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Region based processing

Complementary to edge detection
Based on neighborhood characteristics

Local descriptors represent properties of sets of pixels. Typically
these are representative of the pdf (histogram) of the gray values in
each region
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Applications

Image segmentation

— Group similar components (such as, pixels in an image, image frames in
a video) to obtain a compact representation.

— Clustering, classification
« Methods: Thresholding, K-means clustering, etc.

Pattern recognition
— Classification

Scenarios: Finding tumors, veins, etc. in medical images, finding
targets in satellite/aerial images, finding people in surveillance
Images, summarizing video, etc.




Segmentation strategy

Edge-based

Assumption: different objects are
separated by edges (grey level
discontinuities)

The segmentation is performed by
identifying the grey level gradients

The same approach can be
extended to color channels

Region-based

Assumption: different objects are
separated by other kind of
perceptual boundaries

— neighborhood features

Most often texture-based

— Textures are considered as
instantiations of underlying
stochastic processes and
analyzed under the assumptions
that stationarity and ergodicity
hold

Method

— Region-based features are
extracted and used to define
“classes”
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Feature extraction




Types of features

An image feature is a distinguishing primitive characteristic or
attribute of an image.

Amplitude features: image domain

Transformed coefficients features: transformed domain
— Fourier domain
— Principal components (PCA)




Amplitude features

Image variables such as luminance or tristimulus values may be
utilized directly, or alternatively, some linear, nonlinear, or perhaps
noninvertible transformation can be performed to generate variables
in a new amplitude space.

Amplitude measurements may be made at specific image points
fli,j], [e.g., the amplitude at pixel coordinate] , or over a
neighborhood centered at [i,j].

— An advantage of a neighborhood, as opposed to a point measurement,
is a diminishing of noise effects because of the averaging process.

— A disadvantage is that object edges falling within the neighborhood can
lead to erroneous measurements.
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Amplitude features

e Mean over a window W=2w+1

W

w
M(j, k) = % 2 2 F(j+m, k+n)
e

mM=-w 1H=-W

« Median over a window W=2w+1

— The median is defined to be that pixel amplitude in the window for which
one-half of the pixels are equal or smaller in amplitude, and one-half are
equal or greater in amplitude.

 Variance over a window W=2w+1

W W 1.2
S(j, k) = % |i z z [F(j+m k+n)—Mj+m, k+ H)]E}

m=—WW n=-w
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Example

(c) 7 x 7 standard deviation (d) 7 = 7 plus median

FIGURE 16.2-1. Image amplitude features of the washington ir image.
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Histogram features

Mean and standard deviation can be calculated based on the
histogram, as well as other features representing the distribution of
gray level (or tristimulus) values

First order histogram . . _
number of pixels with graylevel=g
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Quantitative histogram shape descriptors

* First order descriptors
Mean:

bP(h)

=
1]
=1
]

Standard deviation:

L—1 o, 1/2
S,=0, = { (b—b)“P(h]}
b=10

Skewness:

L—-1

Sg= 4 Y (b5 P(b)

Cp b=0
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Quantitative histogram shape descriptors

First order descriptors

Kurtosis:

Energy:

Entropy:

L-1
1 _ 4
Sg = = Z (b—b) P(bh)-3

Cp b=0
L—-1 )
Sv-'\,'.' = Z [P(b)]u
b=10

L-1
Sp ==Y P(b)log, {P(h))
h=10
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Quantitative histogram shape descriptors

histogram mode: the pixel amplitude corresponding to the histogram
peak (i.e., the most commonly occurring pixel amplitude in the
window).

If the histogram peak is not unique, the pixel at the peak closest to
the mean is usually chosen as the histogram shape descriptor.

bi-modal histogram

mode
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Quantitative histogram shape descriptors

« Second-order histogram features are based on the definition of the
joint probability distribution of pairs of pixels.

