λ〈u, v〉L2 is coercive on H1

0 (Ω) (compare the argument in the one dimensional case),
hence by Lax-Milgram, for any Φ ∈ H1

0 (Ω)′ there exists a unique solution of a(u, v) +
λ〈u, v〉L2 = ϕ(v) for any v ∈ H1

0 (Ω).
Denoting by f 7→ Tf the solution operator, we have T : L2(Ω)→ H1

0 (Ω) ⊂ L2(Ω),
with compact embedding (cfr. Rellich theorem), hence T ∈ K(L2(Ω)) and u solves
the fixed point equation u = T (f + λu). Setting w = f + λu we have that w solves
w = λTw + f , i.e. (I − λT )w = f . Suppose f = 0 (hence w = λu). Then, either the
homogeneous equation u = λTu is uniquely solvable (if and only if the original equation
has zero as unique solution, and this is precisely the case for instance if a0(x) ≥ β > 0,
by the maximum principle (see [B], Remark 27 after Theorem 9.27), and hence there
exists a unique solution u ∈ H1

0 (Ω) for any f ∈ L2(Ω), or the homogeneous equation
has a (finite) d-dimensional set of solutions, whence the original problem is solvable if
f is orthogonal to a suitable d-dimensional subspace of L2(Ω).

18



7 Distributions, Sobolev spaces and functions of

bounded variation

7.1 Distributions and distributional derivatives

Given u ∈ L1
loc(Ω), we may identify u with the distribution (linear functional on C∞c (Ω))

Tu(φ) =
∫

Ω
u(x)φ(x) dx. One advantage of the distributional point of view is to embed

functions in dual spaces, where the Banach-Alaoglu compactness theorem holds true.

Recall Banach-Alaoglu theorem: given a Banach space X, bounded sequences in X ′

are relatively compact with respect to the weak* topology, i.e. for Tj ∈ X ′, ‖Tj‖∗ ≤ C,
there exists T ∈ X ′ such that, up to a subsequence, Tj(φ) → T (φ) for any φ ∈ X.
Remark that the weak* topology is a priori weaker than the weak topology, where one
tests convergence against any element of the dual space, i.e. in this case (X ′)′ = X ′′,
which contains strictly X in the non reflexive case. Of course, if X is reflexive, weak
and weak* convergence do coincide.

Supposing for simplicity that Ω is bounded and u ∈ L1(Ω), we have |Tu(φ)| ≤
‖u‖1‖φ‖∞. i.e. Tu extends to a bounded functional on C0

c (Ω) = C∞c (Ω)
L∞

, the space
of continuous functions vanishing on ∂Ω. Moreover,

‖Tu‖∗ = sup{Tu(φ), ‖φ‖∞ ≤ 1} = ‖u‖1

as it follows by considering test functions φ converging to the function 1{u>0}−1{u<0},
which in turn gives that uφ converges to |u| = u+ + u−. We thus have an isometric
injection L1(Ω)→ [C0

c (Ω)]∗.

Measures as distributions. The distribution Tµ associated to a (possibly σ-finite)
Radon measure µ on Ω is defined in the same way: Tµ(φ) ≡ 〈Tµ, φ〉 =

∫
Ω
φ(x)dµ(x). For

any µ ∈M(Ω) (the space of finite Radon measures on Ω) it actually holds Tµ ∈ [C0
c (Ω)]∗

and
‖Tµ‖∗ = sup{〈Tµ, φ〉 , φ ∈ C0

c (Ω) , ‖φ‖∞ ≤ 1} = |µ|(Ω),

where |µ| = µ++µ− is the total variation measure of µ = µ+−µ− (Hahn decomposition)
and ‖µ‖ = |µ|(Ω) is the total variation of the measure µ on Ω (as for L1 function, one
tests with a function φ ' 1sptµ+ − 1sptµ−).

