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a b s t r a c t

Diffusion-weighted imaging (DWI) allows imaging the geometry of water diffusion in biological tissues.
However, DW images are noisy at high b-values and acquisitions are slow when using a large number of
measurements, such as in Diffusion Spectrum Imaging (DSI). This work aims to denoise DWI and reduce
the number of required measurements, while maintaining data quality. To capture the structure of DWI
data, we use sparse dictionary learning constrained by the physical properties of the signal: symmetry
and positivity. The method learns a dictionary of diffusion profiles on all the DW images at the same time
and then scales to full brain data. Its performance is investigated with simulations and two real DSI data-
sets. We obtain better signal estimates from noisy measurements than by applying mirror symmetry
through the q-space origin, Gaussian denoising or state-of-the-art non-local means denoising. Using a
high-resolution dictionary learnt on another subject, we show that we can reduce the number of images
acquired while still generating high resolution DSI data. Using dictionary learning, one can denoise DW
images effectively and perform faster acquisitions. Higher b-value acquisitions and DSI techniques are
possible with approximately 40 measurements. This opens important perspectives for the connectomics
community using DSI.

! 2013 Elsevier B.V. All rights reserved.

1. Introduction

Diffusion-weighted imaging (DWI) is able to non-invasively im-
age the diffusion of water molecules in biological tissues. DWI was
rapidly made popular by several clinical applications using appar-
ent diffusion coefficient (ADC) imaging and diffusion tensor imag-
ing (DTI) (Basser et al., 1994). However, the diffusion tensor is an
over-simplified Gaussian view of the local diffusion phenomenon
happening in each imaging voxel. The holy grail of DWI is to re-
cover the full tridimensional (3D) probability distribution describ-
ing the local diffusion phenomenon. This is often called the
ensemble average propagator (EAP) formalism (Tuch, 2002; Wed-
een et al., 2005; Descoteaux et al., 2011), which provides a power-
ful framework to describe and predict the diffusion behavior in
complex materials. The EAP contains the full 3D information about
the water molecule diffusion within the imaging voxel, which goes
beyond principal directions that can be used for tractography
(Merlet et al., 2012b). The EAP can serve to estimate parameters

that reflect the microstructural environment, such as axonal diam-
eter in recent works (Assaf et al., 2008; Ozarslan et al., 2013).

EAP imaging can be long and demanding in terms of acquisition
requirements (Descoteaux et al., 2011). Hence, the last 10 years
have seen the emergence of numerous techniques to reconstruct
the angular information of the EAP, the orientation distribution
function (ODF) or other such angular distributions (Seunarine
and Alexander, 2009; Descoteaux and Poupon, in press) from a re-
duced sampling scheme. These new techniques are most often re-
stricted to a single shell in q-space with N uniform measurements
for a single b-value (typically b 2 [1000, 3000] s/mm2). This
spanned the rich literature of high angular resolution diffusion
imaging (HARDI), from compartment modeling to model-free and
deconvolution techniques. These works are well covered in the fol-
lowing two book chapters (Seunarine and Alexander, 2009; Desco-
teaux and Poupon, in press).

In the last 2–4 years, Diffusion Spectrum Imaging (DSI) and 3D
DWI have regained popularity, because of two applications. First,
several works have shown that the radial information of the DWI
signal is important and can be sensitive to white-matter anomalies
caused by demyelination or brain damage (Assaf et al., 2008;
Alexander, 2008). Consequently, new modeling and anisotropy
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measures from the EAP have appeared in the literature to better
capture both the radial and angular information contained in the
diffusion signal. Second, the recent fame of DSI (Wedeen et al.,
2012) combined with connectomics studies (Hagmann et al.,
2008; Honey et al., 2009), as well as the human brain connectome
project1 have made DSI a central acquisition protocol, despite the is-
sue of long scanning time.

No matter what diffusion imaging protocol is used, be it scalar
DWI, DTI, HARDI, or DSI, there is always a trade-off between qual-
ity of the data and acquisition time. Indeed, the higher the number
of acquired images, the better the estimation of the diffusion signal
will be. A common way of improving the signal-to-noise ratio
(SNR), which is particularly poor for large b-values (see Fig. 6 for
an example), is to repeat the acquisition of the same signal with
the same sequence parameters and average them. However, for
clinical requirements and applications, and considering the reduc-
tion of the risk of motion artifacts, an acquisition time between 3
and 15 min is the limit. A first challenge is therefore to be able to
improve the SNR of a single acquisition of DWI with denoising
algorithms. A second challenge is the ability to reduce the number
of acquired images while offering the high resolution data required
to estimate complex white matter structures, such as fiber crossing
configurations, and microstructural features, such as axonal diam-
eter (Assaf et al., 2008; Alexander, 2008). This paper addresses both
of these challenges, providing validation and performance quanti-
fication using denoising metrics. The motivation for the use of a
denoising benchmark is to compare the results obtained from
undersampled data, with full resolution data after denoising using
some well established methods. The experimental section focuses
on DSI data, as it is a protocol with a dense sampling scheme using
high b-value images. Two questions are of particular interest: Can
we obtain DSI data with the same number of DWIs required for sin-
gle b-value HARDI? How much can we subsample the q-space
while keeping high spectral resolution in diffusion images?

The intuition behind this paper is that the signal measured by
multiple DWIs over the q-space is redundant and shares an under-
lying structure: the DSI acquisition on a 258 points half-space or on
the full 515 points sampling contains redundant information that
one can learn and then use to denoise or reduce the number of
acquisitions. We show that a dictionary estimated from DSI data
captures the geometry of white matter brain structures and can
thus be used in 2 different setups: (i) intra-subject studies, for
denoising purposes and (ii) inter-subject studies, to perform
super-resolution of q-space data. The latter is done by acquiring
subsampled DSI data (low resolution) and using a high resolution
dictionary of DSI profiles learnt on another subject in order to re-
cover the full DSI. This inter-subject validation setup was earlier
proposed in our previous work (Gramfort et al., 2012), and by Bilgic
et al. (2012a), although using an alternative non-physically con-
strained dictionary learning formulation (see next section). The
key contribution of this work is to use sparse coding to estimate
a dictionary of prototypical diffusion profiles constrained by phys-
ical properties of the signal. We indeed enforce symmetry and pos-
itivity for the atoms in the dictionary taking into account the
structure of the signal present in multiple DWIs. See for example
(Tournier et al., 2007), for a previous demonstration of the rele-
vance of non-negativity constraints. As for symmetry, the physics
of dMRI tells us that the measured local diffusion signal must also
be symmetric (Tuch, 2002, Sections 3.3 and 8.3.2.3).

