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Abstract

In this work, we first propose an original and efficient computational framework to model continuous diffusion MRI (dMRI)
signals and analytically recover important diffusion features such as the Ensemble Average Propagator (EAP) and the Orientation
Distribution Function (ODF). Then, we develop an efficient parametric dictionary learning algorithm and exploit the sparse property
of a well-designed dictionary to recover the diffusion signal and its features with a reduced number of measurements. The properties
and potentials of the technique are demonstrated using various simulations on synthetic data and on human brain data acquired from
7-T and 3-T scanners. It is shown that the technique can clearly recover the dMRI signal and its features with a much betteraccuracy
compared to state-of-the-art approaches, even with a smalland reduced number of measurements. In particular, we can accurately
recover the ODF in regions of multiple fiber crossing, which could open new perspectives for some dMRI applications such as fiber
tractography.

Keywords: Dictionary Learning, Sparse Reconstruction, CompressiveSensing, Compressed Sensing, MRI, Diffusion MRI,
Orientation Distribution Function, Ensemble Average Propagator, White Matter.

1. Introduction

Diffusion MRI (dMRI) assesses the integrity of brain
anatomical connectivity and is very useful for examining and
quantifying white matter (WM) microstructure and organiza-
tion not available with other imaging modalities. dMRI de-
termines the WM structure by exploiting the way the water
molecules diffuse. The first diffusion images were obtained in
the mid-1980s [23], and was based on the pioneering work of
[38], who introduced the pulsed gradient spin-echo (PGSE) se-
quence. It allows the quantification of the water diffusion by
estimating the displacement of water particles from the phase
change that occurs during the acquisition process. More im-
portantly, under the so called narrow pulse assumption, we
can show that the normalized signal attenuationE(q) is written
as the Fourier transform of the Ensemble Average Propagator
(EAP) P(R)

E(q) =
∫

R∈R3
P(R) exp(−2πiq · R)dR, (1)

whereq andR are both 3D-vectors that respectively represent
the effective gradient direction and the displacement direction.
We can decompose them asq = qu andR = Rr, whereu andr
are 3D unit vectors.

Diffusion Tensor Imaging (DTI) [7, 6] method characterizes
the diffusion by a Gaussian distribution, and is known to be a
limited model. In particular DTI is not able to resolve cross-
ing fibers. Resolving crossing fibers helps to disambiguate
between several possible tracts in regions of crossing fibers
and reconstruct more accurate anatomical connectivity through

fiber tractography. Recently, more complex models appeared
to overcome this limitation. Nevertheless, these techniques of-
ten require many acquisitions in particular when High Angular
Resolution Diffusion Imaging (HARDI) [44, 4, 43, 15, 20, 1]
or Diffusion Spectrum Imaging (DSI) [46] are used. HARDI
techniques allow the estimation of the Orientation Distribution
Function (ODF) [44, 4, 43, 15, 1], which gives the probability
that a water molecule diffuses in a given direction. Several au-
thors (Aganj et al., Tristan-Vega et al., Wedeen et al.) express
the ODFΥ(r) as the integration of the EAP over a solid angle,
i.e.

Υ(r) =
∫ ∞

0
P(R.r)R2dR. (2)

In [40, 3], the authors propose to estimate the fiber orienta-
tion distribution called the fiber ODF (fODF). The fODF is able
to resolve up to 30 degrees crossings consistently [41], which
makes this model a promising ressource to estimate fiber ori-
entation. In our work, we reconstruct the ODF as described in
Eq. 2 and we do not aim to compare our approach with the fam-
ily of method estimating the fODF. A review of method recon-
structing the ODF and the fODF can be found in [21]. Another
HARDI technique has been proposed in [20], where the authors
characterize the diffusion signal by a Wishart distribution. Jian
et al. shows improvements over the classical DTI technique and
present an estimation scheme for the fiber orientation and EAP.
Among the HARDI techniques, [48] introduces Neurite Orien-
tation Dispersion and Density Imaging (NODDI), which allows
the estimation of the microstructural complexity of dendrites
and axons. Diffusion Spectrum Imaging (DSI) was developed
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in parallel to the HARDI techniques [46]. In DSI, the EAPP(R)
is directly obtained by taking the inverse Fourier transform of
the normalized signalE(q) measured in the q-space (see Eq. 1).
However, the high resolution EAP obtained with DSI requires
many measurements. HARDI and DSI are impractical for clin-
ical use in MRI systems commonly found in hospital. Accel-
erated acquisitions, relying on a smaller number of sampling
points, are thus very welcome to efficiently estimate the com-
plex features of the diffusion process.

Sparse reconstruction approaches were found to successfully
reduce the number of acquisitions in dMRI [29, 24, 33, 36, 42,
9, 19, 26, 30, 47]. These techniques are usually based on a
l1 minimization of the diffusion signal with respect to a sparse
representation. Merlet and Deriche, Menzel et al. [29, 24] com-
bine the Compressive Sensing (CS) theory and DSI to acceler-
ate the acquisition. Merlet and Deriche [30] use orthonormal
bases to sparsely describe the diffusion signal. In [33] and in
[42], the authors elegantly design dictionaries for sparsemod-
eling in dMRI. They provide an overcomplete dictionary com-
puted from a discretized version of predefined functions, i.e.
the Spherical Ridgelets in [33] (see [36] for the multiple shells
version) and the Spherical Wavelets in [42]. Learning a dictio-
nary provides an alternative way to design sparse dictionaries
[9, 19, 26, 47].

Some approaches have been recently proposed in order to
design dictionaries that enable sparse representations (Agood
overview can be found in [2]). For instance, Bilgic et al., Gram-
fort et al. [9, 19] learn dictionaries from DSI like acquisitions
and use it to either denoise full DSI data or to perform under-
sampled DSI acquisitions and reconstructions. In particular,
Gramfort et al. nicely exploit the symmetry of the signal in or-
der to assess free parameters of the dictionary learning problem.
However, these two latter works lead to non-parametric dictio-
naries, which does not provide continuous representationsof
the diffusion signal nor allow the determination of analytical
formulae for diffusion features. The strength of the paramet-
ric dictionary learning approach, as the one we propose in this
article, lies in its ability to address these weaknesses. A work
regarding parametric dictionary learning was published in[47],
in which the dictionary atoms are formed by a weighted com-
bination of 3rd order B-splines. It proved that the method is ef-
ficient on synthetic data simulated with 81 gradient directions.
The work of [47] appears promising in reconstructing the diffu-
sion signals, and further enhancement could be done regarding
the development of analytical formulae to estimate other diffu-
sion features. This would make this work a good resource in the
context of dictionary learning. More recently, we proposedin
[26] to learn a dictionary where each atom is constrained to be a
parametric function. In [26], this parametric function is acom-
bination of a radial part and an angular part represented by the
symmetric and real Spherical Harmonics (SH) [15]. The radial
part is a polynomial weighted by an exponential. 50 measure-
ments were sufficient to reconstruct very good quality diffusion
signals, ODFs and EAPs. However, this approach essentially
handles the learning of the radial part, i.e. the polynomialco-
efficients and a scale parameter in the exponential, whereas we
observed (see [27]) that the angular part could make the dictio-

nary much sparser if we adequately combine several SH func-
tions instead of only one.