For µ, ν ∈ M(Ω) two Radon measures on Ω, Tµ = Tν implies
∫

Ω
φ(x) dµ(x) =∫

Ω
φ(x) dν(x), for any φ ∈ C∞c (Ω), so that by considering φj converging to the char-

acteristic function of an open subset A ⊂ Ω se obtain, by the dominated convergence
theorem, that µ(A) = ν(A) for any A ⊂ Ω open, hence µ = ν by the regularity of
Radon measures. Hence µ 7→ Tµ gives an injection M(Ω) → [C0

c (Ω)]∗. Hence (finite
and σ-finite) Radon measures in Ω are distributions (of order zero).

Example (Dirac mass as a distribution): let δ0 be the Dirac mass concentrated
at 0 ∈ RN . We have

Tδ0(φ) =

∫
RN
φdδ0 = φ(0) ,
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since∫
RN
φdδ0 = sup{c0 ∈ R, φ(x) ≥

∑
ci1Ei(x), E0 3 0} = sup{c0 ≤ φ(0)} = φ(0) .

in particular

‖Tδ0‖∗ = sup{φ(0), φ ∈ C0
c (RN), ‖φ‖∞ ≤ 1} = 1.

Recall Riesz representation theorem: µ ∈ M(Ω) 7→ Tµ ∈ [C0
c (Ω)]∗ is an isomor-

phism of Banach spaces, where the norm of a measure µ ∈ M(Ω) is given by its
total variation ‖µ‖ = |µ|(Ω). In particular, it holds |µ|(Ω) = ‖µ‖ = ‖Tµ‖∗. Weak*
compactness and convergence in the sense of measures: by the Banach-Alaoglu theo-
rem (bounded sets in the dual of a Banach space are relatively compact with respect
to the weak* topology), a sequence of equibounded Radon measures µn on Ω (i.e.
|µn|(Ω) ≤ C) is weakly* compact, i.e. there exists a subsequence µnk and a measure

µ such that µnk
∗
⇀ µ in M(Ω), or in other words

∫
Ω
φ(x) dµnk(x) →

∫
Ω
φ(x) dµ(x) for

any φ ∈ C0
c (Ω).

The space of Radon measures is suited to solve optimization problems involving L1 or
total variation norms. For example, for Y ⊂ M(Ω) , Y closed convex and bounded,
consider the minimization problem

inf{‖µ‖ = µ(Ω) = ‖Tµ‖∗, µ ∈ Y } .

Then, since Y is closed and convex it is weakly* closed by Hahn-Banach, and since it
is also bounded it is weakly* compact by Banach-Alaoglu. The total variation norm
is weakly* lowersemicontinuous being characterized as a supremum, as a dual norm.
Hence the existence of a minimizer in Y is guaranteed by Weierstrass theorem (or
equivalently by the direct method of the calculus of variations).

Example: the Monge-Kantorovich optimal mass transport problem consists
in minimizing the transportation cost of displacing a given amount M of mass (or
economical goods) whose initial distribution in a (metric measure) space X is described
by a measure µ1 of total mass µ1(X) = M , in order to reach a final destination
described by a measure µ2 in a (metric measure) space Y (with total mass µ2(Y ) = M).
Observe that, for M = 1, µ1 and µ2 are probability measures. Denote by c(x, y) the
transportation cost function for displacing a unit of mass (or good) from location x ∈ X
to location y ∈ Y (if X and Y are subset of a euclidean space, say RN , typical cost
functions are c(x, y) = |x− y| or c(x, y) = |x− y|2), and denote by T ⊂M(X×Y ) the
set of transport plans from µ1 to µ2, i.e. the measures µ on X × Y having marginals
µ1 and µ2 (i.e.

∫
Y
dµ(x, y) = µ1(x) and

∫
X
dµ(x, y) = µ2(y)). Observe that in case µ1

and µ2 are discrete probability measures this is a linear programming problem. The
set T is an affine (hence convex) closed subset of M(X × Y ) (fixing the marginals
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is a continuous constraint with respect to the convergence of measures), hence the
constrained optimization problem

min
µ∈T

F (µ) =

∫
X×Y

c(x, y)dµ(x, y) .

admit a solution by Banach-Alaoglu theorem, assuming lower semi-continuity for
the cost function.