Results are presented on a publicly available simulation dataset
and on two real DSI datasets, one from the Pittsburgh Brain Com-
petition 2009 Challenge and one from our institute. The results of
the proposed method are compared to the SNR improvements ob-

tained by applying mirror symmetry through the q-space origin,
Gaussian denoising and state-of-the-art non-local means denois-
ing. A preliminary version of this work was presented at the MIC-
CAI 2012 international conference (Gramfort et al., 2012). This
manuscript complements it with more details on the method, an
extensive simulation study and results on a new dataset (Pitts-
burgh Brain Competition 2009).

2. Theory

2.1. Diffusion-weighted imaging and diffusion spectrum imaging

Under the narrow pulse assumption (Stejskal and Tanner,
1965), there is a Fourier relationship between the measured DWI
signal and diffusion propagator, P(R),

PðRÞ ¼
Z

q2R3
EðqÞe$2piq%Rdq; ð1Þ

with E(q) = S(q)/E0, where S(q) is the diffusion signal measured at
position q in q-space, and E0 is the baseline image acquired without
any diffusion sensitisation (q = 0). We denote q = jqj and q = qu,
R = rr, where u and r are 3D unit vectors. The wave vector q is
q = cdG/2p, with c the nuclear gyromagnetic ratio of water mole-
cules and G = gu the applied diffusion gradient vector. The norm
of the wave vector, q, is related to the diffusion weighting factor
(the b-value), b = 4p2q2s, where s = D $ d/3 is the effective diffusion
time with d the duration of the applied diffusion sensitizing gradi-
ents and D the time between the two pulses. Note that the Fourier
relationship between the EAP and the diffusion signal of Eq. 1 is
strictly valid only if the narrow pulse assumption is met, which is
rarely the case in in vivo 3D q-space MRI. Nonetheless, we can mea-
sure the approximation of the average diffusion propagator by tak-
ing the ensemble average over the imaging voxel, hence the name
Ensemble Average Propagator, EAP (Tuch, 2002).

The current state-of-the-art acquisition technique to recon-
struct the 3D diffusion propagator is DSI. The original DSI protocol
(Wedeen et al., 2005) measured S(q) on a Cartesian grid restricted
to a sphere of radius 5, resulting in 515 q-space discrete measure-
ments S(q). Then, a simple 3D inverse Fast Fourier Transform (FFT)
is applied to recover the EAP at every imaging voxel. Finally, the
diffusion ODF, W, can be extracted by numerically computing the
radial integral over the discrete DSI grid, r 2 [0,5], as

WðuÞ ¼
Z 5

0
PðruÞr2dr: ð2Þ

DSI acquisition is a long process. A typical full brain coverage
acquisition with 60 axial slices, 2 mm isotropic voxels, parallel
imaging, a repetition time of approximately TR = 11 s, a full DSI
grid with 515 directions and b-values from 0 to 6,000 s/mm2 or
so, takes 1h45 min of acquisition (Descoteaux et al., 2011). Because
diffusion is symmetric (Tuch, 2002), one can reduce acquisition
time by half if only the half-space is acquired, resulting in 257
directions (Hagmann et al., 2008). The missing half is then ob-
tained by applying mirror symmetry through the q-space origin.

2.2. Dictionary learning

Sparse coding, equivalently referred to as dictionary learning,
applied to diffusion weighted images such as DSI data reveals the
latent structure of the diffusion in white matter voxels. However,
sparse coding is not compressed sensing (CS). Compressed sensing
consists of three ingredients: a linear sensing process, a linear
transformation to the data that generates sparsity and is incoher-
ent to the sensing basis, and a solver used for signal recovery that
promotes sparse estimates, e.g. using ‘1 norm or ‘0 non-linear1 http://www.humanconnectomeproject.org/.
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pseudo-norm Donoho (2006). There are further conditions on the
sensing and the transformation for CS to work. Our technique is
not a CS setup, nor does it involve any of the theoretical properties
required by CS. Sparse coding offers a way to learn a code book, a
dictionary, that can be used to accurately approximate the diffu-
sion signal with a few dictionary elements, also called atoms. This
dictionary forms a data-driven model for the diffusion signal. A
parallel can be made between such a dictionary and parametric
decompositions such as wavelets, short time Fourier transforms
or spherical harmonics often used for, respectively, images, audio
signals and data defined on a sphere. A relevant example of data
defined on the sphere is the angular distribution estimated by
HARDI. Here however, the dictionary is data-driven. Given a model
of the signal, such as one given by a parametric or data-driven dic-
tionary, it is possible to denoise it or solve inverse problems such
as deconvolution or super-resolution, which amounts to perform-
ing undersampled, and therefore faster, acquisitions.

2.3. Background

Several recent works have applied sparse techniques with re-
duced sampling to DWI (Lee and Singh, 2010; Merlet and Deriche,
2010; Cheng et al., 2011; Aboussouan et al., 2011; Michailovich
et al., 2011; Menzel et al., 2011; Rathi et al., 2011; Dolui et al.,
2011; Landman et al., 2012; Bilgic et al., 2012b; Mani et al.,
2012; Paquette and Descoteaux, 2012; Ye et al., 2012). These tech-
niques can be separated into methods for DTI and multi-tensor
techniques (Landman et al., 2012; Mani et al., 2012; Paquette
and Descoteaux, 2012), methods for single-shell HARDI (Cheng
et al., 2011; Michailovich et al., 2011; Dolui et al., 2011) and the
rest of methods designed for DSI (Lee and Singh, 2010; Merlet
and Deriche, 2010; Aboussouan et al., 2011; Menzel et al., 2011;
Bilgic et al., 2012b) and multiple-shell HARDI (Rathi et al., 2011;
Cheng et al., 2011). Although these works are very preliminary, it
seems to be possible to obtain good quality DSI data from under-
sampled measurements.

Regarding denoising, which is the other focus of this paper,
groups in the DWI denoising community have first denoised DW
data assuming a Gaussian noise on each separate DWI channel
(Manjòn et al., 2008). These techniques were then extended to take
into account the Rician noise nature of the DWI signal (Coupé et al.,
2010; Descoteaux et al., 2008; Aja-Fernàndez et al., 2008; Tristán-
Vega and Aja-Fernández, 2010; Aja-Fernández et al., 2011; Brion
et al., 2011) and, recently, the non-central Chi-squared distribution
in the case where parallel imaging is used (Aja-Fernández et al.,
2011; Brion et al., 2011). However, only the technique of (Tristá-
n-Vega and Aja-Fernández, 2010) performs denoising across the
DWI channels, i.e. considering all DW images within a certain
angular cone around the DW image being denoised. This was done
using non-local (NL) means and linear minimum mean square er-
ror (LMMSE). Our approach is different from the aforementioned
denoising techniques. Our technique considers all DWI channels,
searches over all voxels to learn the atoms that best describe the
underlying structure. We simultaneously use all directions and b-
values to estimate the underlying structure of the data. We also
succeed in combining multiple images corrupted by different noise
levels in a common estimation procedure, thanks to a proper whit-
ening of the data.

