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Basic issues
Separable spaces and bases
Separable wavelet bases (2D DWT)
Fast 2D DWT
Lifting steps scheme
JPEG2000

Topics

Advanced concepts

* Overcomplete bases

— Discrete wavelet frames (DWF)
Algorithme a trous

— Discrete dyadic wavelet frames (DDWF)

* Hints on edge sensitive wavelets
— Contourlets




Separable Wavelet bases

In general, to any wavelet orthonormal basis {y; .}, =z* of L2(R), one can
associate a separable wavelet orthonormal basis of L2(R?):

{‘/fil.nl (x1) l'l{f_’.ll_) (x2) }

(j1J2.11.m2)€L?

The functions v, (x,) and ¥, ,,(x,) mix information at two different scales
along x, and x,, which is something that we could want to avoid

Separable multiresolutions lead to another construction of separable wavelet
bases with wavelets that are products of functions dilated at the same scale.




Separable multiresolutions

The notion of resolution is formalized with orthogonal projections in spaces of
various sizes.

The approximation of an image f(x4,x,) at the resolution 2/ is defined as the
orthogonal projection of f on a space V/? that is included in L?(R?)

The space V/? is the set of all approximations at the resolution 2/.
— When the resolution decreases, the size of VJ-2 decreases as well.

The formal definition of a multiresolution approximation {V;%};c, of L?(R?) is a
straightforward extension of Definition 7.1 that specifies multiresolutions of L?(R).
— The same causality, completeness, and scaling properties must be satisfied.




Separable spaces and bases

Tensor product
— Used to extend spaces of 1D signals to spaces of multi-dimensional signals
— A tensor product X, ® X,  between vectors of two Hilbert spaces H, and H, satisfies

the following properties

Linearity

VAeC,A(x,®x,)=(Ax)®x, =x ®(Ax,)

Distributivity

(x1 —|ryl)®(x2 +)/2):()c1 ®x2)+(x1 ®y2)+(y1 ®x2)+(y1 ®y2)+

This tensor product yields a new Hilbert space [ = H, ® H, including all the
vectors of the form X, ®x2 where X, € H1 and X, € [—[2 as well as a linear
combination of such vectors

An inner product for H is derived as <x1 ® x,, ¥, ®y2> = <x1aJ/1 >H <x2’y2>H




Separable bases

 TheoremA3let H=H ®H, .If {eln}neN and {ezn}neN are Riesz bases of H,
and H,, respectively, then {eln ®€2m} is a Riesz basis for H. If the two bases

n,meN2

are orthonormal then the tensor product basis is also orthonormal.

— To any wavelet orthonormal basis one can associate a separable wavelet
orthonormal basis of L?(R?)
{W],l/l (x)9 l//l,m (y)}(j,n,l,m)eZ4

However, wavelets i (x) and w,,(x) mix the information at two different
scales along x and y, which often we want to avoid.




Separable Wavelet bases

Separable multiresolutions lead to another construction of separable wavelet
bases whose elements are products of functions dilated at the same scale.

We consider the particular case of separable multiresolutions

A separable 2D multiresolution is composed of the tensor product spaces
2 _
Vi=V, &V,

V#is the space of finite energy functions f(x,y) that are linear expansions of
separable functions

fCay)=2alnlf,(0g,(»)  fieV; g,V

If {V} is a multiresolution approximation of L2(R), then {V2 } is a
) jez : : J ) jez
multiresolution approximation of L2(R?).




Separable bases

It is possible to prove (Theorem A.3) that

1 (x—2'n y— 2/ m
{gpj,n,m(x’ﬁ =7 Pim (V)= 3 w( 2/ }D( 2/ J} )
(n,m)eZ

is an orthonormal basis of sz_

A 2D wavelet basis is constructed with separable products of a scaling function and a
wavelet w,

l//]—l W]—l
Vil v

vil 9 Wil v, >

1 Wy
Vi




Examples

EXAMPLE 7.13: Piecewise Constant Approximation

Let V; be the approximation space of functions that are constant on [27m, 27 (m+ 1)] for
any meZ. The tensor product defines a two-dimensional piecewise constant approximation.
The space ij is the set of functions that are constant on any square [27ny, 2/ (12 + 1)] X
2713, 27 (ny + 1)), for (1, n2) € Z2. The two-dimensional scaling function is

1 fosxy<slando=sx=1

&7 (x) =d(x1) d(x2) = [() otherwise.