Derivative of a distribution: for u and Tu as above, we can define the (i-th partial)
derivative of Tu as the linear functional ∂iTu(φ) = −

∫
Ω
u ∂φ
∂xi

. A priori, since |∂iTu(φ)| ≤
‖u‖1‖∂iφ‖∞, we have ∂iTu ∈ [C1

c (Ω)]∗. This definition is coherent with the integration
by parts formula, since for smooth functions u one has ∂iTu(φ) = T∂iu(φ) for any test
function φ. In particular, since integration by parts holds true for functions in W 1,p(Ω),
we have that Sobolev functions may be defined as those functions in Lp(Ω) such that
their distributional derivatives are (associated to) functions in Lp(Ω).

Example: for u(x) = |x|, x ∈ R, we have

−
∫
R
uφ′ = −

∫ 0

−∞
xφ′(x) dx+

∫ +∞

0

xφ′(x) dx = −
∫ 0

−∞
φ(x) dx+

∫ +∞

0

φ(x) dx ,

hence it follows that (Tu)
′ = Tv where v(x) = 1 if x > 0 and v(x) = −1 if x < 0.

Example (distributional derivative of the Heaviside function): consider the
Heaviside function H on R, i.e H(x) = 1 for x ≥ 0, and H(x) = 0 for x < 0, and
consider the following approximating sequence for H, given by uj(x) = 1 if x ≥ j−1

and uj(x) = j · x for 0 ≤ x ≤ j−1, uj(x) = 0 for x < 0. We have (Tuj)
′ = −Tvj

where vj(x) = j for 0 ≤ x ≤ j−1, and vj(x) = 0 elsewhere in R. Notice that ‖Tvj‖∗ =∫
R vj(x) dx = 1 for any j ∈ N, hence, up to a subsequence, Tvj ⇀ T weakly* in [C0

c (R)]∗

by Banach-Alaloglu theorem, i.e.

T (φ) = lim
j
Tvj(φ) = j

∫ 1/j

0

φ(x) dx = φ(0) = Tδ0(φ) ∀φ ∈ C0
c (R) .

On the other hand, we have −T (φ) = limj Tuj(φ
′) = TH(φ′), hence T = (TH)′. Hence,

in R we have Tδ0 = (TH)′, i.e. the Dirac mass is the distributional derivative of the
Heaviside function. Observe that the Heaviside function has a classical derivative
a.e. (actually everywhere except in the origin), which is identically zero, while the
distributional derivative of H keeps the information on the unit jump of H at the
origin.

7.2 The Sobolev spaces W1,p(Ω)

([B], sect. 9.1) Sobolev spaces arise naturally when solving PDE’s through weak for-
mulations, or in order to deal with optimization problems, such as for example the
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variational (minimum) problem

min

{
F (v) =

∫
Ω

|∇v|p + λ

∫
Ω

|v − f |q, v = 0 on ∂Ω

}
that arises in many contexts, especially in the cases q = 2 (least square) and p = 1, 2, or
in the case 1 < p = q. Existence of minimizers is found in suitable Hilbert and Banach
spaces called Sobolev spaces or Functions of Bounded Variation, where the dual space
type norms are controlled by F , ensuring at a glance lowersemicontinuity of F and
compactness of minimizing sequences with respect to weak (or weak*) convergences.

We refer to [B], sect. 9.1 for details. Definition of W 1,p(Ω) as the space of Lp

functions having weak partial derivatives in Lp(Ω). The W 1,p norm. Some elementary
properties of W 1,p(Ω): completeness, reflexivity, separability, according to the exponent
p. The Hilbert space H1(Ω) = W 1,2(Ω). The space W 1,∞(Ω) coincides with the space
of Lipschitz functions on Ω, when Ω is a regular domain (with boundary of class C1 or
lipschitz).

In case Ω = RN Sobolev norms may be defined through suitable weighted norms on
L2(RN

ω ), where ω is the frequency (or Fourier) variable. For example, by Plancherel
theorem, we have ‖u‖2

H1 =
∫
RN (1 + 4π|ω|2)|û(ω)|2dω.