Dictionary learning has recently started to appear and be used
in dMRI (Merlet et al., 2012a; Ye et al., 2012; Bilgic et al., 2012b;
Bilgic et al., 2012a). Previous contributions proposed using solvers
inspired by K-SVD. The original K-SVD relies on orthogonal match-
ing pursuit (OMP), for which efficient implementations are freely
available, and singular value decompositions (SVD). In (Merlet
et al., 2012a), the atoms learnt are parametric diffusion profiles.
The dictionary updates are therefore not done with an efficient

SVD but a non-linear optimization over the parameter space of a
family of profiles. This makes the estimation particularly slow. In
(Ye et al., 2012), K-SVD is used for dictionary learning jointly with
a non-local means for spatial smoothing and regularization. The
joint estimation of the diffusion profiles and the spatial field is of
interest, although the paper does not address the issue of hyperpa-
rameter selection, as well as computation time to scale to full brain
data. In (Bilgic et al., 2012b), a K-SVD type method is employed
with the sparse coding step performed using iterative least squares
(FOCUSS). The estimated dictionary is then used to accelerate DSI
acquisition using an undersampled q-space. The work of (Bilgic
et al., 2012b) is in close spirit to ours. However, our contribution
improves over this work on four points: first, our problem state-
ment is truly based on the physical constraints of DSI acquisition
(positivity and symmetry); second, we use a state-of-the-art online
sparse coding (Mairal et al., 2010) technique that outperforms K-
SVD in terms of computation time and memory usage; third, we
justify the quadratic data fit term used in the minimized cost func-
tion thanks to a preprocessing whitening procedure; and fourth,
we propose a principled model selection procedure based on
cross-validation in order to avoid overfitting. One should mention
the recent contribution in Ho et al. (2013), that tackles the problem
of dictionary learning in non-euclidean spaces, such as the Riema-
nian manifold of symmetric positive-definite matrices. This work is
adapted to the estimation of a code book on the reconstructed dif-
fusion signal, rather than the raw DSI as we propose here.

Sparse coding has been used to speed up structural MRI acquisi-
tion (Ravishankar and Bresler, 2011). However, to the best of our
knowledge, this is the first time sparse coding is used on raw DWI
with a model that takes into account symmetry and positivity.
Hence, our approach makes several contributions. First, we show
how we can improve the quality of DSI data by estimating better
antipodal q-space signals compared to the ones obtained by sym-
metry of the acquiredDSI data, as classically done in public software
such as TrackVis (Diffusion Toolkit), public datasets as provided by
the Pittsburgh Brain Competition 2009 and in several connectomics
publications (Hagmann et al., 2008; Honey et al., 2009). The field
of ODFs is then denoised and its angular structure is enhanced. Sec-
ond, we show that once a DSI dictionary is learnt for a particular
acquisition protocol, it can be used on other subjects with highly
undersampledDSI acquisitions.We show that using only 40 q-space
measurements performs aswell as state-of-the-art NL-means deno-
ising, which already improves over naive half-space symmetric
acquisition. Therefore, using the learntDWI structure, our technique
fills-in the missing q-space measurements. In the computer vision
and image processing community, this is called inpainting and can
also be presented as DSI super-resolution.

3. Methods

3.0.1. Notations

We write vectors in bold, a 2 Rn, matrices with capital bold let-
ters, A 2 Rn&n. A scalar a is positive if a 2 Rþ. We denote kAkFro the
Frobenius norm, kAk2Fro ¼

Pn
i;j¼1A

2
ij , and kAk1 ¼

Pn
i;j¼1 j Aij j the ‘1

norm. Column i of a matrix is written Ai. If I is a list of j I j indices,
AI is the matrix A restricted to the rows in I . I stands for the iden-
tity matrix. Quantities estimated from the data are written bA. A
matrix with non-negative elements is denoted AP 0.

3.1. Dictionary learning for DWI

We start by describing the dictionary learning model and its
assumptions when applied to dMRI data. We then discuss the
strategy employed to calibrate model parameters.
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3.1.1. Problem statement
A dataset for one subject consists of d DWI volumes containing

p voxels. Each volume corresponds to a direction and a b-value in
the q-space. Only voxels within the brain volume are considered.
Let BS 2 Rd&p

þ denote the data. DWI have positive values.

3.1.2. Generative model
We consider the following model for the signal at voxel i:

Si ¼ DWi þ ei; 1 6 i 6 p; ð3Þ

with dictionary D 2 Rd&k
þ and the coefficients W 2 Rk&p

þ . The integer
k is the number of dictionary elements, also called atoms. The noise
ei 2 Rd

þ is known to have a Rician distribution, for single channel
imaging, or a non-central Chi-squared distribution when parallel
imaging (Aja-Fernández et al., 2011; Brion et al., 2011) is used.
However, in this work, the noise will be assumed to be Gaussian
with mean l 2 Rd and diagonal covariance R ¼ diagððrjÞj¼1;...;dÞ
2 Rd&d because we have a high enough SNR in our synthetic and real
datasets. We denote it ei ( N ðl;RÞ. This modeling assumption is
discussed and justified below.

The estimation procedure detailed below uses the standard and
computationally convenient ‘2 norm for the data fit. Such a norm
makes the implicit assumption of an additive noise that is Gaussian
with unit variance (see examples of Maximum a Posteriori (MAP)
estimation with Gaussian white noise). To meet this constraint, gi-
ven our modeling assumption on ei, we define the whitened data
Si
w ¼ R$1=2ðSi $ lÞ so that Siw ( N ðDwWi; IÞ where Dw =R$1/2D. In

practice, l and R are estimated from voxels in the background of
the images. This whitening step is crucial to estimate a joint model
of data with both high and low b-values that have very different
signal to noise ratios (SNR).

In order to learn the factorization DW, one needs to set priors
on both D and W.

) Sparse W i.e.,: the signal in each voxel can be modeled by a lin-
ear combination of a few atoms.

) Positivity constraint DP 0 and WP 0: each atom representing
a diffusion profile is positive and the linear combination is only
cumulative (no compensation with negative weights).

) Unit norm constraint on the columns of D to avoid scaling
ambiguity.

Given a set of DSI volumes, a model satisfying the constraints
above can be estimated by minimizing the following cost function:

ðbDw;cWÞ ¼ argmin
D;W

1
2
kSw $ DwWk2Fro þ kkWk1;

s:t: kDkk22 6 1; D P 0; W P 0:
ð4Þ

The parameter k balances the reconstruction error and the ‘1 regu-
larization term. A high value of k will promote sparser estimates of
cW. Following (Mairal et al., 2010), we use an online cyclic descent
to minimize Eq. (4). The optimization algorithm requires setting
two extra parameters: the batch size and the number of iterations,
which corresponds to the number of times the algorithm goes over
the data. The batch size refers to the number of voxels that are
simultaneously fed to the solver before updating the dictionary.
The benefit of this online procedure is that the solver can work
without storing the entire dataset in memory, only storing small
batches of voxels instead. This makes the solver very scalable, as re-
quired for full brain data. In practice, each batch contains a random
set of voxels to avoid biaising the solver with neighboring voxels,
which can be too similar in their structure. Experimental tests
showed that both parameters, if high enough, did not have a signif-
icant influence on the results. On full brain data, a batch size set to
500 voxels and a number of iterations set to 100 turned out to be a

good compromise between computation time and stability of the
estimated dictionary. For visualization, the estimated dictionary bD
will be unwhitened bD ¼ R1=2 bDw.

