
Yacc: A Syntactic Analysers
Generator

Compiler-Construction Tools

The compiler writer uses specialised tools (in addition to those
normally used for software development) that produce components
that can easily be integrated in the compiler and help implement
various phases of a compiler.

Scanner generators

Parser generators

Syntax-directed translation

Code-generator generators

Data-flow analysis: key part of code optimisation

Relationship between Parser and Scanner

Parser guides scanner by asking tokens one by one. Interaction
with the symbol table is crucial.

Lex and Yacc

There exist various tools for generating parsers.
We will discuss Yacc, the companion of Lex: the programs they
generate can share variables and procedures and therefore can be
compiled jointly.

Lex & YACC are known to GNU/Linux users as Flex & Bison,
where Flex is a Lex implementation by Vern Paxson and Bison the
GNU version of YACC.

Typically, the Lex actions are not visible on the standard output;
rather Lex return values and control to the caller (i.e. the parser).
Function yylex() returns the token names, while the token values
are shared by means of global variables such as yylval of type
int.

Yacc
LALR(1) parser generator whose first version is due to S.C.
Johnson (AT&T Bell Laboratories) in the early 1970s.

To construct a translator, Yacc operates as follows:

Users only need to care of the Yacc source (file .y where the
grammar is defined); everything else is implemented automatically.

Yacc Basics

The parser generated by yacc is a C function called

yyparse() is an LALR(1) parser

yyparse() calls yylex() repeatedly to obtain the next
input token

The function yylex() can be hand-coded in C or generated
by lex

yyparse() returns an integer value
I 0 is returned if parsing succeeds and end of file is reached
I 1 is returned if parsing fails due to a syntax error

Yacc Specifications

Structure of a Yacc program:

%{ C declarations %}

declarations

%%

translation rules

%%

supporting C routines

A production of the form

nonterm→ corpo1 | · · · | corpok

is expressed in Yacc by the rules:

nonterm : body1 {semantic action1}

· · ·
| bodyk {semantic actionk }

;

Declarations

The declaration part of a Yacc program has two (both optional)
sections:

ordinary C declarations delimited by %{ and %} (e.g.
standard header files)

declarations of grammar tokens of the form

%token DIGIT

These declarations are made available to the analyzer
generated by Lex when lex.yy.c is compiled together with
the Yacc output.

Supporting C-Routines

The third part of a Yacc specification contains procedures in C:

The lexical analyzer is provided as yylex(). Usually this is
produced by Lex.

Other procedures such as error recovery routines.

If the pair (token-name, attribute-value) is produced by
yylex(), then token-name must be declared in the first section of
the Yacc specification, while attribute-value is communicated
to the parser through the variable yylval (defined by Yacc).

Attribute Values and Semantic Actions

Every grammar symbol has an associated attribute value

An attribute value can represent anything we choose
I The value of an expression
I The data type of an expression
I The translated code

Yacc associates an attribute with every token and
non-terminal

I Token attributes are returned by the scanner in the yylval
variable

I Non-terminal attributes are computed while parsing

Attribute values are pushed an popped on a semantic stack
I The semantic stack operates in parallel with the parser stack

A semantic action in Yacc is a code fragment delimited by { }
I Executed when yacc matches a rule in the grammar
I Semantic Actions can be used to make calls to semantic

routines

Example

Construct a simple desk calculator that reads an aritmetic
expression, evaluates it and then prints its numeric value.

Start with the following grammar for arithmetic expressions:

E → E + T |T
T → T ∗ F |F
F → (E)|digit

The token digit is a single digit between 0 and 9.

Example ctd.

Creating Yacc analyzers

The Lex library ll provides the driver program yylex() to Yacc.
When using Lex and Yacc together, we can replace the routine
yylex() in the third part of the Yacc specification by the
statement

#include "lex.yy.c"

Since the Lex output file is compiled as part of the Yacc output file
y.tab.c, the lexical analyzer can then have access to Yacc’s
names for tokens.