The closed subspace W 1,p
0 (Ω) ⊂ W 1,p(Ω) is defined as the closure with respect of

the W 1,p norm of C1
c (Ω), and is suited to deal with homogeneous Dirichlet boundary

conditions. On W 1,p
0 (Ω) there holds the Poincaré inequality ‖v‖p ≤ C‖∇v‖p.

Density of smooth functions in W 1,p(Ω): one extends a function u ∈ W 1,p(Ω) by zero
outside Ω, obtaining a function ũ, and then regularize ũ by convolution with a family
of smoothing kernels (or symmetric mollifiers) ρn ∈ C∞c (RN) such that ρn = nNρ1(nx),
ρ1 ≥ 0 supported in the unit ball and

∫
B1
ρ1 = 1. Denoting by un = ũ ∗ ρn, we have

un ∈ C∞c (RN), and one deduces un|Ω → u in Lp(Ω), while due to the discontinuity
of ũ on the boundary of Ω, we deduce ∇un|ω → ∇u in [Lp(ω)]N for any ω ⊂⊂ Ω. If
the boudary is regular, say piecewise C1 then one may prove by slightly modifying the
construction of un that actually there exists un ∈ C∞c (RN) such that ∇un|Ω → ∇u in
[Lp(Ω)]N .

Recall the notion of approximation of identity: for ρn as above, consider the (positive)
measures µn = ρn(x) dx. We have µn ⇀ δ0 in the sense of measures, where δ0 is the
Dirac mass concentrated at zero. Indeed, since the support of ρn is B1/n and the total
integral is 1, we have µn(A) → 0 = δ0(A) if the open set A does not contain 0, and
µn(A)→ 1 = δ0(A) otherwise. One concludes by using the regularity of both (Radon)
measures: if they coincide on open sets, they coincide on any Borel set.

Recall further that ρn dx ⇀ δ0 implies ρn ∗ u → u in Lp(RN) and ‖ρn ∗ u‖p ≤
‖ρn‖1‖u‖p = ‖u‖p. Similarly, ∂i(ρn ∗ u) → ∂iu in Lp(RN) for any ∈ W 1,p(RN) ≡
W 1,p

0 (RN).

Characterization of maps in W 1,p(Ω), Ω ⊂ RN bounded, for p > 1 (see [B], Proposition
9.3 for a clean statement):
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1) Lp functions whose (weak) derivatives are identified (in the distributional sense) to
bounded linear functionals on Lp

′
(Ω),

2) Lp functions having uniformly bounded differential quotients w.r.t the Lp norm.

(for the notion of distribution and distributional derivative see next section).

In case p = 1 the property corresponding to 1) is expressed by

1’) L1 functions whose distributional derivatives are identified to bounded linear func-
tionals on C0

c (Ω).

In case p = 1 properties 1’) and 2) are still equivalent, and they characterize the
space BV (Ω) ⊂ L1(Ω) of functions of bounded variation, which is strictly larger than
W 1,1(Ω).

Some comments on properties 1) (resp. 1’) ) and 2). Property 1) emphasize the fact
that the weak derivative, seen a distribution, belongs to a dual space, yielding by
Banach-Alaoglu weak (resp. weak*) compactness for sequences of gradients uniformly
bounded with respect to the dual norm, which by the Riesz representation theorem
corresponds, in case p > 1, to the Lp norm, while in case p = 1, to the so-called total
variation norm, which is the norm on the space of Radon measures on Ω, M(Ω) ≡
[C0

c (Ω)]∗ by Riesz representation theorem.

Remark. (Variational problems in W1,p) Minimizing sequences for the functional
F (v) = ‖∇v‖pp + ‖v − f‖pp are uniformly bounded with respect to the W 1,p norm,
hence they converge weakly (up to a subsequence) in W 1,p for p > 1. Hence, by lower
semicontinuity of F with respect to weak convergence (Lp norms, being equivalent to
the dual norm in (Lp

′
)′ are lower semicontinuous by Banach - Steinhaus) we obtain

existence of minimizers of F in W 1,p.