F[m,n]
m,n The joint probability
depends on the pixel
g relative position!
Fij.k] l

ik

FIGURE 16.2-2. Relationship of pixel pairs.
p(a,b)=p{F(j.k)=a,F(n,m)=b}
« Histogram estimate of the second-order distribution

N(a.b) —» number of occurrences for
( : ) which Fj,k]=a AND F[n,m]=b

N \ total number of pixels in the

observation window

p(a,b)=
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Second order histogram estimates

Givenr, theta

gray level
0 1 7
0
® 1EI2+
1 B
7
gray level v

number of occurrences of the
two gray levels

co-occurrence matrix
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Autocorrelation:

Covariance:

where

Descriptors

L-1 L-1
SA = Z z abP(a, b)
a=05b=0
L—-1 L-1
Se = Z Z (a—a)(b->b)P(a,b)
a=0 bh=0
L-1 L-1
a = ZaP(a,fJ)
a=0 bh=0
L-1 L-1
h = ZbP(a,b)
a=0 bh=0
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Descriptors

Inertia:

Absolute value:

Inverse difference:

Energy:

Entropy:

L-1 L-1

S;= % Y (a-b)’Pla.b)

a=10 b=10

L-1 L-1

= 2 Z la—b|P(a. b)

a=0 k=0

L-1 L-1

5, = Z Z _Pla,b)

a=0 b=0 L +la- ;:,}

L-1 L-1

So= 3 Y [Pab)

a=0 =10

L-1 L-1

==Y Y Plab)log,{P(a b)}

a=0 h=0
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Transform features: Fourier

The distribution (histogram) of the

transformed coefficients is w,(m+1) Y B,
characterized either considering g 5} B, ™
the whole frequency domain or wy(m) ) B )
partitioning it according to different ’ AT
criteria wlm)] | w,(m+]
In each frequency region, the " s
most common choice consists in " Bp wy
using first order descriptors f7\ plm#I) ﬁaaimh
— mean ( wy w,
— variance (as indicator of the &Fy
energy)

FIGURE 16.3-1. Fourier transform feature masks.
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Segmentation




Image Segmentation

Contour-based Region-based

« Discontinuity « Similarity, homogeneity
— The approach is to partition an

image based on abrupt changes
in gray-scale levels.

« The principal approaches in this
category are based on

— The principal areas of interest — thresholding,
within this category are detection — region growing
of isolated points, lines, and — region splitting/merging
edges in an image. — clustering in feature space
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Thresholding

* Image model
— The objects in the image differ in the graylevel distribution
» Simplest: object(s)+background
— The spatial (image domain) parameters (i.e. mean, variance) are
sufficient to characterize each object category
» rests on the ergodicity assumption

— Easily generalized to multi-spectral images (i.e. color images)

Histogram of the stratched
T T T
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Thresholding

Individual pixels in an image are marked as “object” pixels if their

value is greater than some threshold value and as “background”
pixels otherwise — threshold above

— assuming an object to be brighter than the background
— Variants
 threshold below, which is opposite of threshold above;

 threshold inside, where a pixel is labeled "object" if its value is between two
thresholds

 threshold outside, which is the opposite of threshold inside

— Typically, an object pixel is given a value of “1” while a background pixel
is given a value of “0.”

— Finally, a binary image is created by coloring each pixel white or black,
depending on a pixel's label.
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Thresholding types

Histogram shape-based methods

— Peaks, valleys and curvatures of the smoothed histogram are analyzed

Clustering-based methods

— gray-level samples are clustered in two parts as background and
foreground (object), or alternately are modeled as a mixture of two
Gaussians

Entropy-based methods

— Entropy of the foreground and background regions, cross-entropy
between the original and segmented image, etc.

Object attribute-based methods
— Based on a measure of similarity between the gray-level and the

binarized images, such as fuzzy shape similarity, edge coincidence, etc.
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Thresholding types

Stochastic methods: use higher-order probability distributions and/or

correlation between pixels

Local or adaptive methods: adapt the threshold value on each pixel
to the local image characteristics
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Histogram thresholding

Suppose that an image, f(x,y), is composed of light objects on a dark
background, and the following figure is the histogram of the image.

T

Then, the objects can be extracted by comparing pixel values with a

threshold T.
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Thresholding

a
b ¢

FIGURE 10.28
(a) Original
image. (b) Image
histogram.