3.1.3. Denoising and subsampling
Once the dictionary BD is learnt, one can use it to decompose a

new set of data, eventually using a subsampling of the directions.
Let us denote I a list of sampling directions and nI its cardinal. Gi-
ven a set of whitened subsampled data BSIw, the coefficients BW
can be obtained by solving:

cW ¼ argmin
W

1
2nI

kSIw $ DIwWk2Fro þ mkWk1;

s:t: W P 0;
ð5Þ

where m > 0 balances the reconstruction error and the ‘1 regulariza-
tion term. The optimization is done using the same ‘1 solver used in
the dictionary learning phase. The full signal can then be obtained
as: bS ¼ bDcW 2 Rd&p.

Given a data-driven, high resolution dictionary, one can there-
fore perform DSI estimation and ODF reconstruction from under-
sampled q-space data. Note that W estimated in (4) is different
fromW in (5), as here we have access to a limited number of DWIs.
We therefore do not reestimate a full DSI dictionary, and only min-
imize over W. The rationale for the use of a different regularization
parameter, here denoted m, is because its setting depends in prac-
tice on the number of DWIs and the noise level. In the following
experiments the q-space subsampling is not optimized, although
the dMRI literature teaches us that the sampling strategy is crucial
for optimal reconstructions (Merlet et al., 2011; Caruyer and Deri-
che, 2012). It is beyond the scope of this paper to explore such opti-
mal sampling strategies in the context of the proposed technique.
In the following results, we undersampled the Cartesian directions
with a regular interval between neighboring indices in I . Deciding
to use half of the directions would amount to take every even in-
dex. In practice, the subsampling was not always done with an
integer division (see below). The consequence of this strategy is
that it preserves an approximately uniform Cartesian sampling.

Fig. 1 illustrates several subsampling of measurements used in
our experiments. The samples are projected onto the sphere and
colored according to their b-value in q-space. Although the scope
of this work is not to find an optimal subsampling strategy, one
can see that the samples remain relatively uniform on the sphere
and across b-values.

3.1.4. Noise parameters
The noise parameters (l, R) are obtained from regions, where

the diffusion signal is assumed to be only noise. On real data, we
use a ROI in the background of the images (outside the brain)
and have made sure that there are at least 1000 voxels in the
ROI. For the following simulation results, we used extra simulated
voxels with no diffusion.

3.1.5. Model selection and parameters estimation
The estimation procedure involves some parameters, namely: k

to learn the dictionary (4) and m to estimate the weights given a
learnt dictionary (5). A principled way to tune these parameters
is to use cross-validation. The idea is to learn a model on a fraction
of the data and see how well it can explain, or fit, the rest of the
data. Testing on data unused in the model estimation is done to
avoid overfitting.

A natural way of splitting the data is to only use some voxels for
model estimation, and evaluate the model on the left-out voxels.
However, the physical properties of the problem give some in-
sights on properties of the signal that can be exploited for better
model selection. The diffusion process is symmetric, meaning that
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two DWI recorded with opposite gradient directions should be the
same in the absence of noise. This suggests that a model estimated
on half of the directions H (d = 258 directions) can be used to esti-
mate a full dictionary of 2d $ 1 = 515 directions. The minimization
of Eq. (4) restricted to the data SH gives bDH 2 Rd&k, which can be
used to generate bDH 2 R2d$1&k by applying mirror symmetry
through the q-space origin.

In order to assess the quality of the model without overfitting,
the model selection involves two other sets of directions: L to learn
cW and T to test the reconstruction error, as illustrated in Fig. 2.
The best parameters k and m minimize this error. It is quantified
with the average root mean square error (RMSE):

RMSE ¼ 1
p j T j

kST $ bDT
cWk2Fro: ð6Þ

Assuming the dictionary is available, the model selection only in-
volves the estimation of m, which only requires splitting the avail-
able data in 2 sets: L and T .

In the following experiments, the parameter k was chosen in a
range of five values (1, 0.1, 0.01, 0.001, 0.0001) and m in a logarith-

mic grid of 15 values between 0 and 1e$6. In all the experiments,
we made sure that the estimated k and m were inside these param-
eter ranges. In order to quantify the performance of our method,
we use as baseline the solution that consists in applying a simple
mirror symmetry to the data, as done classically (Hagmann et al.,
2008; Honey et al., 2009). We denote the error obtained as
RMSEsym. We report the quality of our solution as a ratio between
the two quantities:

qRMSE ¼
RMSEsym

RMSE
: ð7Þ

A ratio above 1 indicates an improvement with respect to a
symmetrization.

The following results involve two setups. An intra-subject deno-
ising procedure and an inter-subject procedure. We use the term
intra when a dictionary is learnt on a subject and this dictionary
is used on this same subject. We use the term inter when a dictio-
nary from a subject is used to reconstruct the DSI signal of a differ-
ent subject while undersampling.

258 samples 129 samples 58 samples

43 samples 37 samples 29 samples

Fig. 1. Sampling schemes represented over a single shell where color codes for the b-values and a histogram of the number of images across b-values for each subsampling
(better seen in colors). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. The 258 directions H used to estimate a dictionary are in green. (a) For intra-subject cross-validation, the directions L used to estimate the coefficients are in red, and
the left out directions T used to evaluate the model parameters are in blue. The white directions V are only used for validation. (b) For inter-subject cross-validation the same
color code applies. There is no validation set in this case, as the validation data is obtained from the other subject. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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3.2. Synthetic Data Simulation

The simulation data consists of the 3D structured field pre-
sented at the HARDI reconstruction challenge 2012.2 This structured
field synthetic phantom consists in a 3D volume made up of 5 slices
of 16 & 16 voxels, and contains 3 different fiber bundles: two fiber
bundles crossing in the diagonals of the 16 & 16 slice at 90 degrees
crossed by a third circling and bending bundle, as seen on the ground
truth ODFs of Fig. 3. In every voxel of the dataset, the diffusion signal
corresponding to the underlying fiber configuration is simulated
according to the same gradient list as our real DSI data. The diffusion
signal, S(q), is simulated using the classical Gaussian mixture model
(Tuch, 2004; Descoteaux et al., 2007; Canales-Rodríguez et al., 2009):

SðqÞ ¼ EðqÞ
E0

¼
XM

i¼1

f i expð$buTDiuÞ þ !; ð8Þ

M is the number of fiber compartments, each one characterized by a
self-diffusion tensor Di and volume fraction of fi, such thatPM

i¼1fi ¼ 1. In the contest data, E0 = 1 without loss of generality
and diffusivities were generated using symmetric tensors, Di = diag
(k1, k2, k3), in the range of k1 2 [1, 2] & 10$3 mm2/s and
k2 = k3 2 [0.1, 0.6] & 10$3 mm2/s, as done in (Canales-Rodríguez
et al. (2009)). The datasets were corrupted with additive Rician
noise, !. We investigated two noise scenarios similar to the b = 0 im-
age of our real datasets; one with high SNR and another with mid-
range SNR (SNR = 1/!), namely 36 and 18, which are realistic noise
levels similar to our real data acquisitions. Noiseless data is pre-
sented in Fig. 3.