EXAMPLE 7.14: Shannon Approximation

Let V; be the space of functions with Fourier transforms that have a support included in
[—2~77, 27/ 7]. Space ij is the set of functions the two-dimen;ional _Fourier trarjsformg of
which have a support included in the low-frequency square [-2777, 27| X [-27V 7, 277 77].
The two-dimensional scaling function is a perfect two-dimensional low-pass filter the Fourier
transform of which is
. A 1 iflo]|=277and |wz| <2777
$(@1) $(@2) = [O otlhelnl/vise. . '




Separable wavelet bases

A separable wavelet orthonormal basis of L2(R?) is constructed with separable
products of a scaling function and a wavelet .

The scaling function is associated to a one-dimensional multiresolution
approximation {V};c.

Let {V;%};<, be the separable two-dimensional multiresolution defined by
2 _
Vi =V, 87,

Let W,/ be the detail space equal to the orthogonal complement of the lower-
resolution approximation space V2 in V, ;%

2 2 2
V=) ew,

To construct a wavelet orthonormal basis of L2(R?), Theorem 7.25 builds a wavelet
basis of each detail space W .
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Separable wavelet bases

Theorem 7.25

Let ¢ be a scaling function and y be the corresponding wavelet generating an orthonormal basis of
L2(R). We define three wavelets

' (x,3) = p(x)y ()

v’ (x, ) =y (X)p(y)

and denote for 1<=k<=3 l//3(x,y) =y () (y)
1

k _ Lk
Vinm %)) =_5¥ (

x=2'n y—=2'm
2/ 7 2/
The wavelet family | , \

W D5, )05, (2]

n,m)EZ2

is an orthonormal basis of sz and

{.//},n,m (xa y)al)yjz’,n,m (X, y)al//;,n,m (xa y)}(j,n,m)eZ3

is an orthonormal basis of L?(R?)

On the same line, one can define biorthogonal 2D bases.
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Separable wavelet bases

The three wavelets extract image details at different scales and in different
directions.

Over positive frequencies, @(®) and ¥ (@) have an energy mainly
concentrated, respectively, in [0,77 ] and [11,2 T1].

The separable wavelet expressions imply that

W' (wx7wy) = @(a’x)‘/}(wy) vii|  wia
v (0,,0,)=v(0,)d(o, v, v

2 : .
7 (0.0,)=p(0)9 0 Eraai w
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Bi-dimensional wavelets

coife: phi(x)*phiy). coifz: phi(x)*psify).

(x,y) = p(x)p(y) ‘ N
w'(x,y)=p(x)y(y) . o

v (x, ) =y (D)) R P M/ |

v (x, ) =w(xX)w(y)

caif2: psilx)*phily). cif2: psi(x)*psify).

1 xy—by x9-by

0y A
,/alaz aq oy

) where (x = (x;.x5) € R2)




Example: Shannon wavelets
EXAMPLE 7.16

For a Shannon multiresolution approximation, the resulting two-dimensional wavelet basis
paves the two-dimensional Fourier plane (wy. w2) with dilated rectangles. The Fourier trans-
forms Ef) and i are the indicator functions of [—7, 7] and [ =2, —a ][, 2], respectively.
The separable space ‘{f contains functions with a two-dimensional Fourier transform support
included in the low-frequency square [—2 7, 27 #] X [—2/ &, 27/ #]. This corresponds to
the support of q?)i” indicated in Figure 7.23.