(c) Result of
elobal
thresholding with
T midway
between the
maximum and
minimum gray
levels.
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Thresholding




Histogram thresholding

Analytical models can be fit to the valleys of the histogram and then
used to find local minima

object

s background

ax2+bx+c

v
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Choice of the T value

Empirical, by inspection

Automatic
1. Choose an initial value T
2. Segment the image accordingly
— This will produce twos sets of pixels, G1 and G2
G :g>T

G,:gsT
3. Update the threshold

T=%(ﬂl+ﬂ2), = ‘é‘lég[i il ﬂféz alr. 1]

4. Go back to 2 until the change due to the update of T reaches a lower
bound AT,
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Multilevel luminance thresholding

It is also possible to extract objects that have a specific intensity range
using multiple thresholds.

|‘ ‘||||I|I.II|H||||IIH||| -
Tl T?

T
ab

FIGURE 10.26 (a) Gray-level histograms that can be partitioned by (a) a single thresh-
old, and (b) multiple thresholds.

Extension to color images is straightforward: There are three color channels, in
each one specifies the intensity range of the object... Even if objects are not
separated in a single channel, they might be with all the channels... Application
example: Detecting/Tracking faces based on skin color...
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Optimal global and adaptive thresholding

Assumptions:
— The image contains only two principal gray level regions
— The histogram is bimodal
— It can be considered as a good estimate of the pdf

Model:

— The global histogram is given by the mixture (sum) of the two pdfs

— The weights are proportional to the relative areas of the dark and light
regions
« And thus are given by the areas under the two, respectively
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Optimal global and adaptive thre

p(z)

background
—P2(z)

Mixture pdf describing the global gray level variations in the image

p(z)=Rp.(2)+P,p,(2)
P+P =1
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Probability of errors

Misclassification of a background point as object

Misclassification of an object point as background

400

E, (T): j pl(Z)dZ

T

Total error probability
E(T) - P2E1(T)+ RE, (T)

« E, is weighted by P, because if the probability of background points is zero
than the contribution to such points to the error is zero too
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Finding the threshold

« Take the derivative of E with respect to T and set it to zero

E(T): PzEl(T)"'PlEz (T)

dE dE dE
E_Pzd—-l-l"'Pld—TZ: p2P2_p1P1:O

P = p,PF,
* Notes
— If P,=P, then the optimal value for T corresponds to the intersect of the
curves

— The explicit calculation of T requires the knowledge of the pdf, which is
not always the case

— In general, it is assumed that the two pdfs are Gaussian
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Finding the threshold qui

For Gaussian mixtures

(z-1)"

P1 202 P2 20,2
Z)= € o+ € ?
P(2) \2ro, \2ro,

If o=0,=0,

2
_)T:1u1+1u2 o In(PZJ
2 -, R
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Clustering based thresholding

« Definition and optimization of a cost (or objective) function
— Cost of classifying a background pixel as an object pixel is Cb.
— Cost of classifying an object pixel as a background pixel is Co.
— Find the threshold, T, that minimizes the total cost.

Background
. Object
a 2a ]
T
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Clustering based thresholding

|ldea 1: pick a threshold such that each pixel on each side of the
threshold is closer in intensity to the mean of all pixels on that side
of the threshold than the mean of all pixels on the other side of the

threshold. Let
— Mg(T) = the mean of all pixels less than the threshold (background)

— Mo(T) = the mean of all pixels greater than the threshold (object)

We want to find a threshold such that the grey levels for the object
are closest to the average of the object and the grey levels for the
background are closest to the average of the background:

Vg 2T —|g—p,(T) <|g—15(T)
Ve <T = |g— 4, (T) 2|9 — 15(T)
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Clustering based thresholding

« l|dea 2: select T to minimize the within-class variance—the weighted
sum of the variances of each cluster:

it (T) =g (T) % (T)+n, (T) o7 (T)

g (T)

Il
©
—~~
«
~

mixture weights

g=T
o’ (T): variance of the pixels in the background (g<T)
o, (T): variance of the pixels in the object (g > T)
0,...,N —1: range of intensity levels
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Clustering based thresholding

« |dea 3: Modeling the pdf as the superposition of two Gaussians and
take the overlapping point as the threshold

1 X=m ? 1 X—= 2
A CON A
h(x) = Plpl(x)+P2p2(x):—12e 2£ 1 j n 2 2 e 2( 2 j
\ 270, 270,
optimal optimal optimal
| threshold l QLK

_ " distribution of objects
* distribution of background

conventional

conventional
thrashold

optimal ;
ht eshold lOptlmall
corventional
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Bottlenecks

Non-uniform illumination may change the histogram in a way that it
becomes impossible to segment the image using a single global
threshold.