Performance of the method on simulated data was quantified
by different measures: the difference in the number of fiber com-
partments (DNC) and the angular error (AE) with respect to the
known ground truth. To compute the DNC and the AE, we extract
the maxima on a discrete grid with N = 4000 uniform points
(Descoteaux et al., 2007) for the estimated ODFs and compare
them to the ground truth maxima. Then, the DNC becomes the
mean difference between the number of maxima extracted on
the estimated ODFs and the true number of maxima, and the AE
is computed between the maxima extracted on the estimated ODFs
and the respective maxima within the ground truth. The ODF max-
imas were defined as points maximal inside a 20" radius and with a
value P0.5 on the min–max normalized ODF. The AE is computed
by finding the best match between the detected peaks and the true
peaks. This approach is slighltly biased towards underestimation of
the AE when DNC is not 0. A full comparison and discussion on this
issue can be found in the HARDI reconstruction challenge 2012.3

The accuracy of the maxima reveals the ability of the method to
extract the high spatial frequencies that are particularly useful for
fiber tracking, while a measure such mean squared error reveals
the ability to capture the full DSI signal, both its radial and angular
parts.

3.3. DSI Data Acquisitions

Two datasets were used for performance assessment and vali-
dation. The first consists of two subjects with full DSI acquisitions
(515 DWIs) that were used to learn dictionaries of DSI atoms. The
second is the publicly available Pittsburgh Brain Competition 2009
DSI datasets, which are used for the denoising experiment only.

3.3.1. DSI data used for dictionary learning
The data consists of two subjects. A standard DSI acquisition

mimicking the original DSI protocol (Wedeen et al., 2005) was

done in a 3 T Trio MR Siemens system, equipped with a whole body
gradient (40 mT/m and 200 T/m/s) and a 32 channels head coil. Iso-
tropic 2 mm spatial resolution and d = 515 DW measurements
were acquired, comprising q-space points of a cubic lattice within
the sphere of five lattice units in radius (see (Wedeen et al., 2005)).
TE/TR = 147 ms/11.5 s, BW = 1680 Hz/pixel, 96 & 96 matrix, 60 ax-
ial slices with a parallel reduction factor of 2, d and D were 41 and
45 ms, bmax = 6000 s/mm2. The 515 q-encoding values were set in
the middle of a cubic lattice of size 17 & 17 & 17, with values out-
side the acquired 515 values padded to zero. The total time for this
acquisition was 1h40 min.

The SNR of the b = 0 imagewas 36 and the SNR of the DWI for the
b = 960,3360, and 6000 s/mm2 datasets were estimated to 12, 7.5,
and 6.5 respectively. These SNR values were computed using two
manually selected regions of interests (ROI). The first regionwas se-
lected in the background of theDWI, and the secondwas segmented
in the white matter and corresponded to the corpus callosum (CC).
The SNR was then computed as SNR = mean (signal_CC)/std (noise),
where mean (signal_CC) corresponds to the mean signal in the CC
ROI, taken in theDWimagewhich corresponds to the gradient direc-
tion alignedwith the CC fiber direction (left–right). std (noise) is the
standard deviation of the noise in the ROI taken in the background.
In a sense, this corresponds to aworst case SNRbecause it is in theCC
region that the diffusion signal is most attenuated (see last row of
Fig. 6). We see that the lowest SNR is greater than 6, which implies
that the Rician noise distrubution is well approximated by a Gauss-
ian distribution in this dataset. This procedure is also described in
(Descoteaux et al., 2011; Jones et al., 2013).

3.3.2. Pittsburgh Brain Competition 2009 datasets
In 2009, there was a fiber clustering competition held at the Hu-

man Brain Mapping (HBM) conference. This competition, known as
the Pittsburgh Brain Competition (PBC),4 provided the community
with three DSI datasets (brain0, brain1, brain2), amongst numerous
other raw and processed datasets. These datasets were also gener-
ated in a 3 T MR Siemens system with a WIP pulse program,
equipped with a 32 channels head coil. The specific imaging param-
eters were TE/TR = 160 ms/9.12 s, 96 & 96 matrix, isotropic 2.4 mm
resolution, 50 axial slices with a parallel reduction factor of 2 and
a maximum b-value of bmax = 7000 s/mm2. These DSI datasets in-
clude 515 measurements, but only half the cubic lattice is acquired
with duplicates (half the Cartesian hemi-plane with 257 grid points
acquired twice and one b = 0 at the origin). Hence, the datasets con-
tain only half the grid point measurements of our other datasets. The
data is thus symmetrized and then averaged to reduce noise effects.
Hence, the PBC data cannot be used for learning. It will only be used
for denoising experiments.

3.3.3. Symmetry and denoising comparisons
For the rest of this paper, acquisition of 258 directions with sim-

ple mirror symmetry will be abbreviated HALF, as opposed to the
FULL acquisition using 515 measurements. Different symmetry
completion procedure are also included for comparison, either
using Gaussian smoothing with r = 0.35 (optimal r in our experi-
ments which corresponds to 2.5 mm FWHM) and state-of-the-art
non-local (NL) means denoising (Descoteaux et al., 2008; Coupé
et al., 2010) (11 & 11 & 11 search volume and 26 neighbors local
neighborhood). The denoising techniques are common and there
are publicly available implementations that one can run on the
raw diffusion data.5 Using such denoising techniques, the experi-
ment will consist in denoising half of the data and then symmetriz-
ing it. The better the fit is with the other half of the data, the better
the denoising will be.

2 http://hardi.epfl.ch/static/events/2012_ISBI/.
3 http://hardi.epfl.ch/static/events/2012_ISBI/.