In this work, we present a method, which exploits the sparse
property of a well designed dictionary based on a computa-
tional dMRI framework, in order to recover the diffusion sig-
nal with a reduced number of measurements. This framework
enables a continuous modeling of the diffusion signal and leads
to analytical formulae to estimate important diffusion features,
namely the ODF and the EAP. To improve our previous work in
[26], we modify the parametric function, describing the atoms,
to learn both the radial and the angular part, which provide a
very sparse representation of diffusion signals and further re-
duce the number of measurements (15 measurements are found
to be sufficient to start recovering the EAP and some derived
diffusion features whereas 50 measurements are used in [26]).
Furthermore, we extend the experimental part of [26] by learn-
ing and validating our approach on the synthetic data proposed
in the HARDI contest at ISBI 20121, and on real data acquired
from both 3T and 7T scanners. A preliminary work [27] re-
garding the learning of both the radial part and the angular part
of the diffusion signal was published in the proceedings of the
HARDI contest at ISBI 2012 and we obtained the best results
in our category. Our approach presented in this paper indicates
an increase in terms of reconstruction accuracy compared tothe
results presented in [27].

The article is structured as follows : we start by introduc-
ing the dMRI framework together with the proposed dictionary,
then we focus on the parametric dictionary learning algorithm
and finally we conclude with an experimental part illustrating
the added-value of our approach with promising results show-
ing how our approach allows the accurate reconstruction of the
diffusion signal and some of its features. This experimental part
is completed by a comparison with state of the art approaches,
and is performed on synthetic and real data from 3T and 7T
scanners.

2. A computational framework for the recovery of the com-
plete diffusion MRI process

In this section, we introduce a new dMRI framework for
modeling the diffusion signal. From this continuous represen-
tation, we derive analytical formulae that enable the estima-
tion of important diffusion features such as the Ensemble Av-
erage Propagator (EAP), the Orientation Distribution Function
(ODF). We give full derivations for these formulae in the ap-
pendixes.

2.1. Continuous diffusion modeling with a constrained dictio-
nary

We propose to design an overcomplete dictionaryΨ =

{Ψk}k=0,...,K, such that the diffusion signalE is expressed as a
truncated linear combination ofK 3D atomsΨk, i.e

1http://hardi.epfl.ch/
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E(qu) =
K∑

k=0

ckΨk(qu), (3)

with ck the transform coefficients,q the norm of the effective
gradient andu an unitary vector.

In diffusion multiple shells imaging [5, 34, 17], previous
works have proposed the modeling of the diffusion signal in
bases where each atomΨk is a combination of a radial part and
an angular part. These works primarily handle the question of
the radial part. For instance, Descoteaux et al. [17] describes the
radial part of the atom as a combination of two rational func-
tions coming from the total solution of the Laplace equation,
whereas Ozarslan et al., Assemlal et al. [34, 5] use polynomi-
als weighted by an exponential. Merlet et al. [26] increasedthe
sparsity of the representation in [34] by designing a dictionary
where the polynomial coefficients and the scale parameters in
the exponentials are learned from a training data set [26]. Al-
though the radial attenuation of the diffusion signal is more or
less well fitted with these bases/dictionaries, the accurate and
sparse estimation of the full diffusion signal is still limited by
the angular part described by the real and symmetric Spherical
Harmonic basis functions (SH). The SH have been proved use-
ful in many settings but are not sparse enough in modeling the
directional features of the diffusion process [32]. However, our
preliminary work published in [27] shows that a well-chosen
combination of SH could sparsely represent the angular part.
Therefore, we propose to model this angular part with such a
combination of SH. As for the radial part, we model it with a
combination of exponential functions weighted by a monomial
in order to ensure the continuity of the function at zero [11].
The complete description of each atomΨk of the dictionary is
given by :

Ψk(q) = Ψk(qu) =
1
√
χk

I∑

i=0

αki exp
(

−νkiq
2
)

J∑

j=0

βki jq
l( j)Yj(u)

=
1
√
χk

I∑

i=0

J∑

j=0

γki j exp
(

−νkiq
2
)

ql( j)Yj(u)

= Ψk(γk, νk, qu), (4)

with q the 3D effective gradient,u an unitary vector andq
the norm of the effective gradient such thatq = qu. I and
J are, respectively, the radial order and the angular order of
the dictionary. J also corresponds the total number of SH
taken into account in the modeling not to be confused with
the maximal SH orderL. Indeed,J is directly related to the
maximal SH orderL as J = (L + 1)(L + 2)/2. Yj(u) is the
SH of orderl( j) = 0 for j = 1, l( j) = 2 for j ∈ {2, ..., 6},
l( j) = 4 for j ∈ {7, ..., 15} ... . γk = {γki j}i=0...I , j=0...J and
νk = {νki}i=0...I are two vectors of parameters, which will be
set during the learning process. The termql( j) ensures the con-
tinuity of Ψk at zero.χk is a constant, which ensures the nor-

malization ofΨk for theℓ2 norm, i.e
√∫

R3 Ψ
2
k(q)dq = 1, and is

expressed as

χk =

I∑

i′=0

I∑

i=0

J∑

j=0

γki jγki′ j

2(νki + νki′ )ℓ( j)+3/2
Γ

(

ℓ( j) +
3
2

)

, (5)

with Γ the gamma function. We derive eq. 5 in Appendix A.
If we consider the simple case where all the coefficients

γki j and νk j are zero butγk00 and νk0, we getΨk(qu) =
1√
χk

γk00

2
√
π

exp(−νk0q2). This mono-exponential representation of
the atomΨk does not depend on the angular directionu and is,
for instance, appropriate to describe isotropic diffusion config-
uration.

Note that in [27] each atom is described by a combination of
SHORE basis functions [34] with a predefined scale parameter.
The main advantage of the atom description in Eq. 4 lies in the
possibility to learn the scale parametersνki, which provides a
sparser signal estimation than in [27]. We see in the experiment
part that this new framework leads to an increase in terms of
reconstruction accuracy compared to the results presentedin
[27], which were already the best in their category.

2.2. Closed formulae for diffusion features

Using the dictionary,Ψ = {Ψk}k=0,...,K, proposed in the pre-
vious section to reconstruct the diffusion signal (see Eq. 4), we
derive important and analytical closed formulae for estimating
the EAP and the ODF. We describe these formulae in the fol-
lowing.

2.2.1. The Ensemble Average Propagator
The EAP, denotedP(Rr), represents the full 3D displacement

probability function of water molecules in every voxel and un-
derlies the derivation of the ODF. It is the inverse Fourier trans-
form of the normalized diffusion signal, denotedE(qu),

P(Rr) =
∫ ∞

q=0

∫

u∈S2
E(qu) exp(+2πiqRu.r)duq2dq. (6)

q andR are, respectively, the norm of the effective gradient
and the radius of the 3D location in every voxel,u andr are
unit vectors. From eq. 3 and 6, we derive in Appendix B the
following expression for the EAP :

P(Rr) =
K∑

k=0

ck√
χk

I∑

i=0

J∑

j=0

γki j(−1)l( j)/2

(

π

νki

)l( j)+3/2

Rl( j) exp

(

−(πR)2

νki

)

Yj(r) (7)

If we consider the special case of the mono-
exponential representation of the atomΨk, we get

P(Rr) =
∑K

k=0
ck√
χk

γk00

2
√
π

(
π
νk0

)3/2
exp

(−(πR)2

νk0

)

, i.e an isotropic
propagator described by an mono-exponential decay similarin
every direction.

3
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2.2.2. Solid angle ODF
The ODF represents the full angular distribution ofP(Rr).