Choosing local threshold values may help

Guideline: partition the image in blocks of almost uniform luminance and
perform the segmentation locally

— In alternative, one can apply chromatic adaptation transforms which
compensate for differences in the scene illumination, such as retinex
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Examples

o & 1

- - L]

a
biic
de

FIGURE 10.27
(a) Computer
generated
reflectance
function.

(b) Histogram of
reflectance
function.

(¢) Computer
generated
illumination
function.

(d) Product of (a)
and (c).

(e) Histogram of
product image.




Examples

« Adaptive thresholding

ab

cd

FIGURE 10.30
(a) Original
image. (b) Result
of global
thresholding.
(c) Image
subdivided into
individual
subimages.

{d) Result of
adaptive
thresholding.

45




Region based segmentation

* Formulation

Ri =R the segmentation must be complete

n
i=1

- - - the points in a region must be connected according
R; Isaconnected region 1 =1,...,N ;7" redefined criterion

[] = i I th ' t be disjoint

Ri Rj = Vi# | e regions must be disjoin

PR ( R. ) — TRUE =1 n condition that is satisfied by all points in R,
I ’. . I’

_ . . regions Ri and Rj are different with respect to
PR(Ri U RJ' ) = FALSE ViZ ] predicate PR

PR: logical predicate defined over the region. Ex: all points in the region have the same gray level
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Region-Oriented Segmentation

« Region Growing
— Region growing is a procedure that groups pixels or subregions into
larger regions.

— The simplest of these approaches is pixel aggregation, which starts with
a set of “seed” points and from these grows regions by appending to
each seed points those neighboring pixels that have similar properties
(such as gray level, texture, color, shape).

— Region growing based techniques are better than the edge-based
techniques in noisy images where edges are difficult to detect.
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Region-Oriented Segmentation

Region Splitting
— Region growing starts from a set of seed points.

— An alternative is to start with the whole image as a single region and
subdivide the regions that do not satisfy a condition of homogeneity.

Region Merging
— Region merging is the opposite of region splitting.
— Start with small regions (e.g. 2x2 or 4x4 regions) and merge the regions that
have similar characteristics (such as gray level, variance).

Typically, splitting and merging approaches are used iteratively.
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Region-Oriented Segmentation

Region splitting and merging

The image is initially splitted into regions arbitrarily. These are
subsequently merged and/or further splitted to satisfy the predefined
homogeneity criterion

Let R be a region and PR a predicate. The approach consists in taking
initially R=entire image and splitting it in subregions such that at the
end of the process PR(R,)=TRUE in every region.

Recipe:

. Evaluate PR over R: if it is FALSE then split R in, let’s say, 4

subregions
Repeat the procedure for each resulting region

For each couple i,j evaluate PR(RUR)). If this is TRUE then merge R,
and R,
J

Stop when no further splitting or merging is possible

49




Region splitting and merging
Image quadtree resulting for the considered type of splitting
]
- & ® ® &
F) () (&) ()
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Region-Oriented Segmentation

abc

FIGURE 10.43

(a) Original
image. (b) Result
of split and merge
procedure.

(¢) Result of
thresholding (a).

%
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Towards texture segmentation

All the methods using means and variances to characterize regions

basically characterize the texture of the region

The concept of texture segmentation consists in using texture
features as predicates
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Example

Suppose that we have the image given below.

(a) Use the region growing idea to segment the object. The seed for the object is the center of the
image. Region is grown in horizontal and vertical directions, and when the difference between two
pixel values is less than or equal to 5.

Table 1: Show the result of Part (a) on this figure.

10| 10 | 10 | 10 | 10 | 10 | 10
10 10 | 10 | 69 | 7O | 10 | 10
59 | 10 | 60 | 64 | 59 | 56 | 60
10 | 59 | 10 | 60 | 7O | 10 | 62
10 | 60 | 59 | 65 | 67 | 10 | 65
10 | 10 | 10 | 10 | 10 | 10 | 10
10 (10 | 10 | 10 | 10 | 10 | 10




Example

(b} What will be the segmentation if region is grown in horizontal, vertical, and diagonal directions?

Table 2: Show the result of Part (b) on this figure.