In the case p = 1 there exist sequences uniformly bounded with respect to the W 1,1

norm that do not converge in W 1,1 (for example functions approximating the Heaviside
function, see the example in the previous section), so that in particular W 1,1 is not
a suitable ambient space for variational problems. On the other hand, property 1’)
ensures weak* compactness in [C0

c (Ω)]∗ of sequence of gradients uniformly bounded in
L1, so that in particular they converge in BV (Ω) (see section 7.3), which is therefore
suited to handle variational problems for functionals involving the L1 norm of the
gradient, such as the so-called Rudin - Osher - Fatemi model for image processing
Fλ(v) = ‖∇v‖1 + λ‖v − f‖2

2.

Property 2) implies that the hypothesis of Fréchét-Kolmogorov theorem (which gives
a criterion for compactness in the strong topology of Lp(Ω) for p ≥ 1) is satisfied. In
particular, the injection W 1,p(Ω) → Lp(Ω) for p > 1 (resp. the injection BV (Ω) →
L1(Ω)) is compact (Rellich-Kondrachov compact embedding theorem).

Proof of the compact injection of W 1,p(Ω) in Lp(Ω) for bounded Ω ⊂ RN : if F is a
bounded family of W 1,p(Ω), and ω ⊂⊂ Ω, then ρn ∗ F|ω is ε-close to F|ω for large n,
and uniformly bounded in L∞ and equi-uniformly continuous, hence relatively compact
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with respect to the ‖ · ‖∞ norm by Ascoli-Arzelà, so that in particular it is relatively
compact in Lp(ω). An ε-net for ρn ∗ F|ω in Lp(ω) is then a 2ε-net for F|ω and a 3ε-net
for F in Lp(Ω) if ω is sufficiently close in measure to Ω.

7.3 BV functions and variational problems

([G])
Distributional gradient of a function u ∈ L1(Ω): it is a vector distribution defined by

〈DTu, ~ϕ〉 = −〈Tu, div ~ϕ〉 for ~ϕ ∈ [C∞c (Ω)]N . Remark that for distributions associated
to functions u of class C1 previous formula coincides with Gauss-Green (or integration
by parts) formula.

Definition of the space BV (Ω) (functions of bounded variation): u ∈ BV (Ω) if u ∈
L1(Ω) and the distributional gradient Du = (∂1u, ..., ∂Nu) is a (vector) Radon measure
~µ = (µ1, ..., µN), which satisfies the integration by part formula (Gauss-Green)∫

Ω

u div ~φ = −
∫

Ω

~φ · d~µ for any ~φ ∈ [C0
c (Ω)]N .

In other words, u ∈ BV (Ω) if u ∈ L1(Ω) and ∂iTu(ϕ) =
∫

Ω
ϕdµi = Tµi(φ).

Total variation of a vector Radon measure: for ~µ = (µ1, ..., µn) with µi ∈M(Ω) =
(C0

c (Ω))′ we have the decomposition ~µ = ~ν|~µ|, where |~µ| is a positive measure (called
the total variation measure) and |~ν(x)| = 1 for |~µ| a.e. x ∈ Ω. The total variation of
~µ is defined as the dual norm in [C0

c (Ω)]∗

‖~µ‖∗ = sup

{∫
Ω

~φ · d~µ =

∫
Ω

~φ · ~ν d|~µ| , ~φ ∈ [C0
c (Ω)]n, ‖~φ‖∞ ≤ 1

}
= |~µ|(Ω).

For u ∈ BV (Ω) we define its BV norm

‖u‖BV (Ω) = ‖u‖L1(Ω) + |Du|(Ω) .

Remark that for u ∈ W 1,1(Ω) the BV norm coincides with the W 1,1 norm. Endowed
with such a norm, BV (Ω) is a Banach space.

Characterization of BV (Ω): properties 1’) and 2) in previous section are equivalent
characterizations of BV (Ω). In particular, 2) implies compactness in the strong L1

topology of sequences of functions equibounded with respect to the BV norm.