One relies on the ODF to perform fiber tractography [16], then
an accurate and fast computation of this diffusion feature is very
appreciated. From Eq. 2, we derive in Appendix C the follow-
ing closed form for the ODF :

Υ(r) =
K∑

k=0

ck√
χk

I∑

i=0

J∑

j=0

γki j(−1)l( j)/2

(

π

νki

)l( j)+1 (l( j) + 1)!!

2
(

2π2

vki

)l( j)/2+1
Yj(r)

(8)

Considering the precedent example, the ODF is represented
by a scalar, i.e.Υ(r) =

∑K
k=0

ck√
χk

γk00

8π3/2 , meaning that the ODF
has the same value for every direction.

3. A parametric dictionary learning for sparse dMRI

Here, we introduce a parametric dictionary learning (PDL)
method that enables a sparse representation of any diffusion
signal from continuous and parametric functions. There are
four advantages to consider a parametric approach for dictio-
nary learning:

• A parametric dictionary is defined by a set of parameters
(γk andνk in Sec. 2), which gives a continuous representa-
tion of each atom and, thus, enables a continuous modeling
of the diffusion signal. This is suitable for data interpola-
tion and extrapolation.

• Analytical formulae can be derived to estimate important
diffusion features as the EAP and the ODF.

• PDL is acquisition independent, i.e. the sampling scheme
used for learning the dictionary does not have to be the
same as the sampling scheme used for reconstructing the
signals.

• PDL enables one to reduce the dimensionality of the dic-
tionary atoms.

These four advantages, together with the quality of the obtained
results (see Sec. 4), makes our parametric dictionary approach
very attractive compared to non parametric methods [9, 19].

Concerning the development of our algorithm, we started by
considering the K-SVD algorithm [2] as a model for our own
method. Although the K-SVD method appears powerful in de-
signing sparse dictionaries, this technique as described in [2]
designs only non-parametric dictionaries, which do not present
the advantages described above. Hence, we developed our own
algorithm, which overcomes the limitation of the K-SVD al-
gorithm. Our algorithm alternates between 2 steps: a sparse
coding step and a dictionary update step, where the vectors of
parametersγk andνk (see Sec. 2) are estimated for every atom
dk of the dictionary, using the non linear Levenberg-Marquardt
(LM) algorithm. The section 3.1 presents our dictionary learn-
ing algorithm and the section 3.2 describes the method we use

to reconstruct any diffusion signal using the dictionary previ-
ously learned.

3.1. Dictionary learning algorithm

Notation : Suppose the training data set consists in M obser-
vations{si}Mi=1 (i.e. M voxels). For each observationsi we have
ms samples in the q-space, i.e.s1..M ∈ R

ms. We represent{si}Mi=1
in matrix form S ∈ R

ms×M wheresi is the ith column. The al-
gorithm searches for the dictionaryD ∈ R

ms×K , that enables the
sparsest representation for every column ofS. The dictionary
consists inK atoms{dk}Kk=1 with dk ∈ R

ms a column ofD. We
constraindk to be an instance of the 3D functionΨk(γk, νk, qu)
in Eq. 4. Here, we do not try to directly estimatedk but the
vectors of parametersγk andνk, that characterize the atomdk.
For each observationsi , we define a coefficient vectorci ∈ R

K ,
which forms theith column of the coefficient matrixC ∈ R

K×M.
Problem statement: Given a training data setS, we search

for the dictionaryD that gives the sparsest representation of this
set (i.e. for each columnsi of S). Mathematically, the problem
is to find the dictionaryD and the vectorsci in C by solving :

arg min
ci ,D
{‖S − DC‖22} subject to∀i‖ci‖1 ≤ ǫ (9)

with ǫ a small real defining the degree of sparsity of the dictio-
nary. The minimization of the first term in Eq. 9 enables the
signal estimationDC to remain close to the training data setS
and the constraint imposes the sparsity of each signal represen-
tationci with respect to the dictionaryD. The method to solve
Eq. 9 is described in the following and a summary of the algo-
rithm is given in Alg. 1. This algorithm iteratively alternates
between sparse signal estimations (i.e.{ci}Mi=1) and updates of
the dictionary (i.e.D) so to better fit the training data set (i.e.
S).

First step (Sparse signal estimation): In the first step, the
estimation of the column vectorci is performed separately for
each signalsi , i.e for each column ofS. Sparse estimation is
achieved by solving the LASSO (Least Absolute Shrinkage and
Selection Operator) problem [39]. It consists in minimizing the
following objective function

min
ci

‖si − Dci‖22 + λ‖ci‖1. (10)

λ is a constant that controls the degree of sparsity of the coef-
ficients estimated. Note that we relax the constraint in Eq. 9by
using a Lagrangian multiplier (λ). There exist numerous itera-
tive algorithms for efficiently solving such kind of constrained
problems. These include coordinate descent, least-angle regres-
sion (LARS) [18], fast iterative thresholding shrinkage algo-
rithm (FISTA) [8], etc. A number of these methods are avail-
able under the PythonTM library Scikit-learn [35]. We use a
PythonTM implementation [35] of coordinate descent to solve
Eq. 10.

Second step (Dictionary update): In the second step, we
update the dictionaryD. For this purpose, we compute an
absolute averaged coefficient vectorĉ ∈ R

nc, such thatĉ =

4
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1/M
∑

i |ci | (|.| denotes the absolute value of each vector compo-
nent), and find the atoms associated with the non zeros values
of ĉ. It gives a rough idea of which atoms are used for modeling
the signal and enables one to discard some unnecessary atoms
and, thus, to enforce sparsity. Then, in this set of atoms, we
update one atom at a time, while fixing all the others. This pro-
cess is repeated for all the atoms associated with the non-zero
coefficients ofĉ.

The in-update atom is denoteddk0. To update this atom, we
begin by decomposing the error term in eq. 9 as in [2], i.e.

‖S − DC‖2ℓ2 =
∥
∥
∥
∥
∥
∥
∥

S −
K∑

k=1

dkcr
k

∥
∥
∥
∥
∥
∥
∥

2

ℓ2

=

∥
∥
∥
∥
∥
∥
∥




S −

∑

k,k0

dkcr
k




− dk0cr

k0

∥
∥
∥
∥
∥
∥
∥

2

ℓ2

=
∥
∥
∥Ek0 − dk0cr

k0

∥
∥
∥

2

ℓ2
, (11)

wherecr
k is thekth row of C. The error matrix, denotedEk0,

contains the error between each observationsi (the ith column
of S) and its respective estimation with the dictionary where
the kth

0 atom is removed. We could directly use the LM al-
gorithm in order to fit the atomdk0 to the error matrixEk0.
However, because it takes into account all the observationssi ,
this dictionary update would not impose sparsity. Instead,we
enforce the sparsity by constraining the atomdk0 to fit only a
subset of observations and not the entire data set. For this pur-
pose, we define the group of observations that use the atom
dk0, i.e wk0 = {i, 1 ≤ i ≤ M, ci(k0) , 0}. In other words,
they are the observations whose coefficients, associated with
the atomdk0, are non zeros. Then, we compute the error ma-
trix Ewk0

∈ R
ms×card(wk0 ). It corresponds to the estimation error

between the observation vector{si}i∈wk0
that forms the columns

of Swk0
∈ R

ms×card(wk0 ) and the signal estimated for the group of

observationwk0 (Thek0
th atom is still removed from the dictio-

nary), i.eS̃wk0
=

∑

k,k0
dkcr

k(i), i ∈ wk0. Mathematically speak-
ing, we haveEwk0

= Swk0
− ∑

k,k0
dkcr

k(i), i ∈ wk0. Finally, we
estimate the vector of parametersγk andνk by constrainingdk0

to fit the error matrixEwk0
. This part is performed via the non

linear Levenberg-Marquardt algorithm (LMA) . The atom up-
date procedure is repeated for every atomdk0 associated with
the non zeros coefficients ofĉ.