10| 10 | 10 | 10 | 10 | 10 | 10
10 [ 10 | 10 | 69 | 70 | 10 | 10
59 |10 | 60 | 64 | 59 | 56 | 60
10 | 69 | 10 | 60 | 70 | 10 | 62
10 | 60 | 59 | 65 | 67 | 10 | 65
10 (10 | 10 | 10 | 10 | 10 | 10
10 (10 | 10 | 10 | 10 | 10 | 10




Watershed Segmentation Algorithm

Visualize an image in 3D: spatial coordinates and gray levels.

In such a topographic interpretation, there are 3 types of points:
Points belonging to a regional minimum

Points at which a drop of water would fall to a single minimum. (= The catchment basin
or watershed of that minimum.)

Points at which a drop of water would be equally likely to fall to more than one minimum.
(= The divide lines or watershed lines.)

| Catchment

Watershed basins
lines
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Watershed Segmentation Algorithm

« The objective is to find watershed lines.

« Theideais simple:

— Suppose that a hole is punched in each regional minimum and that the entire

topography is flooded from below by letting water rise through the holes at a uniform
rate.

— When rising water in distinct catchment basins is about to merge, a dam (diga) is built to
prevent merging.

— Dam boundaries correspond to the watershed lines.

Distance Complemented Image Profile

Brightness W

235 —lr—p——————pee L T LT )

Brighmess w

25 —t——y—r—p—p—r—r—r—Tr-Tr-r LI
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Watershed Segmentation Algorithm

Brighiness

255

Brightness

255

First two water
bodies meet

Distance
first pixel marked
P T Ty Oy e
.'_""_"
Distance

second pixel marked

Second two water
bodies meet

Distance

Imaoe Profile

Y




Watershed Segmentation Algorithm

e f

g h

FIGURE 10.44
{Contintied)

(e) Result of
further flooding.
(1) Beginning of
merging of water
from two
catchment basins
(a short dam was
built between
them). (g) Longer
dams. (h) Final
watershed
(segmentation)
lines. (Courtesy of
Dr. S. Beucher,
CMM/Ecole des

Mines de Paris.)
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Watershed Segmentation Algorithm

« Start with all pixels with the lowest possible value.
— These form the basis for initial watersheds

« For each intensity level k:

— For each group of pixels of intensity k
+ If adjacent to exactly one existing region, add these pixels to that region
» Else if adjacent to more than one existing regions, mark as boundary
» Else start a new region
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Watershed Segmentation Algorithm

Watershed algorithm might be used on the gradient image instead of the
original image.

ab
cd

FIGURE 10.46
{a) Image of
blobs. (b) Image
gradient.

{c) Watershed
lines.

(d) Watershed
lines
superimposed on
original image.
(Courtesy of Dr.
S. Beucher,
CMM/Ecole des
Mines de Paris.)
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Watershed Segmentation Algorithm

Due to noise and other local irregularities of the gradient, over-segmentation
might occur.

ab

FIGURE 10.47

(a) Electrophoresis
image. (b) Result
of applying the
watershed
segmentation
algorithm to the
eradient image.
Oversegmentation
is evident.
(Courtesy of Dr.
S. Beucher,
CMM/Ecole des
Mines de Paris.)
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Supervised Watershed Segmentation

A solution is to limit the number of regional minima. Use markers to specify
the only allowed regional minima.

Initial Resulting

function -

;E_I B e
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Watershed Segmentation Algorithm

A solution is to limit the number of regional minima. Use markers to specify
the only allowed regional minima. (For example, gray-level values might be
used as a marker.)

ab

FIGURE 10.48

(a) Image showing
internal markers
(light gray regions)
and external
markers
(watershed lines).
(b) Result of
segmentation. Note
the improvement
over Fig. 1047(b).
(Courtesy of Dr. S.
Beucher,
CMM/Ecole des
Mines de Paris.)