Example: the characteristic function 1E of an open bounded set E ⊂ Rn with ∂E∩Ω
of class C1 belongs to BV (Ω), since by Gauss-Green formula

D1E(~φ) = −
∫
E

div ~φ dx = −
∫
∂E

~φ · ~n dσ ,

where ~n is the unit outer normal to ∂E and dσ is the surface measure on ∂E, so
that |D1E(~φ)| ≤ ‖~φ‖∞ · Area(∂E ∩ Ω), i.e. D1E is a vector Radon measure, and in
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particular D1E = ~ν|D1E|, where ~ν(x) = −~n(x) is the inner unit normal to ∂E∩Ω and

|D1E| = dσ. By a suitable choice of the test function ~φ in such a way that |~φ(x)| ≤ 1

and ~φ = −~n on ∂E ∩ Ω one gets |D1E|(Ω) = Area(∂E ∩ Ω).

An example of variational problem in BV : the Rudin-Osher-Fatemi model
F (u) = |Du|(Ω) + 1

2
‖u − f‖2

L2(Ω), for u ∈ BV (Ω) is suitable in image processing (u

denotes for instance the grey level of an image), since it has the ability to regularize
(denoise) a given image f (identified as its grey level function) by preserving at the
same time edges and boundaries, since characteristic functions are members of BV .
Existence of a minimizer in BV (Ω) on a bounded Ω is guaranteed because F controls
the full BV norm and F is lower semicontinuous with respect to the weak* convergence
of the total variation and weak L2 convergence. Its Euler-Lagrange equation results in
a nonlinear PDE.

An example of geometric variational problem: the isoperimetric and the iso-
volumetric problem within the class of finite perimeter sets. The two problem are
equivalent (and dual each other), since they amount to maximize the (dilation invari-

ant) isoperimetric ratio |Ω|n−1
n /|∂Ω|.

Definition of finite perimeter (or Caccioppoli) sets in Ω ⊂ Rn: they are Lebesgue
measurable sets E ⊂ Rn such that

PΩ(E) ≡ |D1E|(Ω) ≡ sup

{∫
E∩Ω

div~φ , ‖~φ‖∞ ≤ 1, ~φ ∈ [C∞c (Ω)]n
}
< +∞,

in other words 1E ∈ BV (Ω).
Observe that for finite perimeter sets E ⊂ Rn, the Sobolev embedding theorem

BV (Rn)→ L
n
n−1 (Rn) applied to 1E yields the isoperimetric inequality

|E|
n−1
n ≤ C|D1E|(Rn) = CPRn(E).

The minimal constant C > 0 in the above inequality corresponds to the isoperimetric
ratio of a round ball in Rn.

Weak formulation of the isovolumetric problem in the class of finite perimeter sets
in Rn: fix R > 1 (sufficiently large) and set

P =

{
E ⊂ BR(0), Ln(E) =

∫
Rn

1E dLn = 1, 1E ∈ BV (Rn)

}
,

i.e. P contains sets E ⊂ BR(0) having unit volume and finite perimeter ‖D1E‖ ≡
|D1E|(Rn). Consider the isovolumetric problem

min
E∈P
‖D1E‖ .

If En ∈ P is a minimizing sequence, i.e. ‖D1En‖ → infF∈P ‖D1F‖, we have

‖1En‖BV = 1 + ‖D1En‖ ≤ C,
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so that, up to a subsequence, 1En → 1E in L1(B2R(0)) since the supports of En are
contained in B2R(0) and hence there holds the compact embedding of BV (B2R(0))
in L1(B2R(0)) . We immediately deduce E ⊂ BR(0) and Ln(E) = 1. Moreover, we

have D1En(~φ) → D1E(~φ) for any ~φ ∈ [C∞c (Rn)]n (i.e. convergence in the sense of
distributions) and

‖∇1E‖ ≤ lim inf
n→+∞

‖∇1En‖ = inf
F∈P
‖∇1F‖

by lower semicontinuity of the total variation norm. Hence E has minimum perimeter
in the class P .

The regularity theory (based for example on Steiner symmetrization) allows to
conclude that the optimal set E is the unit volume round ball in Rn.
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