The method is given in Algorithm 1 as a whole.
Convergence : The sparse coding step (Eq. 10) is well

known to be convex and the coordinate descent algorithm al-
lows one to converge to the unique solution specific to the cur-
rent dictionaryD. The dictionary update step, whereγk andνk

are estimated using the LMA may converges to a local minima,
depending on the initial solutions. Then, Eq. 9 is convex for
c and converge forD, which do not ensure a convergence to a
global minimum. Nevertheless, in our experiments, a station-
ary point has been reached after few iterations and the resulting
dictionaries were proved very good experimentally.

Initialization : The problem in Eq. 9 admits local minima,
and the solution may vary depending on the initial parameters.

Algorithm 1 Semi-parametric dictionary learning
1. Initialize the dictionary by fixing its dimensionK and the
vectors of parametersγk andνk for k = 1...K as random.
2. Sparse estimation of the observations{si}Mi=1. We use
the coordinate descent algorithm to solve forci associated
to each observation :

min
ci

‖si − Dci‖22 + λ‖ci‖1.

3. Updating the dictionary. Compute the absolute aver-
aged coefficients vector̂c = 1/M

∑

i |ci |. Repeat until all the
atoms of the dictionary, with non zeros value inĉ, have been
scanned :

• Let note the current atom, thekth
0 .

• Define the group of observation that use this atom :
wk0 = {i, 1 ≤ i ≤ M, ck0(i) , 0}.

• Compute the error matrixEwk0
= Swk0

−∑k,k0
dkcr

k(i), i ∈
wk0. Swk0

contains the observationsi , i ∈ wk0.

• Apply the Levenberg - Marquardt algorithm to estimate
the vectors of parametersγk0 andνk0 , which constrain
dk0 to best fitEwk0

• Updatedk0 according toγk0 andνk0 .

4. Go back to the step 2 unless the overall error does not vary
anymore

We tried several ways to initialize the algorithm among which
random initialization and initialization from signals selected at
random in the training data set.. However, these kinds of initial-
ization were not satisfactory since the corresponding solutions
were too different between several attempts to build the dictio-
nary. After many experiments, we finally selected each initial
atom as a random combination of several training signals. This
gave us the best satisfactory results, with the smallest sensitivity
to the initialization.

3.2. Signal estimation via the learned dictionary

The purpose of section 3.1 was to design a parametric dictio-
naryD. Now, we are able to recover any sparse representation
c of diffusion signals regarding the dictionaryD by solving the
LASSO problem :

min
c
‖s − Dc‖22 + λ‖c‖1. (12)

We use the same algorithm as in the learning step to solve
Eq. 10, i.e. the coordinate descent algorithm.

4. Experiments on synthetic data

We first train and validate our parametric dictionary on syn-
thetic data. We assume the normalized diffusion signalE(q) is
generated from the multi-tensor model forF fibers,

5
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E(qu) =
F∑

f=1

pf exp(−4π2τq2uTTfu), (13)

where a fibref is defined by a tensor matrixTf and weight
pf , such that

∑

f pf = 1. q denotes the norm of the effective
gradient andu is a unitary vector in Cartesian coordinate.

The analytical ground truth of the EAP for any radius R is
then given by

P(Rr) =
F∑

f=1

pf
1

√

(4πτ)3|Tf |
exp

(

−R2rTTf
−1r

4τ

)

, (14)

with r a unitary vector in Cartesian coordinate.
We can also derive the ODF feature using the solid angle

closed form expression [1, 43],

ψ(r) =
F∑

f=1

pf
1

4π|Tf |
1
2 (rTTf

−1r)
3
2

. (15)

In the remainder of this section, we describe the steps re-
quired to correctly design our parametric dictionary, i.e.the
choice of the dictionary radial and angular orders and the learn-
ing phase, then we validate the learned dictionary on synthetic
data using the analytical formulae we have just described.

4.1. Which radial and angular order for the dictionary ?

We need to fix the angular and radial order, respectively de-
notedJ andI in Eq. 4, for the dictionary generation.

We begin by defining the dictionary angular orderJ, which
is related to the SH orderL asJ = (L + 1)(L + 2)/2. For this
purpose, we generate synthetic ODFs (see Eq. 15) correspond-
ing to two fibers crossing at different degrees : 0◦, 40◦, 60◦,
90◦. Then, we fit each ODF with the Spherical Harmonic ba-
sis of orderL = 0, 2, 4, 6, 8, 10, 12 using a least squares fitting
technique, and we compute the Normalized Mean Square Error
(NMSE) between the original synthetic ODFs (ψ) and the esti-

mated ODFs in terms of SH (ψe), i.e. NMS E=
‖ψ−ψe‖22
‖ψ‖22

. The

resulting NMSEs are shown in Fig. 1. Regarding this figure, we
find that a SH order ofL = 8 is sufficient to correctly estimate
an ODF (In particular for fibers crossing at 40◦ or more). This
leads to set the dictionary angular order toJ = 45.

The radial order is related to the number of fiber crossing in
the voxel of interest. We assume a maximum of three crossing
fibers in each voxel. This is the case in the region where the
corticospinal, corpus callosum and superior longitudinalfasci-
culus fiber bundles are crossing. Voxel with more than three
fibers are considered as part of the noisy background. Conse-
quently, setting the radial order at three appears to be the best
choice and was found experimentally satisfactory. We show in
Fig. 2 some examples of radial attenuation in arbitray chosen
directions simulated using a multi-Gaussian model mimicking
three crossing fibers (plain line). We fit each of these radialat-
tenuation with the radial part of the model in Eq. 4 and radial

Figure 1: NMSE between the ground truth ODFs and the estimated ODFs in
terms of SH. The arrow indicates the SH order corresponding to a NMSE con-
sidered as sufficiently close to zero.

ordersI = 1, 2, 3, using the Levenberg-Marquardt algorithm
(The angular orderJ is set to zero). Fig. 2 indicates that we
need a radial orderI = 3 to accurately estimate radial attenua-
tion characterized by three crossing fibers.

4.2. Training phase

We train the dictionary on multi-Gaussian signals, used for
the HARDI contest at ISBI 20122. The contest was organized
with the aim to provide a way for different groups to propose
their own reconstruction algorithms and to fairly compare their
methods against the others on a common set of ground-truth
data.

Our training data setStrain is composed of the firstM = 5000
instances of diffusion signal contained in the fileTestingIV,
in which the multi-Gaussian synthetic signals are generated
with parameters taken at random (number of fibers, fractional
anisotropy related to a fiber and crossing angle between these
fibers). The dictionary angular and radial orders are respec-
tively set toJ = 45 andI = 3 (see Sec. 4.1). We takems = 1000
q-space samples for each instance of signal spread between
bmin = 0 andbmax= 10000s/mm2.