A detailed description of the algorithm can be found in Gonzalez, Chapt. 10.
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Use of Motion In Segmentation

Take the difference between a reference image and a subsequent image to
determine the still elements image components.

abc

FIGURE 10.50 Building a static reference image. (a) and (b) Two frames in a sequence.
(c) Eastbound automobile subtracted from (a) and the background restored from the
corresponding area in (b). (Jain and Jain.)
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Motion based segmentation qui

Video sequences
Concept: detect the changes from one image to the next

Possible approaches

— Taking image differences
— Block matching

— Optical flow
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Difference images

« Difference image between two images taken at time points ti and

1 it |f(xy.t) — flxpt) > T
0 otherwise

— d;=1 only if the difference between the pixel values in the two images
are above a given threshold T

— d; has the same size as the two images

« Drawbacks
— Sensitivity to noise
« Accumulation strategies can be devised

— Only allows to detect motion but not to characterize it

« This would require establishing correspondences among pixels to calculate
motion vectors
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Block matching

Block-matching
16x16 pixels/block

Search window: 16 pixels
from the original position

Computationally heavy!
To reduce the complexity
Sub-optimal algorithms

Hardware assisted
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Block matching

| e

| - q

‘@ 2 E
. i.!. i. | »

o BN
ﬂ!a SEN
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Motion estimation & Motion compensation

Current frame (A)

Previous frame

hul

o
a\o\\\\

Motion compensation

Delta frame=A-B

(0°7

.

\

Compensated frame (B)

R

Reference frame Delta frame+Motion
(prediction residual, \ectors

previously decoded)

/
/

Reconstructed frame
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Texture recognition




What is texture?

No agreed reference definition
— Texture is property of areas
— Involves spatial distributions of grey levels

— Avregion is perceived as a texture if the number of primitives in the field

of view is sufficiently high
— Invariance to translations
— Macroscopic visual attributes

 uniformity, roughness, coarseness, regularity, directionality, frequency [Rao-

96]
— Sliding window paradigm
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Texture analysis

Texture segmentation
— Spatial localization of the different textures that are present in an image
— Does not imply texture recognition (classification)
— The textures do not need to be structurally different

— Apparent edges
» Do not correspond to a discontinuity in the luminance function
« Texture segmentation «— Texture segregation

— Complex or higher-order texture channels
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Texture analysis

» Texture classification (recognition)

— Hypothesis: textures pertaining to the same class have the same visual
appearance — the same perceptual features

— Identification of the class the considered texture belongs to within a
given set of classes

— Implies texture recognition

— The classification of different textures within a composite image results
in @ segmentation map

L T

1
#
&
i

oA

1
"
'
13
L
“
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Clustering and Classification

» Clustering » Classification
— Putting together (aggregating) — ldentification of the class a given
feature vectors based on a feature vector belongs to based
minimum distance criterion on a minimum distance criterion
— Self-contained: no need to refer to and based on a set of available
other images or data samples examples

— Uses a reference database of
example images that identify the
different classes

Hypothesis: the classes (textures) are separated in the feature space

Both result in a segmentation map associating one class to each pixel
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Co-occurrence matrix

A co-occurrence matrix, also referred to as a co-occurrence

distribution, is defined over an image to be the distribution of co-
occurring values at a given offset.

Mathematically, a co-occurrence matrix C [1,J] is defined over an
NxM image |, parameterized by an offset (k,l), as:

gray level values
N M (1 if I(p,g)=iand I(p+k,q+1) =]
i)
k,‘ ZZ{ 0, otherwise

The co-occurrence matrix depends on (k,l), so we can define as
many as we want
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Texture Classification

* Problem statement
— Given a set of classes {w,, i=1,...N} and a set of observations

{Xi,,k=1,...M} determine the most probable class, given the
observations. This is the class that maximizes the conditional
probability:

0,

winner

= max P(a]X,)




Texture classification

* Method
— Describe the texture by some features which are related to its
appearance
» Texture — class — w,
* Descriptors — Feature Vectors (FV) — Xx;,

— Define a distance measure for FV

— Choose a classification rule
» Recipe for comparing FV and choose ‘the winner class’
— Assign the considered texture sample to the class which is the closest in
the feature space
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texture classes

Exemple
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FV extraction

Step 1: create independent texture instances

Training set

Test set
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Feature extraction

Step 2: extract features to form feature vectors

f rev r
features eature vecto

v

mean

energy (variance)
of luminance

v

energy of chromatic
channels

v

edge map

v

One FV for each sub-image I:> Classification algorithm
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Feature vector distance

« Step 3: definition of a distance measure for feature vectors
— Euclidean distance

d(%.9,) = (% =%, ) + (Y=Y, ) .. 4 (2, - 2,)
Vlz{xl’yl""’zl}
V, ={X,, Vpreeer 25}

Distance in the feature space

Vi \
Y,
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Classification steps