The detail space ‘ﬂf Is the orthogonal complement of 1-}3 In ‘{f_l and thus includes
functions with Fourier transforms supported in the frequency annulus between the two squares

><8 v
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Multiresolution vision

The visual acuity is greatest at the center of the retina
where the density of receptors is maximum. When moving
apart from the center, the resolution decreases
proportionally to the distance from the retina center

A retina with a uniform resolution equal to the highest
fovea resolution would require about 10,000 times more
photoreceptors. Such a uniform resolution retina would
increase considerably the size of the optic nerve that
transmits the retina information to the visual cortex and
the size of the visual cortex that processes this data.

Active vision strategies compensate the non-uniformity of
visual resolution with eye saccades, which move
successively the fovea over regions of a scene with a
high information content. These saccades are partly
guided by the lower resolution information gathered at the
periphery of the retina. This multiresolution sensor has
the advantage of providing high resolution information at
selected locations, and a large field of view, with relatively
little data.

Human retina

Fig. 1. Human retina as seen through an opthalmoscope.
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Multiresolution computer vision

Multiresolution algorithms implement in software the search for important high
resolution data. A uniform high resolution image is measured by camera but only
a small part of this information is processed

Coarse to fine algorithms analyze first the lower resolution image and selectively
increase the resolution in regions where more details are needed.

Applications: object recognition, stereo calculations...

18




Biorthogonal separable wavelets

Let @,y,@ and v be a two dual pairs of scaling functions and wavelets that generate
a biorthogonal wavelet basis of L (R)

The dual wavelets of ¥',y” and y° are
9! (x.) =@ (x)9()

9 (x.y) = (x)5(»)

9 (xy) = (x)a(y)

One can verify that

(0,9,
and
{0V}
are biorthogonal Riesz basis of L (Rz)

k " x=2'n y=2'm
‘//j,n,m(an’)—sz( 2] p 2]

j.n€Z’

j,n,mEZ3
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Fast 2D Wavelet Transform

a'[nﬂm]:<f9(0jnm> . . .
Approximation at scale |

dk [n m <f W > Details at scale j
k=123
la;, {dl- , djz- , d;}lgng] Wavelet representation
Analysis
a;ln,m]=a;*hh[2n,2m]
diﬂ [n,m]=a; *hg[2n,2m]
dfﬂ [n,m]=a; * gh[2n,2m]
djfﬂ [n,m]=a; * gg[2n,2m]
Synthesis

a;[n,m]= *hh[n,m]+dl+1 * hgn, m]+dj+1 * ghn, m]+dj+1 gg[n,m]

aj+1
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Fast 2D DWT

Rows Columns

k)
T

a; ht2 E—iz—-—ffjﬂ

(a)
Columns Rows
f-lrj'+1 —-—1'3— h‘ i TE — h —Il-—(-;\—ll—ff.lf
(j;_'_l—l-—Tz—E.{ 4
2 3 ,
df:'+1 ——12— ¢
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Finite images and complexity

When a, is a finite image of N=N,xN, pixels, we face boundary problems when
computing the convolutions
— A suitable processing at boundaries must be chosen

For square images with N,N,, the resulting images a; and d; ; have N;N,/22
samples. Thus, the images of the wavelet representation include a total of N
samples.

— If hand g have size K, one can verify that 2K/22(;-1) multiplications and additions are
needed to compute the four convolutions

— Thus, the wavelet representation is calculated with fewer than

— The reconstruction of a, by factoring the reconstruction equation requires the same
number of operations.
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Separable biorthogonal bases

One-dimensional biorthogonal wavelet bases are extended to separable
biorthogonal bases of L2(R?) following the same approach used for orthogonal
bases

Let @,9,@,9 be two dual pairs of scaling functions and wavelets that generate
biorthogonal wavelet bases of L2(R). The dual wavelets of

Y (%), (x.y).97 (x,)

are
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Separable biorthogonal bases

One can verify that

2 3

1
{wj,n,m > wj,n,m > wj,n,m

}j,n,mEZ3

1 7.2 73

{wj,n,m > l/}j,n,m ’ wj,n,m

}j,n,mEZ3

are Riesz basis of L?(R?)
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Subband structure for images
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Wavelet bases in higher dimensions

Separable wavelet orthonormal bases of L?(RP) are constructed for any p=2 with a
procedure similar to the two-dimensional extension. Let ¢ be a scaling function
and g a wavelet that yields an orthogonal basis of L?(R).