One difficulty in dictionary learning is the choice of the reg-
ularization parameterλ in Eq. 9. In order to assessλ, we use
a cross validation (CV) procedure. For this purpose, we con-
sider another set of signalsSval, called the validation data set,
and composed of 1000 signals, which have not been used for
training, and we repeat the following procedure for a range of
λ,

1. Design a dictionaryDλ using Algorithm 1 with regulariza-
tion parameterλ and the training data setStrain.
2. UsingDλ, solve the LASSO problem forc (see Eq. 12)
with Sval as entry, and compute the validation errorǫval =

‖Sval − Dλc‖22/‖Sval‖22
We keepλ that minimizesǫval. This procedure is repeated

after adding Rician noise, with SNR=10, 20 and 30, to the
validation set. Rician noise is added in the following way

2http://hardi.epfl.ch/
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Figure 2: Examples of radial attenuation in arbitray chosendirections simulated using a multi-Gaussian model mimicking three crossing fibers (plain line). We fit
each of these radial attenuation with the radial part of the model in Eq. 4 and radial ordersI = 1, 2, 3, using the Levenberg-Marquardt algorithm (The angular order
J is set to zero).

: Svalnoisy =

√

(Sval + ǫ1)2 + ǫ2
2, whereǫ1, ǫ2 ∼ N(0, σ) with

σ = 1/S NR. Validatingλ on noisy data enables one to prevent
from overfitting.

We show in Fig. 3,ǫval for λ in the range [1· 10−5, 1 · 10−4],
in case of noisy and noiseless validation data. We also show
the training error (blue curve in Fig. 3), i.e.ǫtrain = ‖Strain −
Dλc‖22/‖Strain‖22 wherec is the solution of the LASSO prob-
lem with Strain as entry. We observe, in Fig. 3, four different
λ (2.9 · 10−5, 4.4 · 10−5, 4.8 · 10−5, 5.8 · 10−5) that minimize the
validation error depending on the amount of noise we add to
the validation data set. Because the noiseless case is not ob-
served in practice, we discard the corresponding value ofλ and
consider the average value of (4.4 · 10−5, 4.8 · 10−5, 5.8 · 10−5),
which givesλ = 5 · 10−5. This value is used to generate a new
dictionary.

Figure 3: Training and validation error (ǫtrain and ǫval) computed forλ in the
range [1· 10−5,1 · 10−4]. The blue curve represents the training error and the
other curves represent the validation error in a noiseless case (purple curve),
after adding Rician noise to the validation data set with SNR=30 (green curve),
SNR=20 (red curve), SNR=10 (black curve). The arrows indicate the minimum
of each curve corresponding to the validation error.

We obtain a dictionary containing 659 atoms. Fig. 4 shows
the first 200 ODFs of these atoms. The atom ODFs are sorted
in decreasing energy order from left to right and top to bottom.
We observe various shape ranging from single fiber structures

to more complex fiber configurations.

4.3. Validation

We validate the dictionary on the reconstruction of noisy
multi-Gaussian signals, used for the HARDI contest at ISBI
20123.

We consider 1000 signals, which have not been used for
training the dictionary. Our preliminary and promising results
on parametric dictionary learning (PDL) were published in the
proceedings of this event [27]. At this stage, we obtained the
best results in our category. Here, we enrich these previous
results with a comparison of three different sampling schemes
(displayed in Fig. 5) :

• A single shell sampling scheme with 64 measurements
uniformly spread on one shell at a b-valueb = 3000 s·
mm−2 (Fig. 5a).

• A multiple shells sampling scheme with 15 measurements
spread on 2 shells at b-valuesb = 1500, 2500 s· mm−2

(Fig. 5b).

• A multiple shells sampling scheme with 64 measurements
spread on 2 shells at b-valuesb = 1500, 2500 s· mm−2

(Fig. 5c).

To obtain the single shell (SS) sampling scheme, we use
the algorithm given in [22, 14] to uniformly distribute points
on a sphere. For the multiple shells (MS) sampling schemes,
we use the algorithm given in [10] by setting the parame-
ters in such a way that the the number of points on each
shell is proportional toq1. These particular parameters have
been proved efficient in [10, 25]. An important advantage of
this algorithm is that the points from each shell have stag-
gered directions and follow a near-optimal uniform distribu-
tion. You can generate and download sampling schemes
for multiple Q-shell diffusion MRI with this web application
: http://www-sop.inria.fr/members/Emmanuel.Caruyer/q-space-
sampling.php.

3http://hardi.epfl.ch/
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Figure 4: First 200 ODFs of the dictionary atoms. The atoms are sorted in decreasing energy order from left to right and topto bottom.

Figure 5: Sampling schemes used for validation. (a) A singleshell sampling scheme with 64 measurements uniformly spread on one shell at a b-valueb =
3000 s·mm−2. (b) A multiple shells sampling scheme with 15 measurementsspread on 2 shells at b-valuesb = 1500, 2500 s·mm−2. (c) A multiple shells sampling
scheme with 64 measurements spread on 2 shells at b-valuesb = 1500, 2500 s·mm−2.
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We perform the experiments with two metrics used in the
contest, i.e. the weighted difference in the number of fiber
compartments (DNC) and the mean angular error (AE) at each
voxel. For these two metrics we extract the maxima on the esti-
mated ODFs and compare them to the ground truth maxima.
Then, the DNC becomes the difference between the number
of maxima extracted on the estimated ODFsMe and the true
number of maximaMgt, weighted by the true number of max-

ima at each voxel, i.e., DNC= |Me−Mgt|
Mgt

. The AE is the mean
angular error between the maxima extracted on the estimated
ODFs and the respective maxima within the ground truth. We
also enrich the results with a comparison of two other features,
which have not been used in the contest validation, i.e. the
diffusion signal and the Ensemble Average Propagator (EAP).
To compare these features, we compute the Normalized Mean
Square Error (NMSE) between the ground truth featurex and

its estimationxe given by NMS E =
‖x−xe‖22
‖x‖22

. The DNC, AE

and NMSE are, then, averaged on all the voxels. We add Ri-
cian noise to the normalized diffusion signal in the following

way : Enoisy =

√

(E + ǫ1)2 + ǫ2
2, whereǫ1, ǫ2 ∼ N(0, σ) with

σ = 1/S NR.
The three following sections present the results for the three

proposed sampling schemes, i.e. the SS sampling scheme with
64 measurements, the MS sampling scheme with 15 measure-
ments, and the MS sampling scheme with 64 measurements.
We also compare with state of the art techniques such that QBI,
using the solid angle ODF [1], and the SHORE reconstruction
using a sparse prior (ℓ1-SHORE) [34, 12, 28, 31, 26]. We show
quantitative results in Tab. 1, 2, 3 and 4, and qualitative results
in Fig. 6, 7 and 8. In each table, we write in blue letters the best
score for a given SNR and metric.

4.3.1. Single shell sampling scheme with 64 measurements

In these experiments, we first use the SS sampling scheme,
i.e. 64 measurements uniformly spread on a shell at a b-value
b = 3000 s·mm−2, and we compare our dictionary based ODF
estimation (D-ODF) to the solid angle ODF via QBI (SA-ODF)
developed in [1]. For the SA-ODF, we set a SH order equal
to the one used for the dictionary construction, i.e.L = 8.
We adjust the Laplace-Beltrami regularization parameter [15,
1] using the generalized cross validation algorithm [13]. For
our PDL approach, because we deal withℓ1 norm and notℓ2

norm, we use a simple cross validation procedure [45] to find
the regularization parameterλ in Eq. 12.

Overall, in Fig. 6 the D-ODFs are sharper than the SA-ODFs.
Furthermore, the SA-ODFs appear more sensitive to noise than
the ODFs based on our PDL estimation. Indeed, we observe
than the D-ODFs are very robust to noise, even at SNR=10
where they are still correctly aligned with the underlying struc-
ture shown by the ground truth (On the right of Fig. 6), whereas
the maxima extracted from the SA-ODFs mostly give corrupted
or completely false fiber orientation estimation even for simple
configuration as single fibers.