4 http://pbc.lrdc.pitt.edu/.
5 https://www.irisa.fr/visages/benchmarks/.
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3.3.4. Visualization
To visualize the reconstructed DSI profiles, we show the raw

diffusion signal along a particular DW direction (as in Fig. 6) or
the diffusion ODF computed from the DSI signal (Wedeen et al.,
2005; Descoteaux et al., 2011), only for voxels in a white matter
mask as computed from a thresholded FA map at 0.1 (Figs. 6–8
in particular). ODFs are finally visualized as deformed spheres,
with radius deformed proportional to its ODF value. Fields of ODFs
are usually visualized with a classical RGB (red–green–blue) color-
map to highlight patient left–right (red), anterior–posterior
(green), and inferior-superior (blue) directions. Moreover, these
fields of ODFs are always overlaid on a slice of generalized frac-

tional anisotropy (GFA) to highlight the preservation of the anisot-
ropy and high spatial frequencies while undersampling. GFA = STD
(W)/RMS (W), where STD and RMS stand for the standard deviation
and root mean square of the ODF (Tuch, 2004).

4. Results

4.1. Simulation results

4.1.1. ODF reconstruction
Fig. 3 qualitatively illustrates results on the simulation data. The

ground truth ODFs are shown in the right of the top row and the

49 atoms from SNR 18 Ground truth

Gold standard (DSI full 515) SC DSI 258

SC DSI 37SC DSI 58

SC DSI 18SC DSI 29
Fig. 3. One slice of ground truth ODFs and DSI noiseless data exhibiting the complex geometry with 1, 2, 3 fiber crossings of the simulation data (http://hardi.epfl.ch/static/
events/2012_ISBI/download.html). Rows 2–4 show sparse coding (SC) reconstructions for different undersamplings with mid-range noise SNR 18.
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noise-free full DSI ODFs are shown on the left of the second row. In
fact, this full noise-free DSI ODF is our gold standard and is what
our reconstruction based on sparse coding is competing against.
The motivation here is that we assess the error due to the subsam-
pling of the q-space DSI grid, and not the approximation error due
to the DSI itself. Note that the full DSI data does not perfectly re-
cover all angular profiles. The ground truth has a better angular
resolution and most of the lower volume fraction crossing com-
partments (at the boundary of the middle square structure) are
missed by the gold standard.

The top left subfigure of Fig. 3 shows the diffusion ODF of the
dictionary learnt using 49 atoms on the mid-range SNR 18 simula-
tion. Atoms are ordered from left to right, starting at the bottom
left corner based on the variance they explain on the data. We note
important single-fiber profiles covering the 6 diagonals and hori-
zontals orientations. We also note several pure 90 degrees crossing
ODF profiles, and a smaller number of lower angle crossing or
wider single-fiber profiles arising. The dictionary clearly captures
the angular information contained in the gold standard.

The second and third rows of Fig. 3 show the reconstruction ob-
tained with sparse coding at different level of undersampling (258,

58, 37, 29 and 18 measurements) with mid-range noise SNR 18.
The subsampling schemes are shown in Fig. 1. We can observe that
most of the ODF profiles are well recovered all the way down to 18
measurements, with the exception of the challenging crossings,
which are already lost on the gold standard. However, note that
in these complex crossing configurations, our approach with 37
or more measurements seem to perform better than the gold stan-
dard at reconstructing some of the lower volume fraction
crossings.

4.1.2. Quantitative experiment
Fig. 4 shows the results in terms of angular information for high

and low SNRs using 49 atoms in the dictionary. In Fig. 4(a), errors
are shown in terms of DNC as a function of the number of DWI
images available for full DSI estimation, for different SNRs and
number of atoms in the dictionary. We report the percentage of
voxels for which the number of maxima recovered is incorrect.
For the correctly recovered maxima, the error can be further quan-
tified in terms of AE. The average AE when compared to the AE ob-
tained with all noiseless 515 DSI is below 1.5 degrees when using
more than 43 DWIs at SNR 36 and when using more than 58 DWIs
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(e) SC DSI 86 vs
ground truth DSI no noise DSI no noise

(c) DSI no noise vs (d) SC DSI 129 vs

(f) SC DSI 58 vs (g) SC DSI 43 vs (h) SC DSI 37 vs
DSI no noise DSI no noise DSI no noise

Fig. 4. Error in maxima detection. In (a) and (b), errors are shown in terms of percentage of voxels with incorrect number of estimated maxima. Results are presented for
various number of DWI images available for DSI estimation, and for different SNRs and number of atoms in the dictionary. In (c), black pixels illustrate perfect agreement
between ground truth phantom and DSI no noise whereas pink pixels show where DSI no noise underestimates 1 maxima with respect to the ground truth (single fiber
detected instead of a two fibers crossing). In (d)–(h), the comparison is between sparse coding with different undersamplings and the noiseless DSI. The noiseless DSI acts as
our gold standard. Here, pink and red pixels mean that our sparse coding method has detected a single fiber instead of a 2 or 3 fiber crossings respectively, whereas blue pixels
show where our approach with undersampling is actually better than DSI with no noise if this pixel is in pink in (c). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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at SNR 18. In other words, the subsampling deteriorates the angle
estimation by less than 1.5 degrees on average.

In Fig. 4(c), black pixels illustrate perfect agreement between
ground truth phantom and the noiseless DSI, whereas pink pixels
showwhere the noiseless DSI underestimates one maxima with re-
spect to the ground truth (single fiber detected instead of a two fi-
bers crossing). This is visually confirmed in Fig. 3. In (d)–(h), the
comparison is between our sparse coding approach with different
undersamplings and the noiseless DSI. The noiseless DSI acts as
our gold standard. Here, pink and red pixels mean that our ap-
proach has detected a single fiber instead of a two or three fibers

crossings respectively, whereas blue pixels show where our ap-
proach with undersampling is actually better than the noiseless
DSI. There, we recover the correct two bundles crossing, as in the
ground truth, whereas the noiseless DSI had just found a single fi-
ber (seen in c). This explains the gain in maxima detection perfor-
mance and angular resolution of our approach.

4.2. Real DSI data

Fig. 5 shows the ODFs corresponding to the dictionary learnt
with 100 atoms on both subjects. Atoms are ordered from left to
right, starting at the bottom left corner based on the variance they
explain on the data. We see that the most important atoms are
smooth profiles and mostly single fiber structures. After approxi-
mately 30 atoms, crossing profiles appear. At the end of the dictio-
nary, more complex ODF profiles are also present. This behavior of
the learnt dictionary is similar if we increase its size k. It is inter-
esting to observe that dictionaries obtained on two different sub-
jects reconstruct some ODF profiles that look surprisingly similar.
The similarity between dictionaries is however not only visual, as
confirmed by the quantitative performance evaluation below.

4.2.1. Intra-subject denoising
Table 1 shows how the reconstruction obtained with sparse

coding is able to accurately reconstruct the 257 unmeasured direc-
tions. The quantity represented is qRMSE (cf. Eq. 7), for which a va-
lue larger than one means that the DWIs reconstructed on the
other half of the q-space are more accurate than the ones obtained
with the usual symmetrization.