« Step 4: Classification

— Phase 1: Training

* The classification algorithm is provided with many examples of each texture
class in order to build clusters in the feature space which are representative
of each class

« Examples are sets of FV for each texture class
» Clusters are formed by aggregating vectors according to their “distance”

— Phase 2: Testing

* The algorithm is fed with an example of texture w; (vector ;) and
determines which class it belongs to as the one to which it is “closest” in the
feature space
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Sample

Classification

Training set Build the
reference
Feature cluster
extraction H '
v
Test set R Classification
core
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Condition: Separabillity in the Feature

Space
Bi-dimensional feature . . ;
space (FV of size 2) Z/Iptgg—edlmensmnal eature
FV(1) T \
FV(1)
! FV(2) FV(3)
Clustering: building the clusters FV(2)

Classification: identification of the cluster (built on some examples) which best represents
the vector according to the chosen distance measure
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Types of classification algorithms

« Measuring the distance among a class and a vector

— Each class (set of vectors) is represented by the mean (m) vector and
the vector of the variances (s) of its components = the training set is
used to build m and s

— The distance is taken between the test vector and the m vector of each
class

— The test vector is assigned to the class to which it is closest
» Euclidean classifier
» Weighted Euclidean classifier

— Example: k-means clustering

« Measuring the distance among of vectors

— One vector belongs to the training set and the other is the one we are
testing

— Example: kNN clustering
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KNN

« Given a vector v of the test set

— Take the distance between the vector v and ALL the vectors of the
training set

— (while calculating) keep the k smallest distances and keep track of the
class they correspond to

— Assign v to the class which is most represented in the set of the k

+ smallest distances ,
0 N s 0.10.57 0.9 1.2

A A

1 4 A 252.77 3.14 k=3

A A

A } 0.16.107.9 8.4
12.3

<

Vv is assigned to class 1
FV for FV for FV for

class 1 class 2 class 3




Confusion matrix

textures 1 2 3 4 5 6 7 8 9 10 % correct
1 841 0 0 0 0 0 0 0 0 0 100.00%
2 0 840 1 0 0 0 0 0 0 0 99.88%
3 2 0 839 0 0 0 0 0 0 0 99.76%
4 0 0 0 841 0 0 0 0 0 0 100.00%
5 0 0 88 0 753 0 0 0 0 0 89.54%
6 0 0 134 0 0 707 0 0 0 0 84.07%
7 0 66 284 0 0 0 491 0 0 0 58.38%
8 0 0 58 0 0 0 0 783 0 0 93.10%
9 0 0 71 0 0 0 0 0 770 0 91.56%
10 0 4 4 0 0 0 0 0 0 833 99.05%




1.

2.

3.
4.

K-Means Clustering

Partition the data points into K clusters randomly. Find the centroids of
each cluster.

For each data point:
—  Calculate the distance from the data point to each cluster.
—  Assign the data point to the closest cluster.

Recompute the centroid of each cluster.

Repeat steps 2 and 3 until there is no further change in the
assignment of data points (or in the centroids).

88




K-Means Clustering
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K-Means Clustering

90




K-Means Clustering
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K-Means Clustering
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K-Means Clustering
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K-Means Clustering
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K-Means Clustering
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K-Means Clustering
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Example

Duda et al.

K-Means Clustering

= X,
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K-Means Clustering

« RGB vector

K-means clustering m

inimizes

200

2 2

i eclusters ( jeelements of i'th cluster

2
b~
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 Example

D. Comaniciu and P.
Meer, Robust Analysis
of Feature Spaces:
Color Image
Segmentation, 1997.

Clustering
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K-Means Clustering

Original K=5
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K-means, only color is used
in segmentation, four clusters
(out of 20) are shown here.




K-means, color and position
is used in segmentation, four
clusters (out of 20) are shown
here.

Each vector is (R,G,B,x,y).




K-Means Clustering: Axis Scaling

« Features of different types may have different scales.

— For example, pixel coordinates on a 100x100 image vs. RGB color values in
the range [0,1].

* Problem: Features with larger scales dominate clustering.

e Solution: Scale the features.
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Conclusions

No golden rule exists for segmentation
Can be edge-based or region-based

Relates to feature extraction
— Inimage space
— In transformed domain

Can be performed by clustering
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