The quantitative results, in Tab. 1, confirms our previous re-
marks. In particular, at SNR=10, the SA-ODFs are not able

to provide proper diffusion directions. The DNC mean value
is higher than 0.5 meaning that, in average, more than half of
the maxima in each voxel are not detected. The results regard-
ing our PDL approach give more accurate diffusion directions
at every SNR.

Besides the good directional information given by the ODFs
estimated with our PDL approach, we can also estimate the
EAP and interpolate/extrapolate the diffusion signal on the en-
tire q-space, whereas QBI only estimates the ODFs. More re-
sults regarding the estimation of the latter features are given in
Tab. 4, and we will discuss these results in Sec. 4.3.3.

4.3.2. Multiple shells sampling scheme with 15 measurements
In these experiments, we compare a SHORE reconstruction

using a sparse prior (ℓ1-SHORE) to our dictionary reconstruc-
tion. The SHORE basis has been introduced by [34] and was
used in [28, 31, 26] in the context of sparse recovery. Theℓ1-
SHORE method consists in solving the LASSO problem (see
Eq. 12) using coordinate descent while replacing the dictionary
D by the SHORE basis [34]. In order to provide a fair com-
parison a SH order ofL = 8 is used for the generation of the
SHORE basis. In both methods (ℓ1-SHORE and our PDL ap-
proach) we use cross validation [45] to assess the regularization
parameterλ in Eq. 12. [34] and [12] respectively provide closed
formulae to estimate the ODF and the EAP when the diffusion
signal is modeled in the SHORE basis.

We see in Tab. 2 that our PDL approach outperforms theℓ1-
SHORE reconstruction in terms of angular error, difference in
the number of compartments (DNC), signal NMSE and EAP
NMSE.

Fig. 7 shows the ODFs estimated via our dictionary approach
(D-ODF) and the ODFs estimated via theℓ1-SHORE method
(SHORE-ODF). It qualitatively indicates an improvement of
the angular information given by the D-ODFs over the SHORE-
ODFs.

Regarding the PDL approach proposed at the ISBI contest,
we obtained an angular error equal to 14.5◦ at SNR=10, equal
to 11◦ at SNR=20, equal to 9.5◦ at SNR=30. The results based
on our new proposed framework, shown in Tab. 2, indicates an
improvement on the accuracy of the maxima estimation com-
pared to the results obtained in the contest. Note that the PDL
approach proposed in the contest was already the best in its cat-
egory.

In the following we show the impact of an increase of the
number of samples while keeping the two shells atb-valuesb =
1500, 2500 s·mm−2.

4.3.3. Multiple shells sampling scheme with 64 measurements
Now, we use the MS sampling scheme with 64 measure-

ments and we compare once again theℓ1-SHORE method to
our PDL approach. Our dictionary approach still outperforms
the SHORE reconstruction in terms of angular error, DNC, sig-
nal NMSE and EAP NMSE. Fig. 8 shows the ODFs estimated
via our PDL approach (D-ODF) and the ODFs estimated via
theℓ1-SHORE method (SHORE-ODF). We observe that the D-
ODFs give a very accurate estimation of the underlying fiber
structure where the SHORE-ODFs fail to provide coherent fiber
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Single shell sampling Angular error DNC
scheme with 64 measurements D-ODF SA-ODF D-ODF SA-ODF

SNR 30 4.9398 6.6509 0.2068 0.2329
SNR 20 5.6386 7.1436 0.2102 0.2524
SNR 10 8.2530 12.419 0.2500 0.5993

Table 1: Dictionary based ODF estimation (D-ODF) versus solid angle ODF via QBI (SA-ODF) using a single shell sampling scheme with 64 measurements. We
added rician noise from SNR=10 to 30. Two metrics are shown : the angular error and the difference in the number of compartiments (DNC).

Figure 6: Dictionary based ODF estimation (D-ODF,top) versus solid angle ODF via QBI (SA-ODF,bottom). We added rician noise from SNR=10 to 30 (left to
right). We also show the maxima extracted from the ODFs. On the right, we show the ground ODFs and their respective maxima.

MS sampling scheme Angular error DNC Signal NMSE EAP NMSE
with 15 measurements Dictionary ℓ1-SHORE Dictionary ℓ1-SHORE Dictionary ℓ1-SHORE Dictionary ℓ1-SHORE

SNR 30 8.6066 14.670 0.2472 0.4010 0.0104 0.0433 0.0176 0.1040
SNR 20 9.7626 16.313 0.2540 0.4463 0.0170 0.0578 0.0251 0.1122
SNR 10 13.344 22.354 0.2734 0.4836 0.0343 0.1027 0.0422 0.1350

Table 2: Dictionary based reconstruction versusℓ1-SHORE based reconstruction using a multiple shells sampling scheme with 15 measurements. We added rician
noise from SNR=10 to 30. Four metrics are shown : the angular error, the difference in the number of compartiments (DNC), the signal NMSEand the EAP NMSE.

MS sampling scheme Angular error DNC Signal NMSE EAP NMSE
with 64 measurements Dictionary ℓ1-SHORE Dictionary ℓ1-SHORE Dictionary ℓ1-SHORE Dictionary ℓ1-SHORE

SNR 30 5.6233 8.8950 0.2187 0.3106 0.0035 0.0368 0.0066 0.0732
SNR 20 6.3080 9.6641 0.2309 0.3401 0.0054 0.0386 0.0104 0.0746
SNR 10 8.3224 13.126 0.2511 0.3995 0.0144 0.0752 0.0222 0.0825

Table 3: Dictionary based reconstruction versusℓ1-SHORE based reconstruction. We added rician noise from SNR=10 to 30. Four metrics are shown : the angular
error, the difference in the number of compartiments (DNC), the signal NMSEand the EAP NMSE.
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Figure 7: Dictionary based ODF estimation (D-ODF, top) versusℓ1-SHORE based ODF estimation (SHORE-ODF, bottom). We added rician noise from SNR=10
to 30 (left to right). We also show the maxima extracted from the ODF. On the right, we show the ground ODFs and their respective maxima.

Figure 8: Dictionary based ODF estimation (D-ODF, top) versusℓ1-SHORE based ODF estimation (SHORE-ODF, bottom) using a multiple shells sampling scheme
with 64 measurements. We added rician noise from SNR=10 to 30 (left to right). We also show the maxima extracted from the ODFs. On the right, we show the
ground ODFs and their respective maxima.
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direction estimation, especially at SNR=10. We confirm this by
the quantitative results shown in Tab. 3.

We also compare the results of our PDL approach using
this MS sampling scheme , i.e. 2 shells at b-valuesb =
1500, 2500 s· mm−2 with 64 measurements, to our PDL ap-
proach using the SS sampling scheme studied in Sec. 4.3.1, i.e.
one shell at b-valueb = 3000 s·mm−2 with 64 measurements.
All the results are given in Tab. 4. Regarding the directional
results (angular error and DNC), we observe a slight advantage
with the SS sampling scheme. Moreover, if we want to recon-
struct the full diffusion signal and the EAP , we notice that a MS
sampling scheme is more adequate. This is because the radial
information of the diffusion process is better considered when
using 2 shells instead of only one shell.

4.4. Discussion on experiments with synthetic data

We studied the choice of the free parameters in the learning
process, i.e. the dictionary angular and radial orders (4.2), and
λ in Eq. 9 (4.1). Our study led to a very good estimation of
the diffusion direction (via the computation of the ODF), the
diffusion signal and the EAP.