One can observe that qRMSE is consistently above one for all
denoising methods, but that our approach based on dictionary
learning outperforms Gaussian smoothing and NL means for all
dictionary sizes and for both subjects. Increasing the number of
atoms in the dictionary only slightly improves the accuracy on sub-
ject 2. Hence, for the rest of the experiments, we use dictionaries
with 100 atoms. These dictionaries are illustrated in Fig. 5.

In order to visualize how the raw DWI data is denoised by the
different techniques, Fig. 6 shows a comparison of results on a re-
gion of interest chosen in the centrum semiovale, in mid-coronal
slice. It can be observed that NL means (row 3) and Gaussian
(row 4) denoising tend to over-smooth and blur the anatomical
structures of the raw data, as opposed to our dictionary learning
approach (row 1) that succeeds in denoising, but also enhancing
the structure by preserving the high spatial frequencies (see red
box).

Finally, Fig. 7 overlays ODFs to GFA maps in the centrum semio-
vale, where the corpus callosum (CC) crosses with the corticospinal
tract (CST) in-plane and the superior longitudinal fasciculus (SLF)
out of plane. The cingulum (Cg) is also visible with a green single
fiber population out of the plane. Single, two and three fibers cross-
ings can be seen. One can observe how Gaussian smoothing and NL
Means over-smooth GFA maps, but also appreciate how our dictio-
nary learning method is able to recover ODF profiles as sharp as the
FULL raw DSI.

4.2.2. Inter-subject undersampling and sparse coding
One can push the sparse coding approach one step further than

raw DSI denoising. If one has a dictionary estimated on a subject, it
is possible to undersample the q-space when acquiring data for an-
other subject, and subsequently use the dictionary to reconstruct a
full resolution DSI signal. Figs. 8 and 9 show the reconstructed
ODFs and the reconstruction errors as a function of the number
of measurements using different dictionary/subject pairs, when
using sparse coding.

First, Fig. 8 shows ODFs estimated from an undersampled
reconstruction for subject 2, using the dictionary learnt on subject

Fig. 5. ODFs computed from the learnt dictionaries on the 2 subjects (100 atoms
and inter-subject cross-validation). Top is for subject 1 and bottom for subject 2.
Here, the ODF colormap goes from blue to red, for mininal to maximal ODF values
on the sphere to better highlight the 3D nature of ODF glyphs. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Table 1
Intra-subject denoising. qRMSE (Eq. 7) between simple DSI symmetry, Gaussian
smoothing, NL means and our sparse coding (SC) based denoising using k atoms.
Reconstruction obtained with sparse coding gives the best performance on the
validation data.

Methods Gaussian NL
means

SC DSI for various values of k

r = 0.35 k = 100 169 225 400 900 1600

Subject
1

1.16 1.19 1.31 1.31 1.31 1.31 1.31 1.31

Subject
2

1.13 1.16 1.28 1.25 1.23 1.30 1.30 1.29
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1 with 100 atoms (Fig. 5 left). It is impressive to see that a DSI dic-
tionary learnt on a subject can be used to perform undersampled
DSI on a different subject.

Fig. 9 shows the RMSE ratio between simple HALF DSI with
symmetry and our sparse coding approach as a function of the
number of measurements. The baseline naive symmetry is illus-
trated with the pink line, whereas we also show Gaussian smooth-
ing and NL means error ratios for comparison.

Of course, as the number of samples decreases, the overall field
of ODFs seems more noisy, but the overall RMSE remains accept-
able, as seen in Fig. 9. At a total of 37, 29, and 21 respective mea-
surements, the results become worse than NL means, Gaussian
smoothing and simple symmetry DSI respectively, in terms of
RMSE. On the other hand, we observe that ODF profiles are de-
graded more quickly as a function of undersampling. Note that
the structured voxels with a single fiber orientation in the Cg, CC,
CT and SLF are well preserved all the way down to 29 measure-
ments. However, although crossings are found in all undersam-
pling schemes, ODF peaks in crossing areas become less accurate
below approximately 43 measurements.

4.2.3. Pittsburgh Brain Competition datasets denoising and
undersampling

Finally, Fig. 10 shows that undersampled sparse DSI using a dic-
tionary learnt on subject 2 with 100 atoms can reconstruct the DSI
signal and diffusion ODFs of brain0 Pittsburgh Brain Competition.
ODFs are again shown in a region of the centrum semiovale, where

we see crossing configurations between the CC, CST and SLF, as
well as single fiber profiles from the Cg. One can see that our
data-driven approach based on sparse coding preserves crossings,
angular resolution and structure of the ODF field while consider-
ably undersampling. As a consequence, one also sees that the
underlying GFA maps are preserved while undersampling. Qualita-
tively, the 37 measurements reconstruction is of similar quality as
the original DSI data. Moreover, as before, at 29 measurements,
single fiber ODFs are well-preserved but crossings become more
disorganized and angular resolution is lost. Although not shown
here, similar qualitative results are obtained on brain1 and brain2,
with dictionaries learnt on subjects 1 and 2.

5. Discussion

When applied to diffusion MRI data, sparse coding, a.k.a. dictio-
nary learning, reveals the latent structure of the white matter vox-
els. It is important to realize that the results in this paper focused
on DSI data, but the technique is applicable to diffusion-weighted
imaging in general. The same technique could be used on a DTI
acquisition, single-shell HARDI scheme or more advanced multi-
ple-shell HARDI or radial sampling schemes for DWI acquisitions.
Here, we have extensively studied the impact of our data-driven
sparse coding approach on DSI data because there is a huge poten-
tial gain in denoising, especially at high b-values, but also a large
gain in undersampling, since the classically used 515 measure-
ments share a lot of structure.

Fig. 6. Denoising the raw DSI data with our sparse coding (SC) technique versus state-of-the-art non-local means (NLM) and Gaussian (optimal r = 0.35) denoising. The
region of interest is chosen in the centrum semiovale, in mid-coronal slice, as seen in an approximate blue square in the top left figure. In this region, we see the corpus
callosum (CC), the cingulum (Cg), the corticospinal tract (CST) and the superior longitudinal fasciculus (SLF). One can appreciate in the red box how the dictionary learning
approach is able to highlight and enhance structure, less visible in the raw and other denoised datasets. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

A. Gramfort et al. /Medical Image Analysis 18 (2014) 36–49 45



In this work, we showed that sparse coding can be used to accu-
rately approximate the diffusion signal with a few dictionary ele-
ments. Here, the dictionary is non-parametric and estimated
from tens of thousands of voxels on full brain data, taking into ac-
count the specificities of diffusion MRI data. Proper dictionary
learning was made possible on all DWIs at the same time by taking
into account the varying SNR across b-values, via a dedicated whit-
ening procedure. Positivity was enforced to model the fact that the
diffusion signal in a voxel is the sum of the contributions from the
different structures present in that voxel.

Exploiting the estimated model of the signal, we showed how
one can denoise data and solve inverse problems such as super-
resolution of q-space data. We furthermore showed that the signal
model, i.e. the dictionary, could be learnt on another subject with-
out degrading the signal estimation. This was highlighted through
careful synthetic and real data experiments. The proposed tech-
nique is attractive thanks to its small modeling assumptions and
its limited number of parameters, which are automatically cali-
brated using a cross-validation scheme that is based on the phys-
ical properties of the diffusion signal, namely its symmetry and
positivity. Note that, in the context of tractography, using post-pro-

cessing techniques of the EAP profile, one can also produce asym-
metric angular profile that reflect local Y-shaped branching present
in underlying structures (Barmpoutis et al., 2008).

The key benefit of our method is its ability to perform denoising
across all the DWI channels at the same time, consequently
enhancing the image quality, in particular for noisy high b-values.
While the technique of (Tristán-Vega and Aja-Fernández, 2010)
uses DW images within a certain cone around the DW image being
denoised, we propose estimating the underlying structure from all
directions and b-values. This is made possible by a proper whiten-
ing of the data, which allows multiple images corrupted by differ-
ent noise levels to be combined in the estimation. However, note
that the learning and denoising is done voxel-by-voxel. As for
non-local means denoising (Coupé et al., 2010) or more recent esti-
mation techniques using a spatial regularization term such as total
variation in the minimization problem (see 6 for several recent
techniques), we could further improve the method by using a spatial
model on the signal. We chose to remain at the voxel level to

SC
 D

SI
 (k

=1
00

)

SC
 D

SI
 (k

=4
00

)

FU
L

L
 D

SI

H
A

L
F 

D
SI

FU
L

L
 N

L
 m

ea
ns

H
A

L
F 

N
L

 m
ea

ns

FU
L

L
 G

au
ss

H
A

L
F 

G
au

ss

Fig. 7. Full (d = 515) DSI vs. Half DSI (d = 258) with respect to simple symmetry, Gaussian (r = 0.35), NL means and our sparse coding (SC) based denoising of subject 1 (k
atoms) and 258 measurements. Underlying GFA reflects the spatial smoothing done by the different techniques, where we see that white and gray areas have less contrast
(voxels all blended together) in the Gaussian and NL means cases. Hence, Gaussian and NL means ODFs lose some angular sharpness, compared to full DSI and sparse coding,
especially seen in the red box area. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

6 http://hardi.epfl.ch/static/events/2012_ISBI/workshop_program.html#
proceedings.
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perform fair comparisons with standard DSI, and we leave the use of
spatial regularization to the tractography algorithms.

Results have showed that using just half of the data (258 DWI),
we can better predict the other 257 DWI than the classic mirror
symmetry procedure. This statement also holds even if we use as
little as 40 q-space measurements, as illustrated in our root mean
squared error curves experiments (Fig. 9) and our good angular
reconstructions (Fig. 4). Our sparse coding technique performs bet-
ter than symmetrizing, Gaussian denoising or state-of-the-art NL
means denoising. This is an important message for the DSI and
connectomics (Hagmann et al., 2008; Honey et al., 2009) commu-
nities that are using half-space DSI acquisitions.

Finally, beyond denoising, we have showed that a dictionary
learnt from one subject can be used to reconstruct a full DSI dataset
from an undersampled acquisition of a different subject. Accuracy
was quantified based on MSE on the diffusion data as well as ori-
entation information extracted from ODF reconstructions. We have
done so using the sameMR imaging system (Siemens in this work).
We expect that a different dictionary would have to be learnt for
each MR system, but this learning only needs to be done once. In
a way, this would act as a ‘‘calibration’’ step, which would not nec-
essarily be limited to a single subject. Indeed, the dictionary learn-
ing algorithm employed is very scalable and could be done on
more voxels originating from a population of subjects, healthy sub-
jects or subjects with a condition. Hence, from now on, we could
imagine acquiring approximately 40 measurements on new sub-
jects, and use our previously learnt dictionaries to reconstruct a full

DSI dataset. Authors in (Bilgic et al., 2012b) come up with similar
conclusions. Consequently, we can have fast acquisitions and ob-
tain high resolution DSI data. DSI can be estimated with the same
amount of data and scanning time as HARDI.

The challenges that one might face in the exploration of the pro-
posed technique, e.g. in clinical settings, is the difficulty to use for
patients a dictionary learnt on healthy subjects. It might require a

Fig. 8. Undersampled reconstruction using the dictionary learnt on subject 1 (k = 100 atoms) to reconstruct DSI signal and diffusion ODFs of subject 2 in the centrum
semiovale similar to Fig. 7. We note that the angular profiles in the crossing area are preserved through undersampling but become noisier below 43 measurements. Single
fiber parts are well-preserved all the way down to 29 measurements.
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Fig. 9. Reconstruction error ratios for intra and inter-subject settings as a function
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subject case, while brain1/brain2 is the inter-subject case, i.e atoms learnt on
subject 1 and used to estimate the full DSI data of subject 2 using only a few
measurements.
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dedicated dictionary learning stage or further development, to take
for example into account the issue of movements such as head
rotations between scanning sessions. Future work will be dedi-
cated at optimizing the dictionary learning parameters and the
q-space subsampling scheme, in order to enhance other criteria
such as ODF reconstruction. Indeed a DSI sampling on a grid might
not be optimal should the angular information be the information
of interest. Work will also be done to enhance the computation of
other radial EAP metrics such as return-to-origin probability, mean
squared displacement and kurtosis. Currently, our model selection
criteria is based on a mean squared error over all signal measure-
ments, but one can think of a different measure or weighting to
better recover and preserve high frequencies needed for higher
angular resolution of the ODF. Future work will also be dedicated
to finding optimal measurement strategies and to finding a way
to inject the noise distribution, if it is different from Gaussian.
One could hope performing the subsampling in k-space to remain
in the Gaussian noise regime, but this would mean that we would
also lose the symmetry and positivity constraint that are crucial in
our current problem statement. This remains a rich field for future
investigation.

6. Conclusion

We have showed that it is possible to learn the latent structure
of white matter based on the symmetry and positivity physical
constraints of diffusion-weighted imaging. Using online dictionary
learning, we can learn the structure of raw DWI on full brain data

to either denoise the data or use the learnt dictionary to perform
undersampled acquisitions, hence fast imaging.

In particular, we have showed that we can perform robust and
fast DSI reconstructions from only 40 measurements. Our results
show that one can learn the DWI structure from one subject and
use it to denoise or perform fast imaging on a different subject.
The performance of our new sparse DWI technique was investi-
gated with a publicly available simulation dataset and publicly
available DSI datasets from the Pittsburgh Brain Competition
2009 Challenge. This work opens perspectives for better denoising
and faster diffusion imaging techniques.
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