We denote 6%=¢ and 68" = y. To any integer 0<e<2P-1 written in binary form
£=¢,,..€, we associate the p-dimensional functions defined in x = (x;. . . ,x;) by

Y° (x) = (xl)...ﬁg" (xp)

For e=0 we obtain the p-dimensional scaling function

@"(x)= (p(xl)...(,v(xp)
Non-zero indexes € correspond to 2°P-1 wavelets. At any scale 2/ and for n=(n,, . . .
,n,) we denote

¢ 1 ¢ x1_2jn1 xp—Zjnp
wj,n(x)= zpjl/J Ty

28




Wavelets in p-dimensions

Theorem 7.25: The family obtained by dilating and translating the 2°P-1 wavelets
for ¢=0is an orthonormal basis of L?(RP)

{wj’” }lsg<2p -1,(j.n)EZ”

The wavelet coefficients at scales 2 are computed with separable convolutions and

subsamplings along the p signal dimensions

a;[n]= <f’¢j,n>
d,[n]=(fy5,) for 0<e<2 -1
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Fast p-dimensional WT

The fast WT is calculated with filters that are separable products of the one-
dimensional filters h and g.

The separable p-dimensional low-pass filter is hy[n]=h[n,]..h[n ]

30




Fast p-dimensional WT

Let us denote u°[m] = h|m| and u'[m| = g[m]. To any integer € =€, . . . €, written
in a binary form, we associate a separable p-dimensional band-pass filter

gi[nl =u[m] . .. & [np).
Let g*(n| = g*[—nl. One can verify that

ajt1[n] = a;xk°[2n], (7.268)
&yl = axg2n). (7.269)

We denote by jn] the signal obtained by adding a zero between any two
samples of y(n] that are adjacent in the p-dimensional lattice n = (ny, ... ,n,).
It doubles the size of y[n] along each direction. If y[n] has M? samples, then j[n]
has (2M)? samples. The reconstruction is performed with

27~
ajln] =y x kO] + ) dS, x &[] . (7.270)

e=|
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Fast p-dimensional WT

The 27 separable convolutions needed to compute a; and {d} }1 <c<2r as well as
the reconstruction (7.270) can be factored in 27! — 2 groups of one-dimensional
convolutions along the rows of p-dimensional signals. This is a generalization of
the two-dimensional case, illustrated in Figures 7.27. The wavelet representation
of ar is

[{d}}lse<v,1.<)<1 , 01] . (7.271)

It is computed by iterating (7.268) and (7.269) for L < j < J. The reconstruction
of ar, is performed with the partial reconstruction (7.270) for J > j > L.

If gy is a finite signal of size N, the one-dimensional convolutions are modified
with one of the three boundary techniques described in Section 7.5. The resulting
algorithm computes decomposition coefficients in a separable wavelet basis of
L2[0,1]7. The signals a; and d have 277/ samples. Like a,, the wavelet represen-
tation (7.271) is composed of N7 samples. If the filter h has K non-zero samples
then the separable factorization of (7.268) and (7.269) requires pK2~?U~1) multi-
plications and additions. The wavelet representation (7.271) is thus computed with
fewer than p(1—2~7)~' KN” multiplications and additions. The reconstruction is
performed with the same number of operations.
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Wavelet bases in higher dimensions

Theorem 7.25 The family obtained by dilating and translating the 2P-1 wavelets
for € different from zero

{wj” (x)}lss<2p—l,( Jjn)EZ?

is an orthonormal basis for L%(RP).

3D DWT
HLL HLH
LLL LLH T
T
I
=
LEL LLH
jan]
v i
e
=
LHL LHH
z
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Fig. The filter architecture for 3D wavelet transform
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