In particular, our PDL approach was shown to better estimate
the diffusion directions than the solid angle ODF via QBI does
and to compute the diffusion signal and the EAP in a more ac-
curate way than a SHORE reconstruction (using a sparse prior)
does.

Regarding the sampling scheme, we observe a slight ad-
vantage for the SS sampling scheme considering the direc-
tional features, but we found that the MS sampling atb-values
b = 1500, 2500 s· mm−2 is more appropriate, because it en-
ables one to deal with the radial information in addition to the
angular information. In Sec. 4.3.3 the dictionary reconstruction
combined with a multiple shells sampling scheme was proved
to efficiently approximate the diffusion signal, the EAP and the
ODF.

Regarding the minimal number of measurements required
before a large decrease of the reconstruction accuracy, we also
perform a last experiment on synthetic data, in which we study
the impact of the number of samplesN on the error metrics pre-
sented in this experiment part with synthetic data. For thispur-
pose, we still consider the same set of signals (different from
the training data set) and add Rician noise withS NR= 20.
We use the MS sampling scheme with 2 shells at b-values
b = 1500, 2500 s· mm−2 and vary the number of samples be-
tweenN = 5 andN = 100. Fig. 9 shows the resulting values.
In this figure, we also plot a vertical line, which representsthe
number of samplesN where the metric errors show a large in-
crease of their values (which means that the estimations arenot
correct anymore). Overall, we define this bound toNmin ≈ 15.
In Fig. 9, we also represent the variance of each metric error.
We observe from the variance, that the estimation of the dif-
fusion signal and the EAP are robust to noise. However, the
estimation of the diffusion direction is more sensitive to noise
when we reduce the number of samples.

In conclusion, these synthetic experiments show that our
PDL approach can sparsely model multi-fiber compartments

Figure 9: Evolution of the angular error, the DNC, the signalNMSE and the
EAP NMSE in function of the number of samplesN. We added Rician noise
with SNR=20.
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Angular error DNC Signal NMSE EAP NMSE
MS-SC SS-SC MS-SC SS-SC MS-SC SS-SC MS-SC SS-SC

SNR 30 5.6233 4.9398 0.2187 0.2068 0.0035 0.0207 0.0066 0.0298
SNR 20 6.3080 5.6386 0.2309 0.2102 0.0054 0.0239 0.0104 0.0321
SNR 10 8.3224 8.2530 0.2511 0.2500 0.0144 0.0433 0.0222 0.0526

Table 4: Comparison between the multiple shells sampling scheme (MS-SC) with 64 measurements and the single shell sampling scheme (SS-SC) with 64 mea-
surements, on reconstruction using the PDL approach. Four metrics are shown: the angular error, the difference in the number of compartments (DNC), the signal
NMSE, the EAP NMSE. The simulations are performed with Rician noise at SNR=10, 20 and 30.

signals with the assumption of mono-exponential signal decay
with b-value. In addition, it overcomes the preliminary PDLap-
proach presented at the HARDI contest at ISBI 2012, already
ranked first in its category.

5. Experiments on real data

In this section, we propose to validate our parametric dictio-
nary learning (PDL) method on real data from human brains.
For this purpose, we acquired three distinct sets of data :

• A first set of measurements coming from a 7T scanner,
used both to learn the dictionary and to validate it.

• A second set of measurements coming from a 3T scanner,
used for the learning process.

• A third set of measurements coming from a 3T scanner,
used to validate the dictionary learned on the previous 3T
scanner data.

5.1. Learning and reconstruction on a 7T scanner data

Training data was acquired on a 7T whole-body MR
scanner (MAGNETOM, Siemens Healthcare) equipped with
Siemens-AC072 whole body gradient coils, and an 24 chan-
nel phased array coil (Nova Medical). 12 axial slices
were acquired with a 2D single shot DW-STEAM-EPI
(TR/TE/∆/δ = 3000/58/120/15 ms) sequence giving 2 mm
isotropic resolution. The echo time (TE), diffusion time (∆),
and gradient duration (δ) were optimized to provide max-
imum SNR for a maximum b-factor. 8 different b-values
b=500/1000/2000/3000/4000/5000/6000/7000 s/mm2 are con-
sidered with 70 orientations at each b-value, and an imaging
matrix of 96x96x12. The measurement locations are distributed
using the algorithm given in [10] by setting the parameters in
such way that there are a constant number of measurements per
b-value. We use 11 slices as training data set, in which only the
voxels corresponding to a Fractional Anisotropy (FA) superior
to 0.20 are taken into account. The FA is computed from the
diffusion tensor estimated with the whole set of measurements.

We validate the reconstruction, based on the previously
learned dictionary, on the twelfth slice. We compare the ODFs
estimated via our PDL approach (D-ODF) to the ODFs esti-
mated with theℓ1-SHORE method (SHORE-ODF) on three dif-
ferent sampling schemes. The three sampling schemes consider
measurements at b-values b=1000/2000 s/mm2, and we change
the number of measurements as N=15, 30 and 60. To distribute

the samples between the two b-values, we use the algorithm
given in [10] by setting the parameters in such a way that the the
number of samples on each shell is proportional toq1 [10, 25].

We choose a region of interest and show the estimated ODFs
(see Fig. 10) along with the extracted maxima. This region con-
tains several crossing configurations with different degree of
crossing, and thus is appropriate for ODF validation. In Fig. 10,
the middle corresponds to the D-ODFs and the bottom to the
SHORE-ODFs. From the left to the right, we see the results
for N=15, 30 and 60 samples. We consider the ground truth as
the estimated signal using theℓ1-SHORE method when all the
measurements are taken into account, i.e. 70x8 measurements.
The corresponding ground truth ODF are shown at the top of
Fig. 10.

Overall, the SHORE-ODFs lead to more false maxima than
the D-ODFs. For instance, atN = 60 in the region A (in red),
the SHORE-ODFs are not able to correctly resolve the cross-
ing fiber configuration (erroneous number of detected maxima).
This phenomenon is emphasized when the number of measure-
ments decreases, whereas our dictionary estimation still pro-
vides a coherent map of ODFs.

5.2. Learning and reconstruction on a 3T scanner data

We also train our dictionary on data from a 3T Verio
(MAGNETOM, Siemens Healthcare) scanner equipped with
a 32-channel head coil. The data were acquired at a spa-
tial resolution of 2 mm3 isotropic, for 6 different b-values
b=500/1000/2000/3000/5000/7000 s/mm2, 70 orientations at
each b-value, and an imaging matrix of 128x128x60. The dic-
tionary is learned from all the measurements on the axial slices
25 to 35, for the voxels withFA ≥ 0.20. The FA is computed
from the diffusion tensor estimated with the whole set of mea-
surements.

For the reconstruction, we use data from a 3T scanner
(Philips Achieva) equipped with a 8-channel SENSE coil. The
data were acquired at a spatial resolution of 2 mm3 isotropic, for
6 different b-values b=500/1000/2000/4000/6000/8000 s/mm2,
70 orientations at each b-value, and an imaging matrix of
128x128x60. We consider three sampling schemes with N=15,
30 and 60 samples and distribute them proportionally toq1 on
two b-values b=1000/2000 s/mm2 [10, 25].

In Fig. 11, the top corresponds to the D-ODFs and the bottom
to the SHORE-ODFs, on a selected region of interest. From the
left to the right, we see the results for N=15, 30 and 60 sam-
ples. We also consider the ground truth as the estimated signal
using theℓ1-SHORE method when all the measurements are
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Figure 10: ODFs estimated from a 7T scanner data via our PDL approach (D-ODF, middle) and via the SHORE technique (SHORE-ODF, bottom). N=15, 30 and
60 samples are considered (left to right). We show the groundtruth ODF at the top.

