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Introduction

Motivation

We will consider:

AUTOMATA

with an INFINITE number of STATES
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Motivation

We will discuss:

the SPECIFICATION and ANALYSIS

of systems involving variables either

DISCRETE or CONTINUOUS
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Hybrid Systems

Many real systems have a double nature. They:
evolve in a continuous fashion
are controlled by a discrete system

Such systems are called hybrid systems and may be modeled
by hybrid automata
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Example: Cell Cycle

I (interphase): the cell grows
cumulating nutrients needed for
duplication. It contains the
subphases G1 (growth), S (DNA
synthesis), G2 (growth)

M (mitosis): the chromosomes in
the nucleus split to yield two
nuclei.

It is a growth process genetically controlled
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Example: 4-Strokes Engine

Intake stroke: air and vaporized fuel are
drawn in

Compression stroke: fuel vapor and air
are compressed and ignited

Combustion stroke: fuel combusts and
piston is pushed downwards

Exhaust/Emission stroke: exhaust is
driven out

During 1st, 2nd and 4th stroke the piston
is relying on the power and momentum
generated by the pistons of the other
cylinders

During the 4 strokes pression, temperature, . . .
vary continuously
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Example: Thermostat

It is a switch controlled by a variation of temperature.
The first thermostat credited to the Scottish chemist Andrew
Ure in 1830
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Topics of the Lectures

Hybrid Automata: syntax and semantics

Finite State Systems (brief refresh)

The Reachability problem

Results of Undecidability

Important Classes of hybrid automata: timed, rectangular, o-minimal,
. . .

Decidabily techniques: (Bi)Simulation, Cylindric Algebraic
Decomposition, . . .

Software Tools
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Today’s Topic

Hybrid Automata: Syntax and Semantics

Sistemi a stati finiti (breve ripasso)

The problem of Reachability

Results of Undecidability

Classi notevoli di Automi Ibridi: timed, rectangular, o-minimal, . . .

Tecniche di Decisione: (Bi)Simulazione, Cylindric Algebraic
Decomposition, Teoremi di Selezione, Semantiche approssimate

. . . e tanto altro:

Logiche temporali
Composizione di Automi
Il caso Stocastico
Stabilità, Osservabilità, Controllabilità
Strumenti Software
Applicazioni
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Historical Background

Computer scientists developed Classical Automata
Theory, Temporal Logics, Model Checking for the analysis
and synthesis of finite systems
Engineers, mathematicians and physicists investigated
Dynamical Systems and Control Theory for the analysis
and synthesis of continuous control systems
In the 90s, computer scientists and control specialists
started to study hybrid systems with discrete and
continuous features
Some computer scientists proposed the model of Hybrid
Automata (e.g., Alur, Courcobetis, Dill, Henzinger, Sifakis,
and many more)
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Hybrid Automata - The Intuition

An hybrid automaton H is
a finite-state automaton with continuous variables Z

Dyn(v)[Z,Z ′, T ]

Inv(v)[Z]

Dyn(v′)[Z,Z ′, T ]

Inv(v′)[Z]

Reset(e)[Z,Z ′];Act(e)[Z]

Reset(e′)[Z,Z ′];Act(e′)[Z]

v v′

A state is a couple 〈v , r〉 where r is a valuation for Z
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Hybrid Automata - Syntax

Definition (Hybrid Automata (Piazza et al.))

A k -hybrid automaton H = 〈Z , Z ′, V, E , Inv , Dyn, Act , Reset〉
consists of the following components:

1 Z =
(
Z1, . . . , Zk

)
and Z ′ =

(
Z ′

1, . . . , Z ′
k

)
are two vectors of

variables ranging over the reals;
2 〈V, E〉 is a finite directed graph;
3 Each v ∈ V is labeled by the two formulæ Inv(v)[Z ] and

Dyn(v)[Z , Z ′, T ] such that if Inv(v)[p] holds then
Dyn(v)[p, p, 0] holds as well;

4 Each e ∈ E is labeled by the formulæ Act(e)[Z ] and
Reset(e)[Z , Z ′].



Introduction

Hybrid Automata - Syntax

Definition (Hybrid Automata (Piazza et al.))

A k -hybrid automaton H = 〈Z , Z ′, V, E , Inv , Dyn, Act , Reset〉
consists of the following components:

1 Z =
(
Z1, . . . , Zk

)
and Z ′ =

(
Z ′

1, . . . , Z ′
k

)
are two vectors of

variables ranging over the reals;
2 〈V, E〉 is a finite directed graph;
3 Each v ∈ V is labeled by the two formulæ Inv(v)[Z ] and

Dyn(v)[Z , Z ′, T ] such that if Inv(v)[p] holds then
Dyn(v)[p, p, 0] holds as well;

4 Each e ∈ E is labeled by the formulæ Act(e)[Z ] and
Reset(e)[Z , Z ′].



Introduction

Hybrid Automata - Syntax

Definition (Hybrid Automata (Piazza et al.))