14

ha
l-0

08
20

81
7,

 v
er

si
on

 1
 - 

7 
M

ay
 2

01
3



Figure 11: ODFs estimated from a 3T scanner data via our PDL approach (D-ODF, middle) and via the SHORE technique (SHORE-ODF, bottom). N=15, 30 and
60 samples are considered (left to right). We show the groundtruth ODF at the top.
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taken into account, i.e. 70x6 measurements. The correspond-
ing ground truth ODFs are shown at the top of Fig. 11.

We obtain sharper ODFs estimation with our PDL approach
on the selected region of interest. Again, we see that our dictio-
nary is still able to model the fiber crossing configuration with
only 15 samples, and provide less noisy ODFs than the ODFs
estimated with SHORE.

6. Conclusion

We have proposed an original and efficient computational
framework to model continuous diffusion MRI (dMRI) signal
and to recover its important features such as the ODF and the
EAP with a reduced number of measurements. The idea, we
implemented, has been to use a parametric dictionary learning
algorithm and to exploit the sparse property of a well designed
dictionary to recover the diffusion signal and its features. Nu-
merous experimental results have been carried out for valida-
tion on synthetic and human brain data acquired from 7-T and
3-T scanners. We have shown that we can clearly recover the
diffusion signals and its features with a much better accuracy
compared to state-of-the-art approaches and can accurately re-
cover ODF in regions of multiple fiber crossing, even with a
small and reduced number of measurements. This opens new
perspectives for some dMRI applications, including for exam-
ple tractography, where the improved characterization of the
fiber orientations is likely to greatly and quickly help tracking
through regions with and/or without crossing fibers
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Appendix A. Derivation of the normalization constant

We define a dictionary ofM functions fm, from R
3 to R. We

want to normalize the atoms of the dictionary, for the classical
ℓ2 norm:

|| fm||22 =
∫

R3
fm(q)2dq = 1. (A.1)

The functions fm are constructed from elementary functions
g(m)

i, j (in what follows, we drop the indexm for the sake of clar-
ity):

fm =
I∑

i=1

J∑

j=1

gi, j(q), (A.2)

where
gi, j(q · u) = γi, je

−νiq2
qℓ( j)Yj(u). (A.3)

The normalization in Eq. A.1 rewrites as

1 =
∫

R3





∑

i, j

gi, j(q)





2

dq

=

I∑

i=1

J∑

j=1

I∑

i′=1

J∑

j′=1

γi, jγi′ , j′

∫ ∞

0
e−νiq2

e−νi′q
2
qℓ( j)qℓ( j′)q2dq

∫

S2
Yj(u)Yj′(u)d2u (A.4)

Provided that the spherical harmonics functions form an or-
thonormal basis, we have

∫

S2
Yj(u)Yj′(u)d2u = δ j, j′ . (A.5)

Therefore, the normality constraint rewrites as

1 =
N∑

i=1

I∑

j=1

I∑

i′=1

γi, jγi′ , j

∫ ∞

0
e−(νi+νi′ )q2

q2ℓ( j)+2dq. (A.6)

Let’s use the substitutionx = (ui+ui′)q2 in the above integral,
we have

1 =
I∑

i=1

J∑

j=1

I∑

i′=1

γi, jγi′, j

2(νi + νi′ )ℓ( j)+3/2

∫ ∞

0
e−xxℓ( j)+1/2dx (A.7)

=

I∑

i=1

J∑

j=1

I∑

i′=1

γi, jγi′, j

2(νi + νi′ )ℓ( j)+3/2
Γ

(

ℓ( j) +
3
2

)

(A.8)

Appendix B. Derivation of the Ensemble Average Propa-
gator

The EAPP(Rr) is defined as

P(Rr) =
∫ ∞

q=0

∫

u∈S2
E(qu) exp(+2πiqRu.r)duq2dq. (B.1)

We use the spherical plane wave expansion

exp(±2πiqRu.r) =
2π
√

qR

∞∑

j=0

(±i)ℓ( j)Jℓ+1/2(2πqR)Yj(u)Yj(r),

(B.2)

whereJℓ+1/2 is the standard bessel function of the first kind and
orderℓ + 1/2. Then we get

P(Rr) =
∫ ∞

q=0

∫

u∈S2




q2

K∑

k=0

ck
1
√
χk

I∑

i=0

J∑

j=0

γki j exp
(

−νkiq
2
)

qℓ( j)Yj(u)









2π
√

qR

∞∑

j′=0

(±i)ℓ( j
′
) j l(2πqR)Yj′ (u)Yj′ (r)




dudq, (B.3)
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We shorten this expression using the orthonormal property
of the spherical harmonic basis, i.e.

∫

u∈S2 Yj(u)Yj′ (u)du = δ j j ′ .
Then formula (B.3) becomes

P(Rr) =
K∑

k=0

ck
2π
√

Rχk

I∑

i=0

J∑

j=0

γki j(−1)ℓ( j)/2Yj(r)

∫ ∞

q=0
exp

(

−νkiq
2
)

qℓ( j)+3/2Jℓ( j)+1/2(2πqR)dq

︸                                                   ︷︷                                                   ︸

Iki j (R)

, (B.4)

We use the formula from [37], i.e.
∫ ∞

q=0
xν+1 exp(−αx2)Jν(βx) = βν

(2α)ν+1 exp(−β
2

4α )

Iki j(R) =
∫ ∞

q=0
exp

(

−νkiq
2
)

qℓ( j)+3/2Jℓ( j)+1/2(2πqR)dq (B.5)

=
(2πR)ℓ+1/2

(2νki)ℓ+3/2
exp

(

−(2πR)2

4νki

)

(B.6)

Finally, we get a closed form for the propagator :

P(R · r) =
K∑

k=0

ck√
χk

I∑

i=0

J∑

j=0

γki j(−1)ℓ( j)/2

(

π

νki

)ℓ( j)+3/2

Rℓ( j) exp

(

−(πR)2

νki

)

Yj(r) (B.7)

Appendix C. Derivation of the Orientation Distribution
Function

The ODF is given by

Υ(r) =
∫ ∞

0
P(R · r)R2dR. (C.1)

We insert (7) in (C.1) and gather all theR-dependant terms
within the integral to get

Υ(r) =
K∑

k=0

ck
(2π)3/2

√
χk

I∑

i=0

J∑

j=0

γki j(−1)ℓ( j)/2

(

π

νki

)ℓ( j)+3/2

Yj(r)

∫ ∞

0
Rℓ( j)+2 exp

(

−(πR)2

νki

)

dR
︸                               ︷︷                               ︸

I (νki ,ℓ( j))

(C.2)

We use the formula from [37], i.e.
∫ ∞

0
x2n exp(−ρx2)dx =

(2n−1)!!
2(2ρ)n

√
π
ρ
. Then,

I (νki, ℓ( j)) =
(ℓ( j) + 1)!!

2
(

2π2

vki

)ℓ( j)/2+1

√

vki

π
(C.3)

And,

Υ(r) =
K∑

k=0

ck√
χk

I∑

i=0

J∑

j=0

γki j(−1)ℓ( j)/2

(

π

νki

)ℓ( j)+1 (ℓ( j) + 1)!!

2
(

2π2

vki

)ℓ( j)/2+1
Yj(r)

(C.4)
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