A k -hybrid automaton H = 〈Z , Z ′, V, E , Inv , Dyn, Act , Reset〉
consists of the following components:

1 Z =
(
Z1, . . . , Zk

)
and Z ′ =

(
Z ′

1, . . . , Z ′
k

)
are two vectors of

variables ranging over the reals;
2 〈V, E〉 is a finite directed graph;
3 Each v ∈ V is labeled by the two formulæ Inv(v)[Z ] and

Dyn(v)[Z , Z ′, T ] such that if Inv(v)[p] holds then
Dyn(v)[p, p, 0] holds as well;

4 Each e ∈ E is labeled by the formulæ Act(e)[Z ] and
Reset(e)[Z , Z ′].



Introduction

Hybrid Automata - Syntax

Definition (Hybrid Automata (Piazza et al.))

A k -hybrid automaton H = 〈Z , Z ′, V, E , Inv , Dyn, Act , Reset〉
consists of the following components:

1 Z =
(
Z1, . . . , Zk

)
and Z ′ =

(
Z ′

1, . . . , Z ′
k

)
are two vectors of

variables ranging over the reals;
2 〈V, E〉 is a finite directed graph;
3 Each v ∈ V is labeled by the two formulæ Inv(v)[Z ] and

Dyn(v)[Z , Z ′, T ] such that if Inv(v)[p] holds then
Dyn(v)[p, p, 0] holds as well;

4 Each e ∈ E is labeled by the formulæ Act(e)[Z ] and
Reset(e)[Z , Z ′].



Introduction

Hybrid Automata - Syntax

Definition (Hybrid Automata (Piazza et al.))

A k -hybrid automaton H = 〈Z , Z ′, V, E , Inv , Dyn, Act , Reset〉
consists of the following components:

1 Z =
(
Z1, . . . , Zk

)
and Z ′ =

(
Z ′

1, . . . , Z ′
k

)
are two vectors of

variables ranging over the reals;
2 〈V, E〉 is a finite directed graph;
3 Each v ∈ V is labeled by the two formulæ Inv(v)[Z ] and

Dyn(v)[Z , Z ′, T ] such that if Inv(v)[p] holds then
Dyn(v)[p, p, 0] holds as well;

4 Each e ∈ E is labeled by the formulæ Act(e)[Z ] and
Reset(e)[Z , Z ′].



Introduction

Comments on the Definition

Inv , Dyn, Act , Reset are sets of formulae in a first-order
language L
E.g., L = (+, ∗, <, 0, 1)

the formulae are evaluated over a model M of L in the
domain R
E.g., M = (R,+, ∗, <, 0, 1)

the nodes V are called locations (or control modes), the
arcs E are called control switches
the variable T represents time
p ∈ Rk
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An Example: Thermostat

Example (Thermostat)
Let us consider a room heated by a radiator controlled by a
thermostat

When the thermostat is on the temperature increases
exponentially in time
When the thermostat is off the temperature decreases
exponentially in time
The thermostat switches on the radiator when the
temperature decreases below 19C
The thermostat switches off the radiator when the
temperature increases above 21C
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An Example: Thermostat

Let us model the behaviour of the temperature in time by an
hybrid automaton H with:

2 locations ON and OFF
2 arcs that join the two locations
1 continuous variable Z that represents the temperature
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An Example: Thermostat

H = 〈Z , Z ′, V, E , Inv , Dyn, Act , Reset〉 such that:
Z e Z ′ are two variables
V = {ON, OFF} and E = {(ON, OFF ), (OFF , ON)}
Inv(ON)[Z ] := Z ≤ 22 and
Dyn(ON)[Z , Z ′, T ] := Z ′ = Z ∗ eT

Inv(OFF )[Z ] := Z ≥ 18 and
Dyn(OFF )[Z , Z ′, T ] := Z ′ = Z/eT

Act((ON, OFF ))[Z ] := Z ≥ 21 and
Reset((ON, OFF ))[Z , Z ′] := Z ′ = Z
Act((OFF , ON))[Z ] := Z ≤ 19 and
Reset((OFF , ON))[Z , Z ′] := Z ′ = Z

. . . it is better to draw it on the blackboard or on paper
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Hybrid Automata - Definitions of Syntax from Literature

T. A. Henzinger
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Hybrid Automata - Definitions of Syntax from Literature

J. Lygeros et al.
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Why . . .

. . . in the proposed definition there are no differential
equations?

to be more general allowing any kind of
solvable/approximable equations
to avoid making differential equations the only culprits of
undecidability and complexity results
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Hybrid Automata - Semantics

` = 〈v , r〉 is admissible if Inv(v)[r ] holds

v v′

r

sf(t′)

Definition (Continuous Transitions)

〈v , r〉 t−→C 〈v , s〉 ⇐⇒

There exists a continuous function
f : R+ 7→ Rk such that r =
f (0), s = f (t) and for each t ′ ∈
[0, t ] the formulæ Inv(v)[f (t ′)] and
Dyn(v)[r , f (t ′), t ′] hold
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Hybrid Automata - Semantics

` = 〈v , r〉 is admissible if Inv(v)[r ] holds

v v′

r s

Definition (Discrete Transitions)

〈v , r〉 〈v ,v ′〉−−−→D 〈v ′, s〉 ⇐⇒

〈v , v ′〉 ∈ E , Inv(v)[r ],
Act(〈v , v ′〉)[r ],
Reset(〈v , v ′〉)[r , s] and
Inv(v ′)[s] hold
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Comments on the Definition

As a fact, we defined an infinite graph with two types of
arcs

(V × Rk ,
〈 , 〉−−→D,−→C)

Could I have been more precise ?
I could have recorded explicitly also the continuous
function f
Could I have been less precise ?
I could have considered only one type of arcs

→=
〈 , 〉−−→D ∪ −→C

untimed semantics
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Hybrid Automata - Reachability

?



Introduction

Hybrid Automata - Reachability

Let I, F ∈ Rk . Can we reach 〈u, F 〉 from 〈v , I〉 ?
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Trace and Reachability

A trace of H is a sequence of admissible states
[`0, `1, . . . , `i , . . . , `n] such that `i−1 → `i holds ∀i ∈ [1, n].

Definition (Reachability)

The automaton H reaches 〈u, s〉, s ∈ Rk , from 〈v , r〉, r ∈ Rk , if
there exists a trace tr = [`0, . . . , `n] of H such that `0 = 〈v , r〉
and `n = 〈u, s〉.

Definition (Reachability Problem)

Given an automaton H, a set of starting points 〈v , I〉, I ⊆ Rk ,
and a set of ending points 〈u, F 〉, F ⊆ Rk , decide whether there
exists a point in 〈v , I〉 from which a point in 〈u, F 〉 is reachable.
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Many Sources of Non-Determinism

Hybrid automata may be non-deterministic since:
Different locations may partially share the invariants
Different continuous trajectories may leave from the same
admissible state
There may be arcs that go to different locations but
partially share the activation functions
The activation functions are not necessarily on the frontiers
of the invariants
The reset functions are not necessarily deterministic
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Example: Thermostat

Z ≥ 21
Z ′ = Z

Z ≤ 19
Z ′ = Z

Z ≥ 18

Z ′ = Z ∗e−T

Z ≤ 22

Z ′ = Z ∗eT

〈ON, 15〉 0.1−−→C 〈ON, 16.57〉 0.25−−→C 〈ON, 21.28〉 〈ON,OFF〉−−−−−−→D

〈OFF , 21.28〉 . . .

〈ON, 15〉 0.35−−→C 〈ON, 21.28〉 〈ON,OFF〉−−−−−−→D 〈OFF , 21.28〉 . . .

〈OFF , 18.5〉 〈OFF ,ON〉−−−−−−→D 〈ON, 18.5〉 . . .

〈OFF , 18.5〉 0.01−−→C 〈OFF , 18.31〉 〈OFF ,ON〉−−−−−−→D 〈ON, 18.31〉 . . .
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Example: Thermostat

Observe that:
From every point leaves an infinite number of trajectories
Some of them are substantially ”equivalent”
Some are not !
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Example: Thermostat

What model could I have built with less information ?

Z ≥ 21
Z ′ = Z

Z ≤ 19
Z ′ = Z

Z ≥ 18Z ≤ 22

Z ′ > Z Z ′ < Z

This one has more traces than the previous one!



Introduction

Example: Thermostat

What model could I have built with less information ?
Z ≥ 21
Z ′ = Z

Z ≤ 19
Z ′ = Z

Z ≥ 18Z ≤ 22

Z ′ > Z Z ′ < Z

This one has more traces than the previous one!



Introduction

References (from which to start)

Automata on Infinite Objects.
W. Thomas. Handbook of TCS 1990.
A Theory of Timed Automata.
R. Alur and D. Dill. TCS 1994.
Hybrid Automata: An Algorithmic Approach to the
Specification and Verification of Hybrid Systems.
R. Alur et al. HS 1993.
The Theory of Hybrid Automata.
T. A. Henzinger. LICS 1996.
Hybrid Systems: Modeling, Analysis and Control.
J. Lygeros, C. Tomlin, and S. Sastry. 2008.


	